Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Physiol Rep ; 12(13): e16052, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38987200

RESUMEN

We previously observed lifelong endurance exercise (LLE) influenced quadriceps whole-muscle and myofiber size in a fiber-type and sex-specific manner. The current follow-up exploratory investigation examined myofiber size regulators and myofiber size distribution in vastus lateralis biopsies from these same LLE men (n = 21, 74 ± 1 years) and women (n = 7, 72 ± 2 years) as well as old, healthy nonexercisers (OH; men: n = 10, 75 ± 1 years; women: n = 10, 75 ± 1 years) and young exercisers (YE; men: n = 10, 25 ± 1 years; women: n = 10, 25 ± 1 years). LLE exercised ~5 days/week, ~7 h/week for the previous 52 ± 1 years. Slow (myosin heavy chain (MHC) I) and fast (MHC IIa) myofiber nuclei/fiber, myonuclear domain, satellite cells/fiber, and satellite cell density were not influenced (p > 0.05) by LLE in men and women. The aging groups had ~50%-60% higher proportion of large (>7000 µm2) and small (<3000 µm2) myofibers (OH; men: 44%, women: 48%, LLE; men: 42%, women: 42%, YE; men: 27%, women: 29%). LLE men had triple the proportion of large slow fibers (LLE: 21%, YE: 7%, OH: 7%), while LLE women had more small slow fibers (LLE: 15%, YE: 8%, OH: 9%). LLE reduced by ~50% the proportion of small fast (MHC II containing) fibers in the aging men (OH: 14%, LLE: 7%) and women (OH: 35%, LLE: 18%). These data, coupled with previous findings, suggest that myonuclei and satellite cell content are uninfluenced by lifelong endurance exercise in men ~60-90 years, and this now also extends to septuagenarian lifelong endurance exercise women. Additionally, lifelong endurance exercise appears to influence the relative abundance of small and large myofibers (fast and slow) differently between men and women.


Asunto(s)
Ejercicio Físico , Fibras Musculares de Contracción Rápida , Fibras Musculares de Contracción Lenta , Resistencia Física , Células Satélite del Músculo Esquelético , Humanos , Femenino , Masculino , Células Satélite del Músculo Esquelético/fisiología , Células Satélite del Músculo Esquelético/citología , Adulto , Resistencia Física/fisiología , Ejercicio Físico/fisiología , Anciano , Fibras Musculares de Contracción Rápida/fisiología , Fibras Musculares de Contracción Rápida/citología , Fibras Musculares de Contracción Lenta/fisiología , Fibras Musculares de Contracción Lenta/citología , Núcleo Celular/fisiología , Cadenas Pesadas de Miosina/metabolismo , Músculo Cuádriceps/citología , Músculo Cuádriceps/fisiología , Envejecimiento/fisiología , Adulto Joven
2.
Rheumatol Int ; 44(6): 1077-1087, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581449

RESUMEN

Sporadic inclusion body myositis (sIBM) is a subgroup of idiopathic inflammatory myopathies characterised by progressive muscle weakness and skeletal muscle inflammation. Quantitative data on the myofibre morphology in sIBM remains scarce. Further, no previous study has examined fibre type association of satellite cells (SC), myonuclei number, macrophages, capillaries, and myonuclear domain (MD) in sIBM patients. Muscle biopsies from sIBM patients (n = 18) obtained previously (NCT02317094) were included in the analysis for fibre type-specific myofibre cross-sectional area (mCSA), SCs, myonuclei and macrophages, myonuclear domain, and capillarisation. mCSA (p < 0.001), peripheral myonuclei (p < 0.001) and MD (p = 0.005) were higher in association with type 1 (slow-twitch) than type 2 (fast-twitch) fibres. Conversely, quiescent SCs (p < 0.001), centrally placed myonuclei (p = 0.03), M1 macrophages (p < 0.002), M2 macrophages (p = 0.013) and capillaries (p < 0.001) were higher at type 2 fibres compared to type 1 fibres. In contrast, proliferating (Pax7+/Ki67+) SCs (p = 0.68) were similarly associated with each fibre type. Type 2 myofibres of late-phase sIBM patients showed marked signs of muscle atrophy (i.e. reduced mCSA) accompanied by higher numbers of associated quiescent SCs, centrally placed myonuclei, macrophages and capillaries compared to type 1 fibres. In contrast, type 1 fibres were suffering from pathological enlargement with larger MDs as well as fewer nuclei and capillaries per area when compared with type 2 fibres. More research is needed to examine to which extent different therapeutic interventions including targeted exercise might alleviate these fibre type-specific characteristics and countermeasure their consequences in impaired functional performance.


Asunto(s)
Miositis por Cuerpos de Inclusión , Regeneración , Humanos , Miositis por Cuerpos de Inclusión/patología , Miositis por Cuerpos de Inclusión/fisiopatología , Masculino , Femenino , Anciano , Persona de Mediana Edad , Fibras Musculares Esqueléticas/patología , Macrófagos/patología , Inflamación/patología , Biomarcadores/análisis , Músculo Esquelético/patología , Células Satélite del Músculo Esquelético/patología , Biopsia , Fibras Musculares de Contracción Lenta/patología , Fibras Musculares de Contracción Rápida/patología
3.
Front Physiol ; 14: 1266950, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37822678

RESUMEN

The development and maintenance of neuromuscular junctions (NMJ) are supported by a specialized population of myonuclei that are referred to as the subsynaptic myonuclei (SSM). The relationship between the number of SSM and the integrity of the NMJ as well as the impact of a loss of innervation on SSM remain unclear. This study aimed to clarify these associations by simultaneously analyzing SSM counts and NMJ innervation status in three distinct mouse models of acute and chronic NMJ disruption. SSM were identified using fluorescent immunohistochemistry for Nesprin1 expression, which is highly enriched in SSM, along with anatomical location beneath the muscle fiber motor endplate. Acute denervation, induced by surgical nerve transection, did not affect SSM number after 7 days. Additionally, no significant changes in SSM number were observed during normal aging or in mice with chronic oxidative stress (Sod1 -/-). Both aging WT mice and Sod1 -/- mice accumulated degenerating and denervated NMJ in skeletal muscle, but there was no correlation between innervation status of a given NMJ and SSM number in aged or Sod1 -/- mice. These findings challenge the notion that a loss of SSM is a primary driver of NMJ degradation and leave open questions of the mechanisms that regulate SSM number as well as the physiological significance of the precise SSM number. Further investigations are required to define other properties of the SSM, such as transcriptional profiles and structural integrity, to better understand their role in NMJ maintenance.

4.
Stem Cell Reports ; 18(6): 1325-1339, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37315524

RESUMEN

Skeletal muscle function and regenerative capacity decline during aging, yet factors driving these changes are incompletely understood. Muscle regeneration requires temporally coordinated transcriptional programs to drive myogenic stem cells to activate, proliferate, fuse to form myofibers, and to mature as myonuclei, restoring muscle function after injury. We assessed global changes in myogenic transcription programs distinguishing muscle regeneration in aged mice from young mice by comparing pseudotime trajectories from single-nucleus RNA sequencing of myogenic nuclei. Aging-specific differences in coordinating myogenic transcription programs necessary for restoring muscle function occur following muscle injury, likely contributing to compromised regeneration in aged mice. Differences in pseudotime alignment of myogenic nuclei when comparing aged with young mice via dynamic time warping revealed pseudotemporal differences becoming progressively more severe as regeneration proceeds. Disruptions in timing of myogenic gene expression programs may contribute to incomplete skeletal muscle regeneration and declines in muscle function as organisms age.


Asunto(s)
Núcleo Celular , Células Madre , Animales , Ratones , Envejecimiento/genética , Músculo Esquelético , Expresión Génica
6.
Am J Physiol Cell Physiol ; 325(1): C324-C331, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37335024

RESUMEN

A gradual decline in skeletal muscle mass and function is closely tied to increased mortality and disease risk during organismal aging. Exercise training is the most effective way to enhance muscle health, but the adaptive response to exercise as well as muscle repair potential is blunted in older individuals. Numerous mechanisms contribute to the loss of muscle mass and plasticity as aging progresses. An emerging body of recent evidence implicates an accumulation of senescent ("zombie") cells in muscle as a contributing factor to the aging phenotype. Senescent cells cannot divide but can release inflammatory factors and create an unfavorable environment for homeostasis and adaptation. On balance, some evidence indicates that cells with senescent characteristics can be beneficial for the muscle adaptive process, specifically at younger ages. Emerging evidence also suggests that multinuclear muscle fibers could become senescent. In this review, we summarize current literature on the prevalence of senescent cells in skeletal muscle and highlight the consequences of senescent cell removal on muscle mass, function, and adaptability. We examine key limitations in the field of senescence specifically in skeletal muscle and identify areas of research that require future investigation.NEW & NOTEWORTHY There is evidence to suggest that senescent "zombie" cells may or may not accrue in aging skeletal muscle. When muscle is perturbed regardless of age, senescent-like cells do appear, and the benefits of removing them could be age-dependent. More work is needed to determine the magnitude of accumulation and source of senescent cells in muscle. Regardless, pharmacological senolytic treatment of aged muscle is beneficial for adaptation.


Asunto(s)
Senescencia Celular , Músculo Esquelético , Senescencia Celular/genética , Músculo Esquelético/fisiología , Fenotipo , Homeostasis
7.
FASEB J ; 37(6): e22993, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37235502

RESUMEN

Lacking PTRF (polymerase I and transcript release factor), an essential caveolae component, causes a secondary deficiency of caveolins resulting in muscular dystrophy. The transcriptome responses of different types of muscle fibers and mononuclear cells in skeletal muscle to muscular dystrophy caused by Ptrf deletion have not been explored. Here, we created muscular dystrophy mice by Ptrf knockout and applied single-nucleus RNA sequencing (snRNA-seq) to unveil the transcriptional changes of the skeletal muscle at single-nucleus resolution. 11 613 muscle nuclei (WT, 5838; Ptrf KO, 5775) were classified into 12 clusters corresponding to 11 nuclear types. Trajectory analysis revealed the potential transition between type IIb_1 and IIb_2 myonuclei upon muscular dystrophy. Functional enrichment analysis indicated that apoptotic signaling and enzyme-linked receptor protein signaling pathway were significantly enriched in type IIb_1 and IIb_2 myonuclei of Ptrf KO, respectively. The muscle structure development and the PI3K-AKT signaling pathway were significantly enriched in type IIa and IIx myonuclei of Ptrf KO. Meanwhile, metabolic pathway analysis showed a decrease in overall metabolic pathway activity of myonuclei subtypes upon muscular dystrophy, with the most decrease in type IIb_1 myonuclei. Gene regulatory network analysis found that the activity of Mef2c, Mef2d, Myf5, and Pax3 regulons was enhanced in type II myonuclei of Ptrf KO, especially in type IIb_2 myonuclei. In addition, we investigated the transcriptome changes in adipocytes and found that muscular dystrophy enhanced the lipid metabolic capacity of adipocytes. Our findings provide a valuable resource for exploring the molecular mechanism of muscular dystrophy due to Ptrf deficiency.


Asunto(s)
Distrofias Musculares , Transcriptoma , Ratones , Animales , Fosfatidilinositol 3-Quinasas/metabolismo , Distrofias Musculares/genética , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo
8.
Am J Physiol Cell Physiol ; 324(6): C1274-C1294, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37154489

RESUMEN

Skeletal muscle memory is an exciting phenomenon gaining significant traction across several scientific communities, among exercise practitioners, and the public. Research has demonstrated that skeletal muscle tissue can be "primed" by earlier positive encounters with exercise training that can enhance adaptation to later retraining, even following significant periods of exercise cessation or detraining. This review will describe and discuss the most recent research investigating the underlying mechanisms of skeletal muscle memory: 1) "cellular" muscle memory and, 2) "epigenetic" muscle memory, as well as emerging evidence of how these theories may work in synergy. We will discuss both "positive" and "negative" muscle memory and highlight the importance of investigating muscle memory for optimizing exercise interventions and training programs as well as the development of therapeutic strategies for counteracting muscle wasting conditions and age-related muscle loss. Finally, important directions emerging in the field will be highlighted to advance the next generation of studies in skeletal muscle memory research into the future.


Asunto(s)
Ejercicio Físico , Músculo Esquelético , Humanos , Músculo Esquelético/fisiología , Ejercicio Físico/fisiología , Atrofia Muscular , Adaptación Fisiológica , Células Musculares
9.
Acta Physiol (Oxf) ; 239(1): e13982, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37097015

RESUMEN

AIM: While manual quantification is still considered the gold standard for skeletal muscle histological analysis, it is time-consuming and prone to investigator bias. To address this challenge, we assembled an automated image analysis pipeline, FiNuTyper (Fiber and Nucleus Typer). METHODS: We integrated recently developed deep learning-based image segmentation methods, optimized for unbiased evaluation of fresh and postmortem human skeletal muscle, and utilized SERCA1 and SERCA2 as type-specific myonucleus and myofiber markers after validating them against the traditional use of MyHC isoforms. RESULTS: Parameters including cross-sectional area, myonuclei per fiber, myonuclear domain, central myonuclei per fiber, and grouped myofiber ratio were determined in a fiber-type-specific manner, revealing that a large degree of sex- and muscle-related heterogeneity could be detected using the pipeline. Our platform was also tested on pathological muscle tissue (ALS and IBM) and adapted for the detection of other resident cell types (leucocytes, satellite cells, capillary endothelium). CONCLUSION: In summary, we present an automated image analysis tool for the simultaneous quantification of myofiber and myonuclear types, to characterize the composition and structure of healthy and diseased human skeletal muscle.


Asunto(s)
Aprendizaje Profundo , Células Satélite del Músculo Esquelético , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético , Núcleo Celular/metabolismo
10.
Muscle Nerve ; 67(6): 537-547, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36975763

RESUMEN

INTRODUCTION/AIMS: The mechanisms that underlie the pathogenesis of statin-associated muscle symptoms (SAMS) remain unclear. Pregnancy is associated with increased cholesterol levels. Statins may be useful during pregnancy, but their safety is uncertain. Hence, we investigated the postpartum effects of exposure to rosuvastatin and simvastatin during pregnancy in Wistar rats, targeting the neuromuscular structures. METHODS: Twenty-one pregnant Wistar rats were divided into three groups: control (C) treated with vehicle (dimethylsulfoxide + dH20), simvastatin (S) 62.5 mg/kg/day, and rosuvastatin (R) 10 mg/kg/day. Gavage was performed daily from the gestational days 8 to 20. At weaning, the postpartum mother tissues were collected and subjected to morphological and morphometric analysis of the soleus muscle, associated neuromuscular junctions (NMJs), and the sciatic nerve; protein quantification; quantification of the cholesterol and creatine kinase in the serum; and intramuscular collagen analysis. RESULTS: An increase in morphometric parameters (area, maximum and minimum diameters, Feret diameter, and minimum Feret) was observed in NMJs from the S and R groups in comparison with the C group, and there was also a loss of common NMJ circularity. The number of myofibers with central nuclei was higher in S (17 ± 3.9, P = .0083) and R (18.86 ± 14.42, P = .0498) than in C (6.8 ± 2.6). DISCUSSION: Gestational exposure to statins induced postpartum NMJ morphology alterations in soleus muscle, which may be caused by the remodeling of clusters of nicotinic acetylcholine receptors. This may be associated with the development and progression of SAMS observed in clinical practice.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Ratas , Embarazo , Humanos , Femenino , Animales , Ratas Wistar , Inhibidores de Hidroximetilglutaril-CoA Reductasas/toxicidad , Rosuvastatina Cálcica , Unión Neuromuscular/metabolismo , Músculo Esquelético/metabolismo , Simvastatina/efectos adversos , Periodo Posparto
11.
Eur J Appl Physiol ; 123(7): 1469-1478, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36877252

RESUMEN

Myoglobin is essential for oxygen transport to the muscle fibers. However, measurements of myoglobin (Mb) protein concentrations within individual human muscle fibers are scarce. Recent observations have revealed surprisingly low Mb concentrations in elite cyclists, however it remains unclear whether this relates to Mb translation, transcription and/or myonuclear content. The aim was to compare Mb concentration, Mb messenger RNA (mRNA) expression levels and myonuclear content within muscle fibers of these elite cyclists with those of physically-active controls. Muscle biopsies were obtained from m. vastus lateralis in 29 cyclists and 20 physically-active subjects. Mb concentration was determined by peroxidase staining for both type I and type II fibers, Mb mRNA expression level was determined by quantitative PCR and myonuclear domain size (MDS) was obtained by immunofluorescence staining. Average Mb concentrations (mean ± SD: 0.38 ± 0.04 mM vs. 0.48 ± 0.19 mM; P = 0.014) and Mb mRNA expression levels (0.067 ± 0.019 vs. 0.088 ± 0.027; P = 0.002) were lower in cyclists compared to controls. In contrast, MDS and total RNA per mg muscle were not different between groups. Interestingly, in cyclists compared to controls, Mb concentration was only lower for type I fibers (P < 0.001), but not for type II fibers (P > 0.05). In conclusion, the lower Mb concentration in muscle fibers of elite cyclists is partly explained by lower Mb mRNA expression levels per myonucleus and not by a lower myonuclear content. It remains to be determined whether cyclists may benefit from strategies that upregulate Mb mRNA expression levels, particularly in type I fibers, to enhance their oxygen supply.


Asunto(s)
Músculo Esquelético , Mioglobina , Humanos , Mioglobina/genética , Mioglobina/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/fisiología , Oxígeno/metabolismo
12.
J Physiol ; 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36744414
13.
J Physiol ; 601(4): 723-741, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36629254

RESUMEN

Most cells in the body are mononuclear whereas skeletal muscle fibres are uniquely multinuclear. The nuclei of muscle fibres (myonuclei) are usually situated peripherally which complicates the equitable distribution of gene products. Myonuclear abundance can also change under conditions such as hypertrophy and atrophy. Specialised zones in muscle fibres have different functions and thus distinct synthetic demands from myonuclei. The complex structure and regulatory requirements of multinuclear muscle cells understandably led to the hypothesis that myonuclei govern defined 'domains' to maintain homeostasis and facilitate adaptation. The purpose of this review is to provide historical context for the myonuclear domain and evaluate its veracity with respect to mRNA and protein distribution resulting from myonuclear transcription. We synthesise insights from past and current in vitro and in vivo genetically modified models for studying the myonuclear domain under dynamic conditions. We also cover the most contemporary knowledge on mRNA and protein transport in muscle cells. Insights from emerging technologies such as single myonuclear RNA-sequencing further inform our discussion of the myonuclear domain. We broadly conclude: (1) the myonuclear domain can be flexible during muscle fibre growth and atrophy, (2) the mechanisms and role of myonuclear loss and motility deserve further consideration, (3) mRNA in muscle is actively transported via microtubules and locally restricted, but proteins may travel far from a myonucleus of origin and (4) myonuclear transcriptional specialisation extends beyond the classic neuromuscular and myotendinous populations. A deeper understanding of the myonuclear domain in muscle may promote effective therapies for ageing and disease.


Asunto(s)
Fibras Musculares Esqueléticas , Músculo Esquelético , Adulto , Humanos , Músculo Esquelético/fisiología , Fibras Musculares Esqueléticas/fisiología , Núcleo Celular/metabolismo , ARN Mensajero/metabolismo , Atrofia/metabolismo , Atrofia/patología
14.
Am J Physiol Cell Physiol ; 324(1): C85-C97, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36409178

RESUMEN

Myonuclei transcriptionally regulate muscle fibers during homeostasis and adaptation to exercise. Their subcellular location and quantity are important when characterizing phenotypes of myopathies, the effect of treatments, and understanding the roles of satellite cells in muscle adaptation and muscle "memory." Difficulties arise in identifying myonuclei due to their proximity to the sarcolemma and closely residing interstitial cell neighbors. We aimed to determine to what extent (pericentriolar material-1) PCM1 is a specific marker of myonuclei in vitro and in vivo. Single isolated myofibers and cross sections from mice and humans were studied from several models including wild-type and Lamin A/C mutant mice after functional overload and damage and recovery in humans following forced eccentric contractions. Fibers were immunolabeled for PCM1, Pax7, and DNA. C2C12 myoblasts were also studied to investigate changes in PCM1 localization during myogenesis. PCM1 was detected at not only the nuclear envelope of myonuclei in mature myofibers and in newly formed myotubes but also centrosomes in proliferating myogenic precursors, which may or may not fuse to join the myofiber syncytium. PCM1 was also detected in nonmyogenic nuclei near the sarcolemma, especially in regenerating areas of the Lmna+/ΔK32 mouse and damaged human muscle. Although PCM1 is not completely specific to myonuclei, the impact that PCM1+ macrophages and interstitial cells have on myonuclei counts would be small in healthy muscle. PCM1 may prove useful as a marker of satellite cell dynamics due to the distinct change in localization during differentiation, revealing satellite cells in their quiescent (PCM1-), proliferating (PCM1+ centrosome), and prefusion states (PCM1+ nuclear envelope).


Asunto(s)
Enfermedades Musculares , Células Satélite del Músculo Esquelético , Ratones , Humanos , Animales , Músculo Esquelético/fisiología , Fibras Musculares Esqueléticas , Diferenciación Celular , Proteínas de Ciclo Celular
15.
Function (Oxf) ; 4(1): zqac059, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36569816

RESUMEN

The skeletal muscle research field generally accepts that nuclei in skeletal muscle fibers (ie, myonuclei) are post-mitotic and unable to proliferate. Because our deuterium oxide (D2O) labeling studies showed DNA synthesis in skeletal muscle tissue, we hypothesized that resident myonuclei can replicate in vivo. To test this hypothesis, we used a mouse model that temporally labeled myonuclei with GFP followed by D2O labeling during normal cage activity, functional overload, and with satellite cell ablation. During normal cage activity, we observed deuterium enrichment into myonuclear DNA in 7 out of 7 plantaris (PLA), 6 out of 6 tibialis anterior (TA), 5 out of 7 gastrocnemius (GAST), and 7 out of 7 quadriceps (QUAD). The average fractional synthesis rates (FSR) of DNA in myonuclei were: 0.0202 ± 0.0093 in PLA, 0.0239 ± 0.0040 in TA, 0.0076 ± 0. 0058 in GAST, and 0.0138 ± 0.0039 in QUAD, while there was no replication in myonuclei from EDL. These FSR values were largely reproduced in the overload and satellite cell ablation conditions, although there were higher synthesis rates in the overloaded PLA muscle. We further provided evidence that myonuclear replication is through endoreplication, which results in polyploidy. These novel findings contradict the dogma that skeletal muscle nuclei are post-mitotic and open potential avenues to harness the intrinsic replicative ability of myonuclei for muscle maintenance and growth.


Asunto(s)
Fibras Musculares Esqueléticas , Músculo Esquelético , Ratones , Animales , Fibras Musculares Esqueléticas/fisiología , Núcleo Celular/genética , Músculo Cuádriceps , Poliésteres
16.
Geroscience ; 45(1): 451-462, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36083436

RESUMEN

Ageing limits growth capacity of skeletal muscle (e.g. in response to resistance exercise), but the role of satellite cell (SC) function in driving this phenomenon is poorly defined. Younger (Y) (~ 23 years) and older (O) men (~ 69 years) (normal-weight BMI) underwent 6 weeks of unilateral resistance exercise training (RET). Muscle biopsies were taken at baseline and after 3-/6-week training. We determined muscle size by fibre CSA (and type), SC number, myonuclei counts and DNA synthesis (via D2O ingestion). At baseline, there were no significant differences in fibre areas between Y and O. RET increased type I fibre area in Y from baseline at both 3 weeks and 6 weeks (baseline: 4509 ± 534 µm2, 3 weeks; 5497 ± 510 µm2 P < 0.05, 6 weeks; 5402 ± 352 µm2 P < 0.05), whilst O increased from baseline at 6 weeks only (baseline 5120 ± 403 µm2, 3 weeks; 5606 ± 620 µm2, 6 weeks; 6017 ± 482 µm2 P < 0.05). However, type II fibre area increased from baseline in Y at both 3 weeks and 6 weeks (baseline: 4949 ± 459 µm2, 3 weeks; 6145 ± 484 µm2 (P < 0.01), 6 weeks; 5992 ± 491 µm2 (P < 0.01), whilst O showed no change (baseline 5210 ± 410 µm2, 3 weeks; 5356 ± 535 µm2 (P = 0.9), 6 weeks; 5857 ± 478 µm2 (P = 0.1). At baseline, there were no differences in fibre myonuclei number between Y and O. RET increased type I fibre myonuclei number from baseline in both Y and O at 3 weeks and 6 weeks with RET (younger: baseline 2.47 ± 0.16, 3 weeks; 3.19 ± 0.16 (P < 0.001), 6 weeks; 3.70 ± 0.29 (P < 0.0001); older: baseline 2.29 ± 0.09, 3 weeks; 3.01 ± 0.09 (P < 0.001), 6 weeks; 3.65 ± 0.18 (P < 0.0001)). Similarly, type II fibre myonuclei number increased from baseline in both Y and O at 3 weeks and 6 weeks (younger: baseline 2.49 ± 0.14, 3 weeks; 3.31 ± 0.21 (P < 0.001), 6 weeks; 3.86 ± 0.29 (P < 0.0001); older: baseline 2.43 ± 0.12, 3 weeks; 3.37 ± 0.12 (P < 0.001), 6 weeks; 3.81 ± 0.15 (P < 0.0001)). DNA synthesis rates %.d-1 exhibited a main effect of training but no age discrimination. Declines in myonuclei addition do not underlie impaired muscle growth capacity in older humans, supporting ribosomal and proteostasis impairments as we have previously reported.


Asunto(s)
Músculo Esquelético , Entrenamiento de Fuerza , Masculino , Humanos , Anciano , Músculo Esquelético/metabolismo , Hipertrofia , Envejecimiento , ADN/metabolismo
17.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36076943

RESUMEN

Current information regarding the effects of a high-fat diet (HFD) on skeletal muscle is contradictory. This study aimed to investigate the effects of a long-term HFD on skeletal muscle in male and female mice at the morphological, cellular, and molecular levels. Adult mice of the C57BL/6 strain were fed standard chow or an HFD for 20 weeks. The tibialis anterior muscles were dissected, weighed, and processed for cellular and molecular analyses. Immunocytochemical and morphometric techniques were applied to quantify fiber size, satellite cells (SCs), and myonuclei. Additionally, PCR array and RT-qPCR tests were performed to determine the expression levels of key muscle genes. Muscles from HFD mice showed decreases in weight, SCs, and myonuclei, consistent with the atrophic phenotype. This atrophy was associated with a decrease in the percentage of oxidative fibers within the muscle. These findings were further confirmed by molecular analyses that showed significant reductions in the expression of Pax7, Myh1, and Myh2 genes and increased Mstn gene expression. Male and female mice showed similar trends in response to HFD-induced obesity. These findings indicate that the long-term effects of obesity on skeletal muscle resemble those of age-related sarcopenia.


Asunto(s)
Dieta Alta en Grasa , Músculo Esquelético , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Oxidación-Reducción
18.
J Biol Chem ; 298(11): 102515, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36150502

RESUMEN

Myc is a powerful transcription factor implicated in epigenetic reprogramming, cellular plasticity, and rapid growth as well as tumorigenesis. Cancer in skeletal muscle is extremely rare despite marked and sustained Myc induction during loading-induced hypertrophy. Here, we investigated global, actively transcribed, stable, and myonucleus-specific transcriptomes following an acute hypertrophic stimulus in mouse plantaris. With these datasets, we define global and Myc-specific dynamics at the onset of mechanical overload-induced muscle fiber growth. Data collation across analyses reveals an under-appreciated role for the muscle fiber in extracellular matrix remodeling during adaptation, along with the contribution of mRNA stability to epigenetic-related transcript levels in muscle. We also identify Runx1 and Ankrd1 (Marp1) as abundant myonucleus-enriched loading-induced genes. We observed that a strong induction of cell cycle regulators including Myc occurs with mechanical overload in myonuclei. Additionally, in vivo Myc-controlled gene expression in the plantaris was defined using a genetic muscle fiber-specific doxycycline-inducible Myc-overexpression model. We determined Myc is implicated in numerous aspects of gene expression during early-phase muscle fiber growth. Specifically, brief induction of Myc protein in muscle represses Reverbα, Reverbß, and Myh2 while increasing Rpl3, recapitulating gene expression in myonuclei during acute overload. Experimental, comparative, and in silico analyses place Myc at the center of a stable and actively transcribed, loading-responsive, muscle fiber-localized regulatory hub. Collectively, our experiments are a roadmap for understanding global and Myc-mediated transcriptional networks that regulate rapid remodeling in postmitotic cells. We provide open webtools for exploring the five RNA-seq datasets as a resource to the field.


Asunto(s)
Desarrollo de Músculos , Fibras Musculares Esqueléticas , Ratones , Animales , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Hipertrofia/metabolismo , Perfilación de la Expresión Génica
19.
Front Cell Dev Biol ; 10: 934586, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36120560

RESUMEN

The nuclei of multinucleated skeletal muscles experience substantial external force during development and muscle contraction. Protection from such forces is partly provided by lamins, intermediate filaments that form a scaffold lining the inner nuclear membrane. Lamins play a myriad of roles, including maintenance of nuclear shape and stability, mediation of nuclear mechanoresponses, and nucleo-cytoskeletal coupling. Herein, we investigate how disease-causing mutant lamins alter myonuclear properties in response to mechanical force. This was accomplished via a novel application of a micropipette harpooning assay applied to larval body wall muscles of Drosophila models of lamin-associated muscular dystrophy. The assay enables the measurement of both nuclear deformability and intracellular force transmission between the cytoskeleton and nuclear interior in intact muscle fibers. Our studies revealed that specific mutant lamins increase nuclear deformability while other mutant lamins cause nucleo-cytoskeletal coupling defects, which were associated with loss of microtubular nuclear caging. We found that microtubule caging of the nucleus depended on Msp300, a KASH domain protein that is a component of the linker of nucleoskeleton and cytoskeleton (LINC) complex. Taken together, these findings identified residues in lamins required for connecting the nucleus to the cytoskeleton and suggest that not all muscle disease-causing mutant lamins produce similar defects in subcellular mechanics.

20.
J Cachexia Sarcopenia Muscle ; 13(5): 2276-2297, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35961635

RESUMEN

One aspect of skeletal muscle memory is the ability of a previously trained muscle to hypertrophy more rapidly following a period of detraining. Although the molecular basis of muscle memory remains to be fully elucidated, one potential mechanism thought to mediate muscle memory is the permanent retention of myonuclei acquired during the initial phase of hypertrophic growth. However, myonuclear permanence is debated and would benefit from a meta-analysis to clarify the current state of the field for this important aspect of skeletal muscle plasticity. The objective of this study was to perform a meta-analysis to assess the permanence of myonuclei associated with changes in physical activity and ageing. When available, the abundance of satellite cells (SCs) was also considered given their potential influence on changes in myonuclear abundance. One hundred forty-seven peer-reviewed articles were identified for inclusion across five separate meta-analyses; (1-2) human and rodent studies assessed muscle response to hypertrophy; (3-4) human and rodent studies assessed muscle response to atrophy; and (5) human studies assessed muscle response with ageing. Skeletal muscle hypertrophy was associated with higher myonuclear content that was retained in rodents, but not humans, with atrophy (SMD = -0.60, 95% CI -1.71 to 0.51, P = 0.29, and MD = 83.46, 95% CI -649.41 to 816.32, P = 0.82; respectively). Myonuclear and SC content were both lower following atrophy in humans (MD = -11, 95% CI -0.19 to -0.03, P = 0.005, and SMD = -0.49, 95% CI -0.77 to -0.22, P = 0.0005; respectively), although the response in rodents was affected by the type of muscle under consideration and the mode of atrophy. Whereas rodent myonuclei were found to be more permanent regardless of the mode of atrophy, atrophy of ≥30% was associated with a reduction in myonuclear content (SMD = -1.02, 95% CI -1.53 to -0.51, P = 0.0001). In humans, sarcopenia was accompanied by a lower myonuclear and SC content (MD = 0.47, 95% CI 0.09 to 0.85, P = 0.02, and SMD = 0.78, 95% CI 0.37-1.19, P = 0.0002; respectively). The major finding from the present meta-analysis is that myonuclei are not permanent but are lost during periods of atrophy and with ageing. These findings do not support the concept of skeletal muscle memory based on the permanence of myonuclei and suggest other mechanisms, such as epigenetics, may have a more important role in mediating this aspect of skeletal muscle plasticity.


Asunto(s)
Fibras Musculares Esqueléticas , Sarcopenia , Animales , Atrofia , Humanos , Hipertrofia/patología , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/patología , Sarcopenia/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA