Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Eur Heart J Case Rep ; 8(8): ytae404, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39219804

RESUMEN

Background: Hydroxychloroquine (HCQ) is a disease-modifying antirheumatic used in rheumatological diseases such as systemic lupus erythematosus. Long-term exposure to HCQ results in drug accumulation and predisposes to adverse effects. Case summary: We present the case of a 45-year-old woman with long-term treatment with HCQ who presented to the Emergency Department with acute heart failure. Transthoracic echocardiogram, previously normal, showed severe biventricular hypertrophy and biventricular systolic dysfunction. Cardiac magnetic resonance (CMR) confirmed the previous findings and showed elevated native T1 and T2 values, elevated extracellular volume, and extensive mid-wall late gadolinium enhancement (LGE). Infiltrative cardiomyopathy was suspected, and endomyocardial biopsy performed. Light microscopy showed myocyte hypertrophy and vacuolar change and absence of lymphocytic inflammatory infiltrates. The diagnosis of HCQ-induced cardiomyopathy was established, and the drug was withdrawn. A CMR performed 1 year later showed normal systolic function of both ventricles and normalization of T2 values, reflecting resolution of myocardial oedema. However, severe hypertrophy, elevated native T1 values, and LGE persisted. Discussion: Our case shows that although discontinuation of the drug stops the progression of the disease, established myocardial structural damage persists. Early diagnosis of this entity is therefore essential to improve prognosis.

2.
Diagnostics (Basel) ; 14(16)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39202304

RESUMEN

Cardiovascular magnetic resonance (CMR) imaging is widely regarded as the gold-standard technique for myocardial tissue characterization, allowing for the detection of structural abnormalities such as myocardial fatty replacement, myocardial edema, myocardial necrosis, and/or fibrosis. Historically, the identification of abnormal myocardial regions relied on variations in tissue signal intensity, often necessitating the use of exogenous contrast agents. However, over the past two decades, innovative parametric mapping techniques have emerged, enabling the direct quantitative assessment of tissue magnetic resonance (MR) properties on a voxel-by-voxel basis. These mapping techniques offer significant advantages by providing comprehensive and precise information that can be translated into color-coded maps, facilitating the identification of subtle or diffuse myocardial abnormalities. As unlikely conventional methods, these techniques do not require a substantial amount of structurally altered tissue to be visually identifiable as an area of abnormal signal intensity, eliminating the reliance on contrast agents. Moreover, these parametric mapping techniques, such as T1, T2, and T2* mapping, have transitioned from being primarily research tools to becoming valuable assets in the clinical diagnosis and risk stratification of various cardiac disorders. In this review, we aim to elucidate the underlying physical principles of CMR parametric mapping, explore its current clinical applications, address potential pitfalls, and outline future directions for research and development in this field.

3.
Cureus ; 16(7): e64937, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39156441

RESUMEN

Left ventricular non-compaction cardiomyopathy (LVNC) is an unusual congenital heart disease that predominantly affects the heart's left ventricle. This disease is characterized by deep intertrabecular recesses and hypertrabeculations of the myocardial wall that link with the ventricle cavity. During embryogenesis, the fetal myocardium has to undergo a compaction process, wherein the trabeculated and spongy myocardial tissue compacts into a dense, solid form. An incomplete compaction process results in persistent non-compacted spongy myocardial tissue and trabeculations prominent in the left ventricle. This disease could be marked alone or be present in coexistence with other congenital heart abnormalities. We present a rare case of a 57-year-old Saudi male who presented to the ER with chest pain and dyspnea. Due to severe chest pain, he was admitted to the coronary care unit. On further investigation, an echocardiogram revealed heavy trabeculations in the dilated left ventricle and a reduced ejection fraction. The case was diagnosed as LVNC and possible heart failure. The patient was discharged after he was kept under guideline-directed medical therapy (GDMT) along with certain medications and will be evaluated after six months of GDMT to decide on implantable cardiac resynchronization therapy. Although LVNC is rare, it can lead to severe heart conditions like arrhythmias, thromboembolism, and heart failure.

4.
Phys Med Biol ; 69(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38479021

RESUMEN

Objective. To provide three-dimensional (3D) whole-heart high-resolution isotropic cardiac T1 maps using a k-space-based through-plane super-resolution reconstruction (SRR) with rotated multi-slice stacks.Approach. Due to limited SNR and cardiac motion, often only 2D T1 maps with low through-plane resolution (4-8 mm) can be obtained. Previous approaches used SRR to calculate 3D high-resolution isotropic cardiac T1 maps. However, they were limited to the ventricles. The proposed approach acquires rotated stacks in long-axis orientation with high in-plane resolution but low through-plane resolution. This results in radially overlapping stacks from which high-resolution T1 maps of the whole heart are reconstructed using a k-space-based SRR framework considering the complete acquisition model. Cardiac and residual respiratory motion between different breath holds is estimated and incorporated into the reconstruction. The proposed approach was evaluated in simulations and phantom experiments and successfully applied to ten healthy subjects.Main results. 3D T1 maps of the whole heart were obtained in the same acquisition time as previous methods covering only the ventricles. T1 measurements were possible even for small structures, such as the atrial wall. The proposed approach provided accurate (P> 0.4;R2> 0.99) and precise T1 values (SD of 64.32 ± 22.77 ms in the proposed approach, 44.73 ± 31.9 ms in the reference). The edge sharpness of the T1 maps was increased by 6.20% and 4.73% in simulation and phantom experiments, respectively. Contrast-to-noise ratios between the septum and blood pool increased by 14.50% inin vivomeasurements with a k-space compared to an image-space-based SRR.Significance. The proposed approach provided whole-heart high-resolution 1.3 mm isotropic T1 maps in an overall acquisition time of approximately three minutes. Small structures, such as the atrial and right ventricular walls, could be visualized in the T1 maps.


Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Imagenología Tridimensional/métodos , Corazón/diagnóstico por imagen , Ventrículos Cardíacos/diagnóstico por imagen , Contencion de la Respiración , Atrios Cardíacos , Fantasmas de Imagen , Reproducibilidad de los Resultados
5.
Eur Heart J Cardiovasc Imaging ; 25(8): 1109-1117, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38469906

RESUMEN

AIMS: Cardiovascular diseases manifest differently in males and females, potentially influenced by inherent sex- and age-related differences in myocardial tissue composition. Such inherent differences are not well-established in the literature. With this study using cardiac magnetic resonance (CMR) native T1 mapping, we aim to determine the effect of sex and age on myocardial tissue composition in healthy individuals. METHODS AND RESULTS: CMR native T1 mapping was performed in 276 healthy individuals (55% male, age 8---84 years) on a 1.5 Tesla scanner using a MOLLI 5(3)3 acquisition scheme. Additionally, 30 healthy participants (47% male, age 24-68 years) underwent a 1-year follow-up CMR to assess the longitudinal changes of native T1. Mean native T1 values were 1000 ± 22 ms in males and 1022 ± 23 ms in females [mean difference (MD) = 22 ms, 95% confidence interval (CI) (17, 27)]. Female sex was associated with higher native T1 in multivariable linear regression adjusting for age, heart rate, left ventricular mass index, and blood T1 [ß=10 ms, 95% CI (3.4, 15.8)]. There was no significant interaction between sex and age (P = 0.27). Further, age was not associated with native T1 [ß=0.1 ms, 95% CI (-0.02, 0.2)], and native T1 did not change during a 1-year period [MD -4 ms, 95% CI (-11, 3)]. CONCLUSION: Female sex was associated with higher native T1; however, there was no association between age and native T1. Additionally, there was no evidence of an interaction between sex and age. Our findings indicate intrinsic sex-based disparities in myocardial tissue composition.


Asunto(s)
Imagen por Resonancia Cinemagnética , Humanos , Femenino , Masculino , Persona de Mediana Edad , Adulto , Anciano , Factores Sexuales , Factores de Edad , Anciano de 80 o más Años , Adolescente , Estudios de Cohortes , Adulto Joven , Valores de Referencia , Niño , Imagen por Resonancia Cinemagnética/métodos , Miocardio
7.
Radiol Med ; 129(3): 380-400, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38319493

RESUMEN

Cardiac computed tomography angiography (CCTA) is considered the standard non-invasive tool to rule-out obstructive coronary artery disease (CAD). Moreover, several imaging biomarkers have been developed on cardiac-CT imaging to assess global CAD severity and atherosclerotic burden, including coronary calcium scoring, the segment involvement score, segment stenosis score and the Leaman-score. Myocardial perfusion imaging enables the diagnosis of myocardial ischemia and microvascular damage, and the CT-based fractional flow reserve quantification allows to evaluate non-invasively hemodynamic impact of the coronary stenosis. The texture and density of the epicardial and perivascular adipose tissue, the hypodense plaque burden, the radiomic phenotyping of coronary plaques or the fat radiomic profile are novel CT imaging features emerging as biomarkers of inflammation and plaque instability, which may implement the risk stratification strategies. The ability to perform myocardial tissue characterization by extracellular volume fraction and radiomic features appears promising in predicting arrhythmogenic risk and cardiovascular events. New imaging biomarkers are expanding the potential of cardiac CT for phenotyping the individual profile of CAD involvement and opening new frontiers for the practice of more personalized medicine.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Placa Aterosclerótica , Humanos , Angiografía Coronaria/métodos , Valor Predictivo de las Pruebas , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Angiografía por Tomografía Computarizada/métodos , Biomarcadores , Vasos Coronarios
8.
J Magn Reson Imaging ; 59(1): 179-189, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37052580

RESUMEN

BACKGROUND: In cardiac T1 mapping, a series of T1 -weighted (T1 w) images are collected and numerically fitted to a two or three-parameter model of the signal recovery to estimate voxel-wise T1 values. To reduce the scan time, one can collect fewer T1 w images, albeit at the cost of precision or/and accuracy. Recently, the feasibility of using a neural network instead of conventional two- or three-parameter fit modeling has been demonstrated. However, prior studies used data from a single vendor and field strength; therefore, the generalizability of the models has not been established. PURPOSE: To develop and evaluate an accelerated cardiac T1 mapping approach based on MyoMapNet, a convolution neural network T1 estimator that can be used across different vendors and field strengths by incorporating the relevant scanner information as additional inputs to the model. STUDY TYPE: Retrospective, multicenter. POPULATION: A total of 1423 patients with known or suspected cardiac disease (808 male, 57 ± 16 years), from three centers, two vendors (Siemens, Philips), and two field strengths (1.5 T, 3 T). The data were randomly split into 60% training, 20% validation, and 20% testing. FIELD STRENGTH/SEQUENCE: A 1.5 T and 3 T, Modified Look-Locker inversion recovery (MOLLI) for native and postcontrast T1 . ASSESSMENT: Scanner-independent MyoMapNet (SI-MyoMapNet) was developed by altering the deep learning (DL) architecture of MyoMapNet to incorporate scanner vendor and field strength as inputs. Epicardial and endocardial contours and blood pool (by manually drawing a large region of interest in the blood pool) of the left ventricle were manually delineated by three readers, with 2, 8, and 9 years of experience, and SI-MyoMapNet myocardial and blood pool T1 values (calculated from four T1 w images) were compared with conventional MOLLI T1 values (calculated from 8 to 11 T1 w images). STATISTICAL TESTS: Equivalency test with 95% confidence interval (CI), linear regression slope, Pearson correlation coefficient (r), Bland-Altman analysis. RESULTS: The proposed SI-MyoMapNet successfully created T1 maps. Native and postcontrast T1 values measured from SI-MyoMapNet were strongly correlated with MOLLI, despite using only four T1 w images, at both field-strengths and vendors (all r > 0.86). For native T1 , SI-MyoMapNet and MOLLI were in good agreement for myocardial and blood T1 values in institution 1 (myocardium: 5 msec, 95% CI [3, 8]; blood: -10 msec, 95%CI [-16, -4]), in institution 2 (myocardium: 6 msec, 95% CI [0, 11]; blood: 0 msec, [-18, 17]), and in institution 3 (myocardium: 7 msec, 95% CI [-8, 22]; blood: 8 msec, [-14, 30]). Similar results were observed for postcontrast T1 . DATA CONCLUSION: Inclusion of field strength and vendor as additional inputs to the DL architecture allows generalizability of MyoMapNet across different vendors or field strength. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Corazón , Miocardio , Humanos , Masculino , Estudios Retrospectivos , Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Ventrículos Cardíacos , Reproducibilidad de los Resultados
9.
BMC Cardiovasc Disord ; 23(1): 571, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37986153

RESUMEN

OBJECTIVE: Acute myocardial infarction (AMI), is a serious form of coronary heart disease. The present study sought to investigate the impact of HIF-1α on AMI, along with its fundamental mechanism. METHODS: Sprague-Dawley (SD) rats were used to conduct an AMI model. 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) staining was used examine the region of myocardial infract area at various time intervals. Protein expression levels were detected using western blotting. The rats were randomly divided into sham, model, negative control (NC), HIF-1α overexpression (HIF-1α-OE), and HIF-1α-OE+ si-sestrin2 groups. We examined the impact of HIF-1α overexpression on AMI rats using Haematoxylin-Eosin (H&E) staining, TTC staining, enzyme-linked immunosorbent assay (ELISA), TdT-mediated dUTP Nick-End Labeling (TUNEL) assay, and immunohistochemistry (IHC) staining. RESULTS: According to the TTC findings, the region affected by myocardial infarction reached its peak at day 14. Based on the results from the western blot analysis, the levels of HIF-1α and sestrin2 were found the minimum on day 28. Subsequently, we discovered that the overexpression of HIF-1α rescued the cardiac function parameters, improved the morphology of myocardial tissue, and mitigated inflammation. Furthermore, the overexpression of HIF-1α led to a reduction in the levels of MDA and an increase in the levels of SOD. Moreover, the overexpression of HIF-1α resulted in a decrease in cellular apoptosis. This result was confirmed by the expression levels of Bcl-2 and Bax. Nevertheless, the defensive impact of elevated HIF-1α expression was somewhat counteracted by the suppression of sestrin2. In terms of mechanism, the overexpression of HIF-1α enhanced the levels of sestrin2 and the protein adenosine monophosphate activated kinase (AMPK). CONCLUSION: Our research suggests that the overexpression of HIF-1α may rescue the damage to myocardial tissue, and this effect is associated with the sestrin2/AMPK signaling pathway. Our study provides a novel comprehension of the protective effects of HIF-1α overexpression on AMI.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Infarto del Miocardio , Ratas , Animales , Ratas Sprague-Dawley , Infarto del Miocardio/genética , Transducción de Señal , Miocardio , Apoptosis
10.
Diagnostics (Basel) ; 13(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37761309

RESUMEN

Hypertensive crisis can present with cardiac troponin elevation and unobstructed coronary arteries. We used cardiac magnetic resonance (CMR) imaging to characterize the myocardial tissue in patients with hypertensive crisis, elevated cardiac troponin, and unobstructed coronary arteries. Patients with hypertensive crisis and elevated cardiac troponin with coronary artery stenosis <50% were enrolled. Patients with troponin-negative hypertensive crisis served as controls. All participants underwent CMR imaging at 1.5 Tesla. Imaging biomarkers and tissue characteristics were compared between the groups. There were 19 patients (63% male) with elevated troponin and 24 (33% male) troponin-negative controls. The troponin-positive group was older (57 ± 11 years vs. 47 ± 14 years, p = 0.015). The groups had similar T2-weighted signal intensity ratios and native T1 times. T2 relaxation times were longer in the troponin-positive group, and the difference remained significant after excluding infarct-pattern late gadolinium enhancement (LGE) from the analysis. Extracellular volume (ECV) was higher in the troponin-positive group (25 ± 4 ms vs. 22 ± 3 ms, p = 0.008) and correlated strongly with T2 relaxation time (rs = 0.701, p = 0.022). Late gadolinium enhancement was 32% more prevalent in the troponin-positive group (82% vs. 50%, p = 0.050), with 29% having infarct-pattern LGE. T2 relaxation time was independently associated with troponin positivity (OR 2.1, p = 0.043), and both T2 relaxation time and ECV predicted troponin positivity (C-statistics: 0.71, p = 0.009; and 0.77, p = 0.006). Left ventricular end-diastolic and left atrial volumes were the strongest predictors of troponin positivity (C-statistics: 0.80, p = 0.001; and 0.82, p < 0.001). The increased T2 relaxation time and ECV and their significant correlation in the troponin-positive group suggest myocardial injury with oedema, while the non-ischaemic LGE could be due to myocardial fibrosis or acute necrosis. These CMR imaging biomarkers provide important clinical indices for risk stratification and prognostication in patients with hypertensive crisis.

11.
Radiol Clin North Am ; 61(6): 995-1009, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37758366

RESUMEN

Dual-energy computed tomography (DECT) acquires images using two energy spectra and offers a variation of reconstruction techniques for improved cardiac imaging. Virtual monoenergetic images decrease artifacts improving coronary plaque and stent visualization. Further, contrast attenuation is increased allowing significant reduction of contrast dose. Virtual non-contrast reconstructions enable coronary artery calcium scoring from contrast-enhanced scans. DECT provides advanced plaque imaging with detailed analysis of plaque components, indicating plaque stability. Extracellular volume assessment using DECT offers noninvasive detection of myocardial fibrosis. This review aims to outline the current cardiac applications of DECT, summarize recent literature, and discuss their findings.


Asunto(s)
Corazón , Imagen Radiográfica por Emisión de Doble Fotón , Humanos , Corazón/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Imagen Radiográfica por Emisión de Doble Fotón/métodos
12.
Biomater Adv ; 153: 213579, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37566935

RESUMEN

Engineering of myocardial tissues has become a promising therapeutic strategy for treating myocardial infarction (MI). However, a significant challenge remains in generating clinically relevant myocardial tissues that possess native microstructural characteristics and fulfill the requirements for implantation within the human body. In this study, a thick 3D myocardial construct with anisotropic myofibers and perfusable branched vascular channels is created with clinically relevant dimensions using a customized beam-scanning stereolithography printing technique. To obtain tissue-specific matrix niches, a decellularized extracellular matrix microfiber-reinforced gelatin-based bioink is developed. The bioink plays a crucial role in facilitating the precise manufacturing of a hierarchical microstructure, enabling us to better replicate the physiological characteristics of the native myocardial tissue matrix in terms of structure, biomechanics, and bioactivity. Through the integration of the tailored bioink with our printing method, we demonstrate a biomimetic architecture, appropriate biomechanical properties, vascularization, and improved functionality of induced pluripotent stem cell-derived cardiomyocytes in the thick tissue construct in vitro. This work not only offers a novel and effective means to generate biomimetic heart tissue in vitro for the treatment of MI, but also introduces a potential methodology for creating clinically relevant tissue products to aid in other complex tissue/organ regeneration and disease model applications.


Asunto(s)
Miocardio , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Miocitos Cardíacos , Impresión Tridimensional , Estereolitografía
13.
J Biomed Mater Res B Appl Biomater ; 111(11): 1979-1995, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37306139

RESUMEN

Cardiovascular diseases, such as myocardial infarction, are considered a significant global burden and the leading cause of death. Given the inability of damaged cardiac tissue to self-repair, cell-based tissue engineering and regeneration may be the only viable option for restoring normal heart function. To maintain the normal excitation-contraction coupling function of cardiac tissue, uniform electronic and ionic conductance properties are required. To transport cells to damaged cardiac tissues, several techniques, including the incorporation of cells into conductive polymers (CPs) and biomaterials, have been utilized. Due to the complexity of cardiac tissues, the success of tissue engineering for the damaged heart is highly dependent on several variables, such as the cell source, growth factors, and scaffolds. In this review, we sought to provide a comprehensive overview of the electro CPs and biomaterials used in the engineering and regeneration of heart tissue.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Polímeros , Materiales Biocompatibles , Regeneración
14.
Magn Reson Med ; 90(3): 1086-1100, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37288592

RESUMEN

PURPOSE: To allow for T1 mapping of the myocardium within 2.3 s for a 2D slice utilizing cardiac motion-corrected, model-based image reconstruction. METHODS: Golden radial data acquisition is continuously carried out for 2.3 s after an inversion pulse. In a first step, dynamic images are reconstructed which show both contrast changes due to T1 recovery and anatomical changes due to the heartbeat. An image registration algorithm with a signal model for T1 recovery is applied to estimate non-rigid cardiac motion. In a second step, estimated motion fields are applied during an iterative model-based T1 reconstruction. The approach was evaluated in numerical simulations, phantom experiments and in in-vivo scans in healthy volunteers. RESULTS: The accuracy of cardiac motion estimation was shown in numerical simulations with an average motion field error of 0.7 ± 0.6 mm for a motion amplitude of 5.1 mm. The accuracy of T1 estimation was demonstrated in phantom experiments, with no significant difference (p = 0.13) in T1 estimated by the proposed approach compared to an inversion-recovery reference method. In vivo, the proposed approach yielded 1.3 × 1.3 mm T1 maps with no significant difference (p = 0.77) in T1 and SDs in comparison to a cardiac-gated approach requiring 16 s scan time (i.e., seven times longer than the proposed approach). Cardiac motion correction improved the precision of T1 maps, shown by a 40% reduced SD. CONCLUSION: We have presented an approach that provides T1 maps of the myocardium in 2.3 s by utilizing both cardiac motion correction and model-based T1 reconstruction.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Miocardio , Movimiento (Física) , Tomografía Computarizada por Rayos X , Fantasmas de Imagen , Corazón/diagnóstico por imagen , Reproducibilidad de los Resultados
15.
Zhongguo Yi Liao Qi Xie Za Zhi ; 47(3): 242-246, 2023 May 30.
Artículo en Chino | MEDLINE | ID: mdl-37288621

RESUMEN

As a new energy source for atrial fibrillation ablation, electric pulse ablation has higher tissue selectivity and biosafety, so it has a great application prospect. At present, there is very limited research on multi-electrode simulated ablation of histological electrical pulse. In this study, a circular multi-electrode ablation model of pulmonary vein will be built on COMSOL5.5 platform for simulation research. The results show that when the voltage amplitude reaches about 900 V, it can make some positions achieve transmural ablation, and the depth of continuous ablation area formed can reach 3 mm when the voltage amplitude reaches 1 200 V. When the distance between catheter electrode and myocardial tissue is increased to 2 mm, a voltage of at least 2 000 V is required to make the depth of continuous ablation area reach 3 mm. Through the simulation of electric pulse ablation with ring electrode, the research results of this project can provide reference for the voltage selection in the clinical application of electric pulse ablation.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Humanos , Frecuencia Cardíaca , Fibrilación Atrial/cirugía , Electrodos , Electricidad
16.
Biofabrication ; 15(3)2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37343567

RESUMEN

To progress cardiac tissue engineering strategies closer to the clinic, thicker constructs are required to meet the functional need following a cardiac event. Consequently, pre-vascularization of these constructs needs to be investigated to ensure survival and optimal performance of implantable engineered heart tissue. The aim of this research is to investigate the potential of combining extrusion-based bioprinting (EBB) and melt electrowriting for the fabrication of a myocardial construct with a precisely patterned pre-vascular pathway. Gelatin methacryloyl (GelMA) was investigated as a base hydrogel for the respective myocardial and vascular bioinks with collagen, Matrigel and fibrinogen as interpenetrating polymers to support myocardial functionality. Subsequently, extrusion-based printability and viability were investigated to determine the optimal processing parameters for printing into melt electrowritten meshes. Finally, an anatomically inspired vascular pathway was implemented in a dual EBB set-up into melt electrowritten meshes, creating a patterned pre-vascularized myocardial construct. It was determined that a blend of 5% GelMA and 0.8 mg·ml-1collagen with a low crosslinked density was optimal for myocardial cellular arrangement and alignment within the constructs. For the vascular fraction, the optimized formulation consisted of 5% GelMA, 0.8 mg·ml-1collagen and 1 mg·ml-1fibrinogen with a higher crosslinked density, which led to enhanced vascular cell connectivity. Printability assessment confirmed that the optimized bioinks could effectively fill the microfiber mesh while supporting cell viability (∼70%). Finally, the two bioinks were applied using a dual EBB system for the fabrication of a pre-vascular pathway with the shape of a left anterior descending artery within a myocardial construct, whereby the distinct cell populations could be visualized in their respective patterns up to D14. This research investigated the first step towards developing a thick engineered cardiac tissue construct in which a pre-vascularization pathway is fabricated within a myocardial construct.


Asunto(s)
Bioimpresión , Andamios del Tejido , Ingeniería de Tejidos , Gelatina , Colágeno , Hidrogeles , Impresión Tridimensional
17.
Eur Heart J Cardiovasc Imaging ; 24(3): 373-382, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35639682

RESUMEN

AIMS: Myocardial involvement is common in patients with systemic sclerosis (SSc) and causes myocardial fibrosis and subtle ventricular dysfunction. However, the temporal onset of myocardial involvement during the progression of the disease and its prognostic value are yet unknown. We used cardiovascular magnetic resonance (CMR) to investigate subclinical functional impairment and diffuse myocardial fibrosis in patients with very early diagnosis of SSc (VEDOSS) and established SSc and examined whether this was associated with mortality. METHODS AND RESULTS: One hundred and ten SSc patients (86 established SSc, 24 VEDOSS) and 15 healthy controls were prospectively recruited. The patients were followed-up for a median duration of 7.0 years (interquartile range 6.0-7.3 years). Study subjects underwent CMR including assessment of myocardial fibrosis [native T1 and extracellular volume (ECV)] and measurement of global longitudinal (GLS) and circumferential (GCS) myocardial strain. Native T1 values and ECV were elevated in VEDOSS and SSc patients compared with controls (P < 0.001). GLS was similar in VEDOSS and controls but significantly impaired in patients with established SSc (P < 0.001). GCS was similar over all groups (P = 0.88). There were 12 deaths during follow-up. Elevated native T1 [hazard ratio (HR) 5.8, 95% confidence interval (CI): 1.7-20.4; P = 0.006] and reduced GLS (HR 6.1, 95% CI: 1.3-29.9; P = 0.038) identified subjects with increased risk of death. Only native T1 was predictive for cardiovascular mortality (P < 0.001). CONCLUSION: Subclinical myocardial involvement first manifests as diffuse myocardial fibrosis identified by the expansion of ECV and increased native T1 in VEDOSS patients while subtle functional impairment only occurs in established SSc. Native T1 and GLS have prognostic value for all-cause mortality in SSc patients.


Asunto(s)
Cardiomiopatías , Esclerodermia Sistémica , Humanos , Pronóstico , Función Ventricular Izquierda , Estudios Prospectivos , Cardiomiopatías/patología , Miocardio/patología , Fibrosis , Esclerodermia Sistémica/complicaciones , Esclerodermia Sistémica/diagnóstico por imagen , Imagen por Resonancia Cinemagnética/métodos , Valor Predictivo de las Pruebas
18.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-982221

RESUMEN

As a new energy source for atrial fibrillation ablation, electric pulse ablation has higher tissue selectivity and biosafety, so it has a great application prospect. At present, there is very limited research on multi-electrode simulated ablation of histological electrical pulse. In this study, a circular multi-electrode ablation model of pulmonary vein will be built on COMSOL5.5 platform for simulation research. The results show that when the voltage amplitude reaches about 900 V, it can make some positions achieve transmural ablation, and the depth of continuous ablation area formed can reach 3 mm when the voltage amplitude reaches 1 200 V. When the distance between catheter electrode and myocardial tissue is increased to 2 mm, a voltage of at least 2 000 V is required to make the depth of continuous ablation area reach 3 mm. Through the simulation of electric pulse ablation with ring electrode, the research results of this project can provide reference for the voltage selection in the clinical application of electric pulse ablation.


Asunto(s)
Humanos , Frecuencia Cardíaca , Fibrilación Atrial/cirugía , Electrodos , Ablación por Catéter , Electricidad
19.
Artículo en Inglés | MEDLINE | ID: mdl-36554881

RESUMEN

Among different pathomechanisms involved in the development of heart failure, adverse metabolic myocardial remodeling closely related to ineffective energy production, constitutes the fundamental feature of the disease and translates into further progression of both cardiac dysfunction and maladaptations occurring within other organs. Being the component of key enzymatic machineries, iron plays a vital role in energy generation and utilization, hence the interest in whether, by correcting systemic and/or cellular deficiency of this micronutrient, we can influence the energetic efficiency of tissues, including the heart. In this review we summarize current knowledge on disturbed energy metabolism in failing hearts as well as we analyze experimental evidence linking iron deficiency with deranged myocardial energetics.


Asunto(s)
Insuficiencia Cardíaca , Deficiencias de Hierro , Humanos , Miocardio/metabolismo , Corazón , Metabolismo Energético
20.
JACC Cardiovasc Imaging ; 15(12): 2082-2094, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36274040

RESUMEN

BACKGROUND: Light chain (AL) and transthyretin (ATTR) amyloid fibrils are deposited in the extracellular space of the myocardium, resulting in heart failure and premature mortality. Extracellular expansion can be quantified by computed tomography, offering a rapid, cheaper, and more practical alternative to cardiac magnetic resonance, especially among patients with cardiac devices or on renal dialysis. OBJECTIVES: This study sought to investigate the association of extracellular volume fraction by computed tomography (ECVCT), myocardial remodeling, and mortality in patients with systemic amyloidosis. METHODS: Patients with confirmed systemic amyloidosis and varying degrees of cardiac involvement underwent electrocardiography-gated cardiac computed tomography. Whole heart and septal ECVCT was analyzed. All patients also underwent clinical assessment, electrocardiography, echocardiography, serum amyloid protein component, and/or technetium-99m (99mTc) 3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. ECVCT was compared across different extents of cardiac infiltration (ATTR Perugini grade/AL Mayo stage) and evaluated for its association with myocardial remodeling and all-cause mortality. RESULTS: A total of 72 patients were studied (AL: n = 35, ATTR: n = 37; median age: 67 [IQR: 59-76] years, 70.8% male). Mean septal ECVCT was 42.7% ± 13.1% and 55.8% ± 10.9% in AL and ATTR amyloidosis, respectively, and correlated with indexed left ventricular mass (r = 0.426; P < 0.001), left ventricular ejection fraction (r = 0.460; P < 0.001), N-terminal pro-B-type natriuretic peptide (r = 0.563; P < 0.001), and high-sensitivity troponin T (r = 0.546; P < 0.001). ECVCT increased with cardiac amyloid involvement in both AL and ATTR amyloid. Over a mean follow-up of 5.3 ± 2.4 years, 40 deaths occurred (AL: n = 14 [35.0%]; ATTR: n = 26 [65.0%]). Septal ECVCT was independently associated with all-cause mortality in ATTR (not AL) amyloid after adjustment for age and septal wall thickness (HR: 1.046; 95% CI: 1.003-1.090; P = 0.037). CONCLUSIONS: Cardiac amyloid burden quantified by ECVCT is associated with adverse cardiac remodeling as well as all-cause mortality among ATTR amyloid patients. ECVCT may address the need for better identification and risk stratification of amyloid patients, using a widely accessible imaging modality.


Asunto(s)
Tomografía Computarizada por Rayos X , Función Ventricular Izquierda , Humanos , Masculino , Anciano , Femenino , Volumen Sistólico , Valor Predictivo de las Pruebas , Tomografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA