Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Int J Med Sci ; 21(11): 2040-2051, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239540

RESUMEN

Myofibrillar myopathy (MFM) is a group of hereditary myopathies that mainly involves striated muscles. This study aimed to use tandem mass tag (TMT)-based proteomics to investigate the underlying pathomechanisms of two of the most common MFM subtypes, desminopathy and titinopathy. Muscles from 7 patients with desminopathy, 5 with titinopathy and 5 control individuals were included. Samples were labelled with TMT and then underwent high-resolution liquid chromatography-mass spectrometry analysis. Compared with control samples, there were 436 differentially abundant proteins (DAPs) in the desminopathy group and 269 in the titinopathy group. When comparing the desminopathy with the titinopathy group, there were 113 DAPs. In desminopathy, mitochondrial ATP production, muscle contraction, and cytoskeleton organization were significantly suppressed. Activated cellular components and pathways were mostly related to extracellular matrix (ECM). In titinopathy, mitochondrial-related pathways and the cellular component ECM were downregulated, while gluconeogenesis was activated. Direct comparison between desminopathy and titinopathy revealed hub genes that were all involved in glycolytic process. The disparity in glycolysis in the two MFM subtypes is likely due to fiber type switching. This study has revealed disorganization of cytoskeleton and mitochondrial dysfunction as the common pathophysiological processes in MFM, and glycolysis and ECM as the differential pathomechanism between desminopathy and titinopathy. This offers a future direction for targeted therapy for MFM.


Asunto(s)
Conectina , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Conectina/genética , Conectina/metabolismo , Proteómica/métodos , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/patología , Miopatías Estructurales Congénitas/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Desmina/genética , Desmina/metabolismo , Glucólisis/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Mitocondrias/patología , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Distrofias Musculares , Cardiomiopatías
2.
Neuromuscul Disord ; 42: 43-52, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39142003

RESUMEN

TIA1/SQSTM1 myopathy is one of the few digenic myopathies. We describe four new French adult male patients carrying the TIA1 p.Asn357Ser and SQSTM1 p.Pro392Leu variant and review the literature to include 20 additional cases to define the spectrum of the disease. These twenty-four patients (75% males) had late-onset (52,6 ± 10,1 years), mainly asymmetric, distal ankle and hand finger extension weakness (75%), mild CK elevation (82.4%) and myopathic EMG. Two of the four French patients had sensorimotor axonal polyneuropathy and an additional one had neurogenic changes in muscle biopsy. Muscle biopsy showed rimmed vacuoles (44.4%), myofibrillar disorganization (16.7%) or both (38.9%), with P62/TDP43 aggregates. The TIA1 p.Asn357Ser variant was present in all patients and the SQSTM1 p.Pro392Leu was the most frequent (71%) of the four reported SQSTM1 variants. We reviewed the distal myopathy gene panels of Pitié-Salpêtrière's hospital cohort finding a prevalence of 11/414=2.7% of the TIA1 p.Asn357Ser variant, with two patients having an alternative diagnosis (TTN and MYH7) with atypical phenotypes, resembling some of the features seen in TIA1/SQSTM1 myopathy. Overall, TIA1/SQSTM1 myopathy has a homogenous phenotype reinforcing the pathogenicity of its digenic variants. We confirm an increased burden of the TIA1 p.Asn357Ser variant in distal myopathy patients which could act as a genetic modifier.


Asunto(s)
Miopatías Distales , Proteína Sequestosoma-1 , Antígeno Intracelular 1 de las Células T , Humanos , Proteína Sequestosoma-1/genética , Masculino , Persona de Mediana Edad , Antígeno Intracelular 1 de las Células T/genética , Miopatías Distales/genética , Miopatías Distales/patología , Adulto , Músculo Esquelético/patología , Anciano , Femenino , Mutación , Fenotipo
3.
Neuromuscul Disord ; 39: 10-18, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38669730

RESUMEN

Recessive desminopathies are rare and often present as severe early-onset myopathy. Here we report a milder phenotype in three unrelated patients from southern India (2 M, 1F) aged 16, 21, and 22 years, who presented with childhood-onset, gradually progressive, fatigable limb-girdle weakness, ptosis, speech and swallowing difficulties, without cardiac involvement. Serum creatine kinase was elevated, and repetitive nerve stimulation showed decrement in all. Clinical improvement was noted with pyridostigmine and salbutamol in two patients. All three patients had a homozygous substitution in intron 5: DES(NM_001927.4):c.1023+5G>A, predicted to cause a donor splice site defect. Muscle biopsy with ultrastructural analysis suggested myopathy with myofibrillar disarray, and immunohistochemistry showed partial loss of desmin with some residual staining, while western blot analysis showed reduced desmin. RT-PCR of patient muscle RNA revealed two transcripts: a reduced normal desmin transcript and a larger abnormal transcript suggesting leaky splicing at the intron 5 donor site. Sequencing of the PCR products confirmed the inclusion of intron 5 in the longer transcript, predicted to cause a premature stop codon. Thus, we provide evidence for a leaky splice site causing partial loss of desmin associated with a unique phenotypic presentation of a milder form of desmin-related recessive myopathy overlapping with congenital myasthenic syndrome.


Asunto(s)
Desmina , Humanos , Masculino , Desmina/genética , Desmina/metabolismo , Femenino , Adulto Joven , Adolescente , Músculo Esquelético/patología , Músculo Esquelético/ultraestructura , Músculo Esquelético/metabolismo , Sitios de Empalme de ARN/genética , Transmisión Sináptica , Fenotipo , Mutación
4.
Heliyon ; 10(3): e25009, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38314304

RESUMEN

Objective: Myofibrillar myopathies (MFM) are a group of sporadic and inherited progressive skeletal muscle disorders that can lead to physical disability and premature death. To date, pathogenic variants in different genes are associated with MFM. MFM induced by variants in the Desmin (DES) gene is the most common subtype of MFM. Case presentation: A 15-year-old boy with MFM was described, whose symptoms first presented as cardiac symptoms. Enlarged right and left atria, thickened ventricular septal (IVS) and mild mitral (MR) and tricuspid regurgitation (TR) in the echocardiography were found. Atrial fibrillation, intermittent atrioventricular (AV) block, ST-T changes in the dynamic electrocardiogram (ECG) were shown. Mild myopathic changes in the electromyographic exam were detected. Ultrastructural analysis found slight Z-line changes and a few small myolysis lesions, but no abnormal inclusion bodies. Genetic testing detected a heterozygous missense variant (c.1216C > T) of DES, and 2 rare variants: TNNI3K (c.1102C > G) and PRDM16 (c.3074G > A). The patient's parents didn't show skeletal and cardiac muscle disorders. DNA sequencing analysis showed no variant of DES was carried by them. Thus, we detected a case of MFM caused by de novo DES variant c.1216C > T/p.Arg406Trp with predominantly myocardial alterations.

5.
Stem Cell Res Ther ; 15(1): 10, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167524

RESUMEN

BACKGROUND: Beyond the observed alterations in cellular structure and mitochondria, the mechanisms linking rare genetic mutations to the development of heart failure in patients affected by desmin mutations remain unclear due in part, to the lack of relevant human cardiomyocyte models. METHODS: To shed light on the role of mitochondria in these mechanisms, we investigated cardiomyocytes derived from human induced pluripotent stem cells carrying the heterozygous DESE439K mutation that were either isolated from a patient or generated by gene editing. To increase physiological relevance, cardiomyocytes were either cultured on an anisotropic micropatterned surface to obtain elongated and aligned cardiomyocytes, or as a cardiac spheroid to create a micro-tissue. Moreover, when applicable, results from cardiomyocytes were confirmed with heart biopsies of suddenly died patient of the same family harboring DESE439K mutation, and post-mortem heart samples from five control healthy donors. RESULTS: The heterozygous DESE439K mutation leads to dramatic changes in the overall cytoarchitecture of cardiomyocytes, including cell size and morphology. Most importantly, mutant cardiomyocytes display altered mitochondrial architecture, mitochondrial respiratory capacity and metabolic activity reminiscent of defects observed in patient's heart tissue. Finally, to challenge the pathological mechanism, we transferred normal mitochondria inside the mutant cardiomyocytes and demonstrated that this treatment was able to restore mitochondrial and contractile functions of cardiomyocytes. CONCLUSIONS: This work highlights the deleterious effects of DESE439K mutation, demonstrates the crucial role of mitochondrial abnormalities in the pathophysiology of desmin-related cardiomyopathy, and opens up new potential therapeutic perspectives for this disease.


Asunto(s)
Cardiomiopatías , Células Madre Pluripotentes Inducidas , Humanos , Desmina/genética , Desmina/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Cardiomiopatías/metabolismo , Mutación/genética , Miocitos Cardíacos/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo
6.
Rinsho Shinkeigaku ; 63(12): 836-842, 2023 Dec 19.
Artículo en Japonés | MEDLINE | ID: mdl-37989284

RESUMEN

A 19-year-old female, normal at birth, grew up without neck movement when getting up. She needed a handrail to climb stairs since the age of 10 years old, and walked slowly since the age of 16 years old. Neurological examination revealed loss of deep tendon reflexes, decreased vibratory sensation, weakness of distal muscles of the lower extremities, and weakness of mainly cervical trunk muscles suspected to be due to myopathy. Nerve conduction studies suggested axonal polyneuropathy, and needle EMG showed short duration MUP, myotonic discharge, and rimmed vacuoles on muscle biopsy. Genetic analysis revealed a previously reported pathological mutation (p.P209L, heterozygous) in Bcl2-Associated Athanogene 3 (BAG3), and a diagnosis of MFM6 was made. P209L is a poor prognosis myopathy that develops in childhood and is associated with cardiomyopathy. P209L is a solitary myopathy associated with axonal neuropathy and characterized by apex foot contracture and weak neck to trunk flexion. This disease is suspected in young-onset neuromyopathy.


Asunto(s)
Enfermedades Musculares , Enfermedades del Sistema Nervioso Periférico , Femenino , Recién Nacido , Humanos , Niño , Adolescente , Adulto Joven , Adulto , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Enfermedades Musculares/patología , Músculo Esquelético/patología , Mutación , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/patología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo
7.
Clin Genet ; 104(6): 705-710, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37553249

RESUMEN

Missense mutations in MYOT encoding the sarcomeric Z-disk protein myotilin cause three main myopathic phenotypes including proximal limb-girdle muscular dystrophy, spheroid body myopathy, and late-onset distal myopathy. We describe a family carrying a heterozygous MYOT deletion (Tyr4_His9del) that clinically was characterized by an early-adult onset distal muscle weakness and pathologically by a myofibrillar myopathy (MFM). Molecular modeling of the full-length myotilin protein revealed that the 4-YERPKH-9 amino acids are involved in local interactions within the N-terminal portion of myotilin. Injection of in vitro synthetized mutated human MYOT RNA or of plasmid carrying its cDNA sequence in zebrafish embryos led to muscle defects characterized by sarcomeric disorganization of muscle fibers and widening of the I-band, and severe motor impairments. We identify MYOT novel Tyr4_His9 deletion as the cause of an early-onset MFM with a distal myopathy phenotype and provide data supporting the importance of the amino acid sequence for the structural role of myotilin in the sarcomeric organization of myofibers.


Asunto(s)
Miopatías Distales , Proteínas Musculares , Adulto , Animales , Humanos , Conectina/genética , Proteínas de Microfilamentos/genética , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Mutación , Pez Cebra
8.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446359

RESUMEN

Desmin is a class III intermediate filament protein highly expressed in cardiac, smooth and striated muscle. Autosomal dominant or recessive mutations in the desmin gene (DES) result in a variety of diseases, including cardiomyopathies and myofibrillar myopathy, collectively called desminopathies. Here we describe the clinical, histological and radiological features of a Greek patient with a myofibrillar myopathy and cardiomyopathy linked to the c.734A>G,p.(Glu245Gly) heterozygous variant in the DES gene. Moreover, through ribonucleic acid sequencing analysis in skeletal muscle we show that this variant provokes a defect in exon 3 splicing and thus should be considered clearly pathogenic.


Asunto(s)
Cardiomiopatías , Enfermedades Musculares , Miopatías Estructurales Congénitas , Humanos , Desmina/genética , Desmina/metabolismo , Grecia , Cardiomiopatías/metabolismo , Miopatías Estructurales Congénitas/metabolismo , Músculo Esquelético/metabolismo , Mutación , Enfermedades Musculares/metabolismo
9.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37511242

RESUMEN

Myofibrillar myopathies (MFMs) are a group of hereditary neuromuscular disorders sharing common histological features, such as myofibrillar derangement, Z-disk disintegration, and the accumulation of degradation products into protein aggregates. They are caused by mutations in several genes that encode either structural proteins or molecular chaperones. Nevertheless, the mechanisms by which mutated genes result in protein aggregation are still unknown. To unveil the role of myotilin and αB-crystallin in the pathogenesis of MFM, we injected zebrafish fertilized eggs at the one-cell stage with expression plasmids harboring cDNA sequences of human wildtype or mutated MYOT (p.Ser95Ile) and human wildtype or mutated CRYAB (p.Gly154Ser). We evaluated the effects on fish survival, motor behavior, muscle structure and development. We found that transgenic zebrafish showed morphological defects that were more severe in those overexpressing mutant genes. which developed a myopathic phenotype consistent with that of human myofibrillar myopathy, including the formation of protein aggregates. Results indicate that pathogenic mutations in myotilin and αB-crystallin genes associated with MFM cause a structural and functional impairment of the skeletal muscle in zebrafish, thereby making this non-mammalian organism a powerful model to dissect disease pathogenesis and find possible druggable targets.


Asunto(s)
Cristalinas , Miopatías Estructurales Congénitas , Animales , Humanos , Cadena B de alfa-Cristalina/genética , Cadena B de alfa-Cristalina/metabolismo , Cristalinas/genética , Músculo Esquelético/patología , Mutación , Miofibrillas/metabolismo , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/metabolismo , Agregado de Proteínas , Pez Cebra/genética
10.
Brain ; 146(10): 4200-4216, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37163662

RESUMEN

Filamin-A-interacting protein 1 (FILIP1) is a structural protein that is involved in neuronal and muscle function and integrity and interacts with FLNa and FLNc. Pathogenic variants in filamin-encoding genes have been linked to neurological disorders (FLNA) and muscle diseases characterized by myofibrillar perturbations (FLNC), but human diseases associated with FILIP1 variants have not yet been described. Here, we report on five patients from four unrelated consanguineous families with homozygous FILIP1 variants (two nonsense and two missense). Functional studies indicated altered stability of the FILIP1 protein carrying the p.[Pro1133Leu] variant. Patients exhibit a broad spectrum of neurological symptoms including brain malformations, neurodevelopmental delay, muscle weakness and pathology and dysmorphic features. Electron and immunofluorescence microscopy on the muscle biopsy derived from the patient harbouring the homozygous p.[Pro1133Leu] missense variant revealed core-like zones of myofibrillar disintegration, autophagic vacuoles and accumulation of FLNc. Proteomic studies on the fibroblasts derived from the same patient showed dysregulation of a variety of proteins including FLNc and alpha-B-crystallin, a finding (confirmed by immunofluorescence) which is in line with the manifestation of symptoms associated with the syndromic phenotype of FILIP1opathy. The combined findings of this study show that the loss of functional FILIP1 leads to a recessive disorder characterized by neurological and muscular manifestations as well as dysmorphic features accompanied by perturbed proteostasis and myopathology.


Asunto(s)
Enfermedades Musculares , Proteómica , Humanos , Filaminas/genética , Mutación/genética , Enfermedades Musculares/genética , Debilidad Muscular , Proteínas Portadoras/genética , Proteínas del Citoesqueleto/genética
11.
Cells ; 12(9)2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37174721

RESUMEN

Myofibrillar myopathies (MFM) are a group of chronic muscle diseases pathophysiologically characterized by accumulation of protein aggregates and structural failure of muscle fibers. A subtype of MFM is caused by heterozygous mutations in the filamin C (FLNC) gene, exhibiting progressive muscle weakness, muscle structural alterations and intracellular protein accumulations. Here, we characterize in depth the pathogenicity of two novel truncating FLNc variants (p.Q1662X and p.Y2704X) and assess their distinct effect on FLNc stability and distribution as well as their impact on protein quality system (PQS) pathways. Both variants cause a slowly progressive myopathy with disease onset in adulthood, chronic myopathic alterations in muscle biopsy including the presence of intracellular protein aggregates. Our analyses revealed that p.Q1662X results in FLNc haploinsufficiency and p.Y2704X in a dominant-negative FLNc accumulation. Moreover, both protein-truncating variants cause different PQS alterations: p.Q1662X leads to an increase in expression of several genes involved in the ubiquitin-proteasome system (UPS) and the chaperone-assisted selective autophagy (CASA) system, whereas p.Y2704X results in increased abundance of proteins involved in UPS activation and autophagic buildup. We conclude that truncating FLNC variants might have different pathogenetic consequences and impair PQS function by diverse mechanisms and to varying extents. Further studies on a larger number of patients are necessary to confirm our observations.


Asunto(s)
Miopatías Estructurales Congénitas , Agregado de Proteínas , Humanos , Filaminas/genética , Filaminas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/metabolismo , Miopatías Estructurales Congénitas/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo
13.
Acta Neuropathol ; 145(1): 127-143, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36264506

RESUMEN

DNAJ/HSP40 co-chaperones are integral to the chaperone network, bind client proteins and recruit them to HSP70 for folding. We performed exome sequencing on patients with a presumed hereditary muscle disease and no genetic diagnosis. This identified four individuals from three unrelated families carrying an unreported homozygous stop gain (c.856A > T; p.Lys286Ter), or homozygous missense variants (c.74G > A; p.Arg25Gln and c.785 T > C; p.Leu262Ser) in DNAJB4. Affected patients presented with axial rigidity and early respiratory failure requiring ventilator support between the 1st and 4th decade of life. Selective involvement of the semitendinosus and biceps femoris muscles was seen on MRI scans of the thigh. On biopsy, muscle was myopathic with angular fibers, protein inclusions and occasional rimmed vacuoles. DNAJB4 normally localizes to the Z-disc and was absent from muscle and fibroblasts of affected patients supporting a loss of function. Functional studies confirmed that the p.Lys286Ter and p.Leu262Ser mutant proteins are rapidly degraded in cells. In contrast, the p.Arg25Gln mutant protein is stable but failed to complement for DNAJB function in yeast, disaggregate client proteins or protect from heat shock-induced cell death consistent with its loss of function. DNAJB4 knockout mice had muscle weakness and fiber atrophy with prominent diaphragm involvement and kyphosis. DNAJB4 knockout muscle and myotubes had myofibrillar disorganization and accumulated Z-disc proteins and protein chaperones. These data demonstrate a novel chaperonopathy associated with DNAJB4 causing a myopathy with early respiratory failure. DNAJB4 loss of function variants may lead to the accumulation of DNAJB4 client proteins resulting in muscle dysfunction and degeneration.


Asunto(s)
Enfermedades Musculares , Insuficiencia Respiratoria , Animales , Ratones , Mutación/genética , Enfermedades Musculares/diagnóstico por imagen , Enfermedades Musculares/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación Missense , Insuficiencia Respiratoria/genética , Insuficiencia Respiratoria/complicaciones , Insuficiencia Respiratoria/patología , Músculo Esquelético/patología
14.
Respir Med Case Rep ; 41: 101788, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36479323

RESUMEN

Myofibrillar myopathies (MFM) are a group of heterogenic muscular disorders characterized by histological disorders with accumulation of myofibrillar degradation products and providing disorganization of the myofibril network. Respiratory muscles may be involved in this disease. Ultrasound is used to assess not only the diaphragm but also the parasternal intercostal muscle. Parasternal intercostal muscle thickening may be used as an index of respiratory effort particularly in patients with diaphragm failure. We report the case of high parasternal intercostal muscle thickening associated with diaphragm dysfunction in a patient with MFM.

15.
Cells ; 11(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36497166

RESUMEN

Desmin is the major intermediate filament protein of all three muscle cell types, and connects different cell organelles and multi-protein complexes such as the cardiac desmosomes. Several pathogenic mutations in the DES gene cause different skeletal and cardiac myopathies. However, the significance of the majority of DES missense variants is currently unknown, since functional data are lacking. To determine whether desmin missense mutations within the highly conserved 1A coil domain cause a filament assembly defect, we generated a set of variants with unknown significance and systematically analyzed the filament assembly using confocal microscopy in transfected SW-13, H9c2 cells and cardiomyocytes derived from induced pluripotent stem cells. We found that mutations in the N-terminal part of the 1A coil domain affect filament assembly, leading to cytoplasmic desmin aggregation. In contrast, mutant desmin in the C-terminal part of the 1A coil domain forms filamentous structures comparable to wild-type desmin. Our findings suggest that the N-terminal part of the 1A coil domain is a hot spot for pathogenic desmin mutations, which affect desmin filament assembly. This study may have relevance for the genetic counselling of patients carrying variants in the 1A coil domain of the DES gene.


Asunto(s)
Desmina , Filamentos Intermedios , Enfermedades Musculares , Humanos , Secuencia de Bases , Citoesqueleto/metabolismo , Desmina/genética , Filamentos Intermedios/genética , Filamentos Intermedios/metabolismo , Enfermedades Musculares/patología , Animales , Ratones , Línea Celular
16.
Clin Neurol Neurosurg ; 221: 107386, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35961230

RESUMEN

Skeletal muscle filaminopathy is caused by mutations in the gene encoding filamin C (FLNC). The phenotypes include both proximal and distal myopathy, of which proximal myopathy phenotype pathologically displays myofibrillar myopathy as mutated filamin C produces protein aggregates. FLNC-related myofibrillar myopathy usually starts in the fourth to fifth decade and often progresses to cause inability to walk, respiratory muscle weakness requiring nocturnal ventilation, and cardiac abnormalities, such as conduction blocks and diastolic dysfunction. We report a 65-year-old patient with myofibrillar myopathy caused by a novel heterozygous nonsense mutation in the dimerization domain of FLNC, in whom histopathological features were highlighted by histological and immunohistochemical studies. The reported patient showed slow progression of mild limb weakness since her childhood.


Asunto(s)
Codón sin Sentido , Miopatías Estructurales Congénitas , Dimerización , Femenino , Filaminas/genética , Humanos , Debilidad Muscular , Músculo Esquelético , Mutación/genética , Miopatías Estructurales Congénitas/genética , Linaje , Agregado de Proteínas
17.
J Neuropathol Exp Neurol ; 81(9): 746-757, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35898174

RESUMEN

Desmin (DES) is the main intermediate muscle filament that connects myofibrils individually and with the nucleus, sarcolemma, and organelles. Pathogenic variants of DES cause desminopathy, a disorder affecting the heart and skeletal muscles. We aimed to analyze the clinical features, morphology, and distribution of desmin aggregates in skeletal muscle biopsies of patients with desminopathy and to correlate these findings with the type and location of disease-causing DES variants. This retrospective study included 30 patients from 20 families with molecularly confirmed desminopathy from 2 neuromuscular referral centers. We identified 2 distinct patterns of desmin aggregates: well-demarcated subsarcolemmal aggregates and diffuse aggregates with poorly delimited borders. Pathogenic variants located in the 1B segment and the tail domain of the desmin molecule are more likely to present with early-onset cardiomyopathy compared to patients with variants in other segments. All patients with mutations in the 1B segment had well-demarcated subsarcolemmal aggregates, but none of the patients with variants in other desmin segments showed such histological features. We suggest that variants located in the 1B segment lead to well-shaped subsarcolemmal desmin aggregation and cause disease with more frequent cardiac manifestations. These findings will facilitate early identification of patients with potentially severe cardiac syndromes.


Asunto(s)
Cardiomiopatías , Cardiomiopatías/genética , Cardiomiopatías/patología , Desmina/genética , Humanos , Músculo Esquelético/patología , Mutación/genética , Fenotipo , Estudios Retrospectivos
18.
Neuromuscul Disord ; 32(5): 436-440, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35370044

RESUMEN

Mutations in MEGF10 are associated with early-onset myopathy, areflexia, respiratory distress, and dysphagia (EMARDD). Recently, a mild variant phenotype of EMARDD has been reported in patients with multiple minicores in the myofibers. However, some reported patients had no clear cores. We present a patient who had progressive weakness since his 30 s and then developed severe respiratory failure at the age of 66 years and found that he had a novel mutation, p.G739R, in MEGF10. He had no clear core in the biopsied muscle. We summarize the clinical and genetic characteristics of the current and reported patients with MEGF10 and statistically evaluate the genotype-phenotype correlation. Results show that patients with missense mutations in at least one allele had significantly later onset than those with biallelic truncation mutations.


Asunto(s)
Proteínas de la Membrana , Enfermedades Musculares , Genotipo , Humanos , Masculino , Proteínas de la Membrana/genética , Músculo Esquelético/patología , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Mutación , Fenotipo
19.
Clin Chim Acta ; 531: 12-16, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35292251

RESUMEN

Myofibrillar myopathy (MFM) is characterized by phenotypic heterogeneity; decreased function of the myosin-directed chaperone, UNC-45B protein, leads to MFM II, which is characterized by slow progressive proximal myasthenia. Currently, only two studies have reported 11 cases worldwide. This study aimed to conduct genetic research and etiological analysis of a neonatal case of perinatal myasthenia who eventually died due to autonomic dyspnea. The case involved a newborn female admitted for weak cries and groaning. Physical examination revealed shallow and irregular spontaneous breathing, difficulty feeding, hip flexion and knee flexion in both lower limbs, hypotonia (level 1), less translation action, and inability to resist gravity. The child died at 23 days after birth. Gene testing, mutation analysis, and crystal structure analysis were conducted. Cell culture and plasmid construction were conducted, followed by western blot analysis. Pathological changes, including Z-line breakage, were observed in the muscle biopsies of different tissues. Gene testing showed that UNC-45B had a novel compound heterozygous mutation (c.2357T>A/p.Met786Lys, c.2591A>C/p.His864Pro), and in vitro functional experiments showed that the variants could lead to a decrease in protein expression. This study expands the UNC-45B mutation and phenotype spectrum by reporting an MFM II case in a Chinese patient for the first time.


Asunto(s)
Miopatías Estructurales Congénitas , Femenino , Humanos , Debilidad Muscular/metabolismo , Músculo Esquelético/metabolismo , Mutación , Miopatías Estructurales Congénitas/diagnóstico , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/metabolismo , Fenotipo
20.
Artículo en Inglés, Portugués | LILACS-Express | LILACS | ID: biblio-1436098

RESUMEN

Backgroung: There are few reports suggesting that gene expression and activation of various matrix metalloproteinases (MMPs) are deregulated. MMP-2 and MMP-9 represent the two MMPs, which degrade type IV collagen, the component of basement membrane. Methods: We analysed the involvement of gelatinases, MMP-2 and MMP-9, in the pathogenesis of myofibrillar myopathy (MFM). Muscle specimens from 23 patients well diagnosed with MFM, were immunostained by MMP-2 and MMP-9. We analysed qualitatively the immunoexpression in three compartments: subsarcolemmal (SSC), intracytoplasmic (ICC) and perinuclear (PNC).Results: 95,7% and 100% samples showed MMP-2 and MMP-9 upregulation ICC, respectively. PNC showed MMP-2 (82,6%) and MMP-9 (8,7%) regulation (p<0.001). SSC and ICC did not present statistical significance. There was no correlation between mutated gene and immunohistochemical pattern distribution.Conclusion: Our results suggest that MMP-2 and/or MMP-9 could participate in the pathomechanism of MFM, causing damage of sarcomere and deposition of protein aggregates.


Introdução: Existem poucos relatos sugerindo que a expressão gênica e a ativação de várias metaloproteinases de matriz (MMPs) estão desreguladas. MMP-2 e MMP-9 representam as duas MMPs, que degradam o colágeno tipo IV, o componente da membrana basal.Método: Analisamos o envolvimento das gelatinases, MMP-2 e MMP-9, na patogênese da miopatia miofibrilar (MFM). Amostras de músculos de 23 pacientes bem diagnosticados com MFM foram imunocoradas por MMP-2 e MMP-9. Analisamos qualitativamente a imunoexpressão em três compartimentos: subsarcolemal (SSC), intracitoplasmático (ICC) e perinuclear (PNC).Resultados: 95,7% e 100% das amostras apresentaram ICC de regulação positiva de MMP-2 e MMP-9, respectivamente. PNC mostrou regulação MMP-2 (82,6%) e MMP-9 (8,7%) (p <0,001). SSC e ICC não apresentaram significância estatística. Não houve correlação entre o gene mutado e a distribuição do padrão imunohistoquímico.Conclusão: Nossos resultados sugerem que MMP-2 e / ou MMP-9 podem participar do patomecanismo da MFM, causando dano ao sarcômero e deposição de agregados proteicos.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA