Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.025
Filtrar
1.
J Inflamm Res ; 17: 6203-6227, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39281774

RESUMEN

Purpose: Myocardial ischemia-reperfusion injury (MIRI) is characterized by inflammation and ferroptosis, but the precise mechanisms remain unknown. This study used single-cell transcriptomics technology to investigate the changes in various cell subtypes during MIRI and the regulatory network of ferroptosis-related genes and immune infiltration. Methods: Datasets GSE146285, GSE83472, GSE61592, and GSE160516 were obtained from Gene Expression Omnibus. Each cell subtype in the tissue samples was documented. The Seurat package was used for data preprocessing, standardization, and clustering. Cellphonedb was used to investigate the ligand-receptor interactions between cells. The hdWGCNA analysis was used to create a gene co-expression network. GSVA and GSEA were combined to perform functional enrichment and pathway analysis on the gene set. Furthermore, characteristic genes of the disease were identified using Lasso regression and SVM algorithms. Immune cell infiltration analysis was also performed. MIRI rat models were created, and samples were taken for RT-qPCR and Western blot validation. Results: The proportion of MIRI samples in the C2, C6, and C11 subtypes was significantly higher than that of control samples. Three genes associated with ferroptosis (CD44, Cfl1, and Zfp36) were identified as MIRI core genes. The expression of these core genes was significantly correlated with mast cells and monocyte immune infiltrating cells. The experimental validation confirmed the upregulation of Cd44 and Zfp36 expression levels in MIRI, consistent with current study trends. Conclusion: This study used single-cell transcriptomics technology to investigate the molecular mechanisms underpinning MIRI. Numerous important cell subtypes, gene regulatory networks, and disease-associated immune infiltration were also discovered. These findings provide new information and potential therapeutic targets for MIRI diagnosis and treatment.

2.
Front Bioeng Biotechnol ; 12: 1469393, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39286345

RESUMEN

Myocardial ischemia-reperfusion injury (MIRI) is a critical issue that arises when restoring blood flow after an ischemic event in the heart. Excessive reactive oxygen species (ROS) production during this process exacerbates cellular damage and impairs cardiac function. Recent therapeutic strategies have focused on leveraging the ROS microenvironment to design targeted drug delivery systems. ROS-responsive biomaterials have emerged as promising candidates, offering enhanced therapeutic efficacy with reduced systemic adverse effects. This review examines the mechanisms of ROS overproduction during myocardial ischemia-reperfusion and summarizes significant advancements in ROS-responsive biomaterials for MIRI treatment. We discuss various chemical strategies to impart ROS sensitivity to these materials, emphasizing ROS-induced solubility switches and degradation mechanisms. Additionally, we highlight various ROS-responsive therapeutic platforms, such as nanoparticles and hydrogels, and their unique advantages in drug delivery for MIRI. Preclinical studies demonstrating the efficacy of these materials in mitigating MIRI in animal models are reviewed, alongside their mechanisms of action and potential clinical implications. We also address the challenges and future prospects of translating these state of the art biomaterial-based therapeutics into clinical practice to improve MIRI management and cardiac outcomes. This review will provide valuable insights for researchers and clinicians working on novel therapeutic strategies for MIRI intervention.

3.
Tissue Cell ; 91: 102555, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39276487

RESUMEN

PURPOSE: The present study aims to investigate the biological function of Tyrobp in myocardial ischemia-reperfusion injury (MIRI) and to clarify its potential reaction mechanisms. METHODS: AC16 cells were induced by oxygen-glucose deprivation/reoxygenation (OGD/R) to simulate the MIRI in vitro. The cell transfection technology was used to downregulate Tyrobp, followed by assessment of cell damage, apoptosis and cytokines production via Cell Counting Kit (CCK)-8 assay, lactate dehydrogenase (LDH) release assay, TUNEL and ELISA assays, respectively. Immunofluorescence assay was performed to assess GSDMD. Corresponding proteins were detected via western blotting, and Co-immunoprecipitation (Co-IP) assay was used to validate proteins interaction. RESULTS: Tyrobp was upregulated in OGD/R-exposed AC16 cells, and Tyrobp deficiency significantly alleviated OGD/R-caused cell viability loss, LDH release and cell apoptosis in AC16 cells. Meanwhile, Tyrobp deficiency inhibited the activation of NLRP3 inflammasome, reduced the production of cytokines and inhibited GSDMD intensity and GSDMD-N expression. Additionally, Tyrobp could interact with Syk and regulate Syk/NF-κB signaling. The rescue experiments showed that the above effects of Tyrobp deficiency on OGD/R-exposed AC16 cells were partly weakened by Syk overexpression. CONCLUSION: Tyrobp deficiency alleviated MIRI by inhibiting NLRP3-mediated inflammation and pyroptosis through regulating Syk, providing a novel target for the treatment of MIRI.

4.
Int J Biol Sci ; 20(11): 4458-4475, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247823

RESUMEN

This study investigated the mechanism by which NR4A1 regulates mitochondrial fission factor (Mff)-related mitochondrial fission and FUN14 domain 1 (FUNDC1)-mediated mitophagy following cardiac ischemia-reperfusion injury(I/R). Our findings showed that the damage regulation was positively correlated with the pathological fission and pan-apoptosis of myocardial cell mitochondria. Compared with wild-type mice (WT), NR4A1-knockout mice exhibited resistance to myocardial ischemia-reperfusion injury and mitochondrial pathological fission, characterized by mitophagy activation. Results showed that ischemia-reperfusion injury increased NR4A1 expression level, activating mitochondrial fission mediated by Mff and restoring the mitophagy phenotype mediated by FUNDC1. The inactivation of FUNDC1 phosphorylation could not mediate the normalization of mitophagy in a timely manner, leading to an excessive stress response of unfolded mitochondrial proteins and an imbalance in mitochondrial homeostasis. This process disrupted the normalization of the mitochondrial quality control network, leading to accumulation of damaged mitochondria and the activation of pan-apoptotic programs. Our data indicate that NR4A1 is a novel and critical target in myocardial I/R injury that exertsand negative regulatory effects by activating Mff-mediated mito-fission and inhibiting FUNDC1-mediated mitophagy. Targeting the crosstalk balance between NR4A1-Mff-FUNDC1 is a potential approach for treating I/R.


Asunto(s)
Ratones Noqueados , Dinámicas Mitocondriales , Proteínas Mitocondriales , Mitofagia , Daño por Reperfusión Miocárdica , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Animales , Daño por Reperfusión Miocárdica/metabolismo , Ratones , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Masculino , Ratones Endogámicos C57BL , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Mitocondrias/metabolismo , Apoptosis , Mitocondrias Cardíacas/metabolismo
5.
J Ethnopharmacol ; 337(Pt 1): 118821, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39265794

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Positive evidence from clinical trials highlights the promising potential of traditional Chinese medication, Qili qiangxin capsule (QLQX), on chronic heart failure; however, limited data are available regarding its effects and mechanism in myocardial ischemia-reperfusion injury (MIRI). Herein, we aimed to explore cardioprotective effects and the underlying mechanism of QLQX in MIRI in vivo and in vitro. MATERIALS AND METHODS: Mice were subjected to left anterior descending coronary artery ligation for 30 min followed by 24 h of reperfusion with or without 7-day pretreatment with QLQX (0.234, 0.468, or 0.936 g/kg). Cardiac function, myocardial infarction, and morphological changes were evaluated. The mechanism underlying the cardio-protection of QLQX on MIRI was determined by network pharmacology based on the common genes of potential targets of QLQX and MIRI-related genes, further validated by H9c2 cardiomyocytes exposing hypoxia/reoxygenation (H/R). The viability, apoptosis, as well as autophagy and relevant signaling proteins in H9c2 were analyzed. RESULTS: QLQX pretreatment markedly improved cardiac function and decreased myocardium infarct size, apoptotic cardiomyocyte number, and LHD, CK-MB, and TnT levels in MIRI mice. QLQX could mitigate H/R-induced H9c2 cardiomyocyte injury, as evidenced by decreased cell apoptosis and LDH release and increased ATP production. QLQX effectively attenuates excessive autophagy in cardiomyocytes both in vivo and in vitro. Mechanically, network pharmacology analysis demonstrated the cardio-protection of QLQX on MIRI involving in PI3K/Akt signaling; the effects of QLQX on H/R-induced H9c2 cardiomyocytes were abolished by a specific PI3K inhibitor. CONCLUSION: QLQX protects against cardiomyocyte apoptosis and excessive autophagy via PI3K/Akt signaling during MIRI.

6.
Int Immunopharmacol ; 142(Pt A): 113097, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260311

RESUMEN

Hydroxyl Safflower Yellow A (HSYA) is the primary bioactive compound derived from Safflower, which has been scientifically proven to possess anti-inflammatory, anti-apoptotic, and ameliorative properties against mitochondrial damage during acute myocardial ischemia-reperfusion injury (MIRI); however, its effects during the recovery stage remain unknown. Angiogenesis plays a crucial role in the rehabilitation process. AIM OF THE STUDY: The objective of this study was to investigate the long-term angiogenic effect of HSYA and its contribution to recovery after myocardial ischemia, as well as explore its underlying mechanism using non-targeted metabolomics and network pharmacology. MATERIALS AND METHODS: The MIRI model in rat was established by ligating the left anterior descending branch of the coronary artery. The effect of HSYA was assessed based on myocardial infarction volume and histopathology. Immunofluorescence staining was employed to evaluate angiogenesis, while ELISA was used to detect markers of myocardial injury. Additionally, a rat myocardial microvascular endothelial cell (CMECs) injury model was established using oxygen-glucose deprivation/reoxygenation (OGD/R), followed by scratch assays, migration assays, and tube formation experiments to assess angiogenesis. Western blot analysis was conducted to validate the underlying mechanism. RESULTS: Our findings provide compelling evidence for the therapeutic efficacy of HSYA in reducing myocardial infarction size, facilitating cardiac functional recovery, and reversing pathological alterations within the heart. Furthermore, we elucidate that HSYA exerts its effects on promoting migration and generation of myocardial microvascular endothelial cells through activation of the HIF-1α-VEGFA-Notch1 signaling pathway. CONCLUSION: These results underscore how HSYA enhances cardiac function via angiogenesis promotion and activation of the aforementioned signaling cascade.

7.
Mol Med Rep ; 30(5)2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39239748

RESUMEN

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the cell apoptotic assay data shown in Fig. 1D on p. 3763 were strikingly similar to data that had already been submitted for publication in Fig. 3A in different form in another article written by different authors at different research institutes. Owing to the fact that the contentious data in the above article had already been submitted for publication prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 18: 3760­3768, 2018; DOI: 10.3892/mmr.2018.9403].

8.
Lab Anim Res ; 40(1): 32, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237965

RESUMEN

Ischemic heart disease is the most prevalent cause of death worldwide affecting both the gender of all age groups. The high mortality rate is due to damage of myocardial tissue that emanates at the time of myocardial ischemia and re-oxygenation, thus averting reperfusion injury is recognized as a potential way to reduce acute cardiac injury and subsequent mortality. Flavonoids are polyphenol derivatives of plant origin and empirical shreds of evidence substantiate their numerous activities such as antioxidant, anti-inflammatory, anti-apoptotic, and anti-thrombotic activity, leading to their role in cardio protection. Recent investigations have unveiled the capacity of flavonoids to impede pivotal regulatory enzymes, signaling molecules, and transcription factors that orchestrate the mediators participating in the inflammatory cascade. The present comprehensive review, dwells on the preclinical studies on the effectiveness of flavonoids from the year 2007 to 2023, for the prevention and therapeutics for myocardial ischemia-reperfusion injury.

9.
Phytother Res ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225191

RESUMEN

Reperfusion therapy is the primary treatment strategy for acute myocardial infarction (AMI). Paradoxically, it can lead to myocardial damage, namely myocardial ischemia/reperfusion injury (MIRI). This study explored whether oroxylin A (OA) protects the myocardium after MIRI by inhibiting ferroptosis and the underlying mechanism. In vivo, we established an MIRI model to investigate the protective effect of OA. In vitro, H9C2 cells were used to explore the regulation of ferroptosis by OA through immunofluorescence staining, western blotting, assay kits, etc. Additionally, RNA sequencing analysis (RNA-seq) and network pharmacology analyses were conducted to elucidate the molecular mechanisms. Our results showed that MIRI caused cardiac structural and functional damage in rats. MIRI promoted ferroptosis, which was consistently observed in vitro. However, pretreatment with OA reversed these effects. The mitogen-activated protein kinases (MAPK) signaling pathway participated in the MIRI process, with dual-specificity phosphatase 10 (DUSP10) found to regulate it. Further confirmation was provided by knocking down DUSP10 using small interfering RNA (siRNA), demonstrating the activation of the DUSP10/MAPK-Nrf2 pathway by OA to protect H9C2 cells from ferroptosis. Our research has demonstrated the mitigating effect of OA on MIRI and the improvement of myocardial function for the first time. The inhibition of ferroptosis has been identified as one of the mechanisms through which OA exerts its myocardial protective effects. Moreover, we have first unveiled that DUSP10 serves as an upstream target involved in mediating ferroptosis, and the regulation of the DUSP10/MAPK-Nrf2 pathway by OA is crucial in inhibiting ferroptosis to protect the myocardium.

10.
Biomed Pharmacother ; 179: 117383, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39232383

RESUMEN

Ischemic heart disease (IHD) is a significant global health concern, resulting in high rates of mortality and disability among patients. Although coronary blood flow reperfusion is a key treatment for IHD, it often leads to acute myocardial ischemia-reperfusion injury (IRI). Current intervention strategies have limitations in providing adequate protection for the ischemic myocardium. DJ-1, originally known as a Parkinson's disease related protein, is a highly conserved cytoprotective protein. It is involved in enhancing mitochondrial function, scavenging reactive oxygen species (ROS), regulating autophagy, inhibiting apoptosis, modulating anaerobic metabolism, and exerting anti-inflammatory effects. DJ-1 is also required for protective strategies, such as ischemic preconditioning, ischemic postconditioning, remote ischemic preconditioning and pharmacological conditioning. Therefore, DJ-1 emerges as a potential target for the treatment of myocardial IRI. Our comprehensive review delves into its protective mechanisms in myocardial IRI and the structural foundations underlying its functions.

11.
J Ethnopharmacol ; 337(Pt 1): 118738, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39222757

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Dehydrocorydaline (DHC), an active component of Corydalis yanhusuo (Y.H. Chou & Chun C. Hsu) W.T. Wang ex Z.Y. Su & C.Y. Wu (Papaveraceae), exhibits protective and pain-relieving effects on coronary heart disease, but the underlying mechanism still remains unknown. AIM OF THE STUDY: Network pharmacology and experimental validation both in vivo and in vitro were applied to assess whether DHC can treat myocardial ischemia-reperfusion injury (MIRI) by regulating the forkhead box O (FoxO) signalling pathway to inhibit apoptosis. MATERIALS AND METHODS: DHC and MIRI targets were retrieved from various databases. Molecular docking and microscale thermophoresis (MST) determined potential binding affinity. An in vivo mouse model of MIRI was established by ligating the left anterior descending coronary artery. C57BL/6N mice were divided into sham, MIRI, and DHC (intraperitoneal injection of 5 mg/kg DHC) groups. Haematoxylin and eosin, Masson, and immunohistochemical stainings verified DHC treatment effects and the involved signalling pathways. In vitro, H9c2 cells were incubated with DHC and underwent hypoxia/reoxygenation. TUNEL, JC-1, and reactive oxygen species stainings and western blots were used to explore the protective effects of DHC and the underlying mechanisms. RESULTS: Venny analysis identified 120 common targets from 121 DHC and 23,354 MIRI targets. DHC exhibited high affinity for CCND1, CDK2, and MDM2 (<-7 kcal/mol). In vivo, DHC attenuated decreases in left ventricular ejection fraction and fractional shortening, reduced infarct sizes, and decreased cTnI and lactate dehydrogenase levels. In vitro, DHC alleviated apoptosis and oxidative stress in the hypoxia/reoxygenation model by attenuating ΔΨm disruption; reducing the production of reactive oxygen species; upregulating Bax and CCND1 via the FoxO signalling pathway, as well as cleaved-caspase 8; downregulating the apoptosis-associated proteins Bcl-2, Bid, cleaved-caspase 3, and cleaved-caspase 9; and promoting the phosphorylation of FOXO1A and MDM2. CONCLUSION: By upregulating the FoxO signaling pathway to inhibit apoptosis, DHC exerts a cardioprotective effect, which could serve as a potential therapeutic option for MIRI.

12.
Perfusion ; : 2676591241280371, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264884

RESUMEN

Myocardial ischemia-reperfusion injury (MIRI) most frequently happens in acute myocardial infarction (AMI) when rapid reperfusion is utilized to save the ischemia myocardium. MIRI is the main contributing of poor healing in AMI and is related to high mortality and disability rates around the worldwide. Currently, there is no effective precautionary measure for MIRI. Ferroptosis is a novel regulated cell death characterized by iron overload and reactive oxygen species (ROS) accumulation, which lead to death membrane lipid peroxidation. An increasing amount of studies indicates that ferroptosis plays a vital role in the occurrence and progression of MIRI. Given the crucial role of ferroptosis in MIRI, it is critical to understand the cardiomyocyte iron metabolism and investigate the molecular mechanisms of ferroptosis. In this review, we systematically summarize the molecular and metabolic pathways of ferroptosis in context of MIRI, which could provide novel understandings for the pathophysiological machine and new ideas for treatment.

13.
Adv Sci (Weinh) ; : e2403542, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264262

RESUMEN

Despite the widespread adoption of emergency coronary reperfusion therapy, reperfusion-induced myocardial injury remains a challenging issue in clinical practice. Following myocardial reperfusion, S100A8/A9 molecules are considered pivotal in initiating and regulating tissue inflammatory damage. Effectively reducing the S100A8/A9 level in ischemic myocardial tissue holds significant therapeutic value in salvaging damaged myocardium. In this study, HA (hemagglutinin)- and RAGE (receptor for advanced glycation end products)- comodified macrophage membrane-coated siRNA nanoparticles (MMM/RNA NPs) with siRNA targeting S100A9 (S100A9-siRNA) are successfully prepared. This nanocarrier system is able to target effectively the injured myocardium in an inflammatory environment while evading digestive damage by lysosomes. In vivo, migration of MMM/RNA NPs to myocardial injury lesions is confirmed in a myocardial ischemia-reperfusion injury (MIRI) mouse model. Intravenous injection of MMM/RNA NPs significantly reduced S100A9 levels in serum and myocardial tissues, further decreasing myocardial infarction area and improving cardiac function. Targeted reduction of S100A8/A9 by genetically modified macrophage membrane-coated nanoparticles may represent a new therapeutic intervention for MIRI.

14.
Adv Sci (Weinh) ; : e2406124, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264272

RESUMEN

Myocardial ischemia/reperfusion injury (MI/RI) generates reactive oxygen species (ROS) and initiates inflammatory responses. Traditional therapies targeting specific cytokines or ROS often prove inadequate. An innovative drug delivery system (DDS) is developed using neutrophil decoys (NDs) that encapsulate 18ß-glycyrrhetinic acid (GA) within a hydrolyzable oxalate polymer (HOP) and neutrophil membrane vesicles (NMVs). These NDs are responsive to hydrogen peroxide (H2O2), enabling controlled GA release. Additionally, NDs adsorb inflammatory factors, thereby reducing inflammation. They exhibit enhanced adhesion to inflamed endothelial cells (ECs) and improved penetration. Once internalized by cardiomyocytes through clathrin-mediated endocytosis, NDs protect against ROS-induced damage and inhibit HMGB1 translocation. In vivo studies show that NDs preferentially accumulate in injured myocardium, reducing infarct size, mitigating adverse remodeling, and enhancing cardiac function, all while maintaining favorable biosafety profiles. This neutrophil-based system offers a promising targeted therapy for MI/RI by addressing both inflammation and ROS, holding potential for future clinical applications.

15.
Cardiovasc Toxicol ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264521

RESUMEN

Uremic cardiomyopathy (UC) represents a complex syndrome characterized by different cardiac complications, including systolic and diastolic dysfunction, left ventricular hypertrophy, and diffuse fibrosis, potentially culminating in myocardial infarction (MI). Revascularization procedures are often necessary for MI management and can induce ischemia reperfusion injury (IR). Despite this clinical relevance, the role of fine particulate matter (PM2.5) in UC pathology and the underlying subcellular mechanisms governing this pathology remains poorly understood. Hence, we investigate the impact of PM2.5 exposure on UC susceptibility to IR injury. Using a rat model of adenine-induced chronic kidney disease (CKD), the animals were exposed to PM2.5 at 250 µg/m3 for 3 h daily over 21 days. Subsequently, hearts were isolated and subjected to 30 min of ischemia followed by 60 min of reperfusion to induce IR injury. UC hearts exposed to PM2.5 followed by IR induction (Adenine + PM_IR) exhibited significantly impaired cardiac function and increased cardiac injury (increased infarct size and apoptosis). Analysis at the subcellular level revealed reduced mitochondrial copy number, impaired mitochondrial bioenergetics, decreased expression of PGC1-α (a key regulator of mitochondrial biogenesis), and compromised mitochondrial quality control mechanisms. Additionally, increased mitochondrial oxidative stress and perturbation of the PI3K/AKT/AMPK signaling axis were evident. Our findings therefore collectively indicate that UC myocardium when exposed to PM2.5 is more vulnerable to IR-induced injury, primarily due to severe mitochondrial impairment.

16.
Curr Nutr Rep ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110372

RESUMEN

PURPOSE OF REVIEW: This study aims to review the effects of short-chain fatty acids (SCFAs) in regulating the myocardial ischemia-reperfusion injury (MIRI). RECENT FINDINGS: Coronary heart disease (CHD) is a well-known leading cause of death and disability worldwide. Cardiac substrate metabolism plays the determinant role in assessing the severity of heart injury due to the abruptly shifted energy production during the MIRI. Fatty acids are the main energy fuels for the heart, which are classified into long-, medium- and short chain fatty acids by the length of carbon chain. SCFAs are the main metabolites derived from the anaerobic bacterial fermentation of fiber-rich diets, which are shown to play a protective role in cerebrovascular disease previously. Meanwhile, accumulating evidences suggest that SCFAs can also play a crucial role in cardiac energy metabolism. Results of various studies revealed the cardioprotective effects of SCFAs by displaying anti-inflammatory and anti-ferroptotic function, connecting gut-brain neural circuit and regulating the intestinal flora.

17.
J Biochem Mol Toxicol ; 38(9): e23816, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39185902

RESUMEN

Reperfusion strategies, the standard therapy for acute myocardial infarction (AMI), may result in ischemia/reperfusion (I/R) damage. Suppressor of cytokine signaling1 (SOCS1) exerts a cardioprotective function in myocardial I/R damage. Here, we investigated epigenetic modulators that deregulate SOCS1 in cardiomyocytes under hypoxia/reoxygenation (H/R) conditions. Human AC16 cardiomyocytes were exposed to H/R conditions to generate a cell model of myocardial I/R damage. Expression of mRNA and protein was detected by quantitative PCR and western blot analysis, respectively. Cell migratory and invasive abilities were evaluated by transwell assay. Cell apoptosis and M2 macrophage polarization were assessed by flow cytometry. TNF-α, IL-1ß, and IL-6 levels were examined by ELISA. The interaction of KLF4 with SOCS1 was verified by chromatin immunoprecipitation and luciferase assays. SOCS1 and transcription factor KLF4 protein levels were underexpressed by 75% and 57%, respectively, in H/R-exposed AC16 cardiomyocytes versus control cells. Under H/R conditions, forced SOCS1 expression (2.7 times) induced cell migration (2.2 times) and invasion (1.9 times) and hindered cell apoptosis (by 45%) of AC16 cardiomyocytes as well as enhanced M2 macrophage polarization (4.6 times). Mechanistically, KLF4 upregulation promoted SOCS1 transcription (2.6 times) and expression (2.6 times) by binding to the SOCS1 promoter. Decrease of SOCS1 (by 51%) reversed the effects of KLF4 upregulation on cardiomyocyte migration, invasion and apoptosis, and M2 macrophage polarization under H/R conditions. Additionally, SOCS1 and KLF4 were underexpressed by 56% and 63%, respectively, in AMI serum. Our study indicates that KLF4-induced upregulation of SOCS1 can attenuate H/R-triggered apoptosis of AC16 cardiomyocytes and enhance M2 macrophage polarization.


Asunto(s)
Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel , Macrófagos , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Proteína 1 Supresora de la Señalización de Citocinas , Regulación hacia Arriba , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Humanos , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Macrófagos/metabolismo , Línea Celular , Apoptosis
18.
Sci Rep ; 14(1): 19420, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169211

RESUMEN

Cardiovascular complications pose a significant burden in type 2 diabetes mellitus (T2DM), driven by the intricate interplay of chronic hyperglycemia, insulin resistance, and lipid metabolism disturbances. Myocardial ischemia/reperfusion (MI/R) injury during cardiopulmonary bypass (CPB) exacerbates cardiac vulnerability. This study aims to probe the role of Caspase-1-dependent pyroptosis in global ischemia/reperfusion injury among T2DM rats undergoing CPB, elucidating the mechanisms underlying heightened myocardial injury in T2DM. This study established a rat model of T2DM and compared Mean arterial pressure (MAP), heart rate (HR), and hematocrit (Hct) between T2DM and normal rats. Myocardial cell morphology, infarction area, mitochondrial ROS and caspase-1 levels, NLRP3, pro-caspase-1, caspase-1 p10, GSDMD expressions, plasma CK-MB, cTnI, IL-1ß, and IL-18 levels were assessed after reperfusion in both T2DM and normal rats. The role of Caspase-1-dependent pyroptosis in myocardial ischemia/reperfusion injury during CPB in T2DM rats was examined using the caspase-1 inhibitor VX-765 and the ROS scavenger NAC. T2DM rats demonstrated impaired glucose tolerance but stable hemodynamics during CPB, while showing heightened vulnerability to MI/R injury. This was marked by substantial lipid deposition, disrupted myocardial fibers, and intensified cellular apoptosis. The activation of caspase-1-mediated pyroptosis and increased reactive oxygen species (ROS) production further contributed to tissue damage and the ensuing inflammatory response. Notably, myocardial injury was mitigated by inhibiting caspase-1 through VX-765, which also attenuated the inflammatory cascade. Likewise, NAC treatment reduced oxidative stress and partially suppressed ROS-mediated caspase-1 activation, resulting in diminished myocardial injury. This study proved that Caspase-1-dependent pyroptosis significantly contributes to the inflammation and injury stemming from global MI/R in T2DM rats under CPB, which correlate with the surplus ROS generated by oxidative stress during reperfusion.


Asunto(s)
Puente Cardiopulmonar , Caspasa 1 , Diabetes Mellitus Tipo 2 , Daño por Reperfusión Miocárdica , Piroptosis , Especies Reactivas de Oxígeno , Animales , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/patología , Puente Cardiopulmonar/efectos adversos , Caspasa 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Ratas , Masculino , Especies Reactivas de Oxígeno/metabolismo , para-Aminobenzoatos/farmacología , Ratas Sprague-Dawley , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Interleucina-18/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Dipéptidos
19.
Cardiovasc Toxicol ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126581

RESUMEN

This research focused on investigating the effects of sevoflurane (Sev) on myocardial autophagy levels after myocardial ischemia reperfusion (I/R) injury via the microRNA-542-3p (miR-542-3p)/ADAM9 axis. Mice underwent 30 min occlusion of the left anterior descending coronary (LAD) followed by 2 h reperfusion. Cardiac infarction was determined by 2,3,5-triphenyltetrazolium chloride triazole (TTC) staining. Cardiac function was examined by echocardiography. Cardiac markers and oxidative stress factors were evaluated by ELISA. Autophagy-associated factors were detected by western blot. Relationship between miR-542-3p and ADAM9 was tested by dual-luciferase reporter gene assay, RT-qPCR, and western blot. Sev treatment ameliorated cardiac dysfunction, myocardial oxidative stress, and histopathological damages, decreased myocardial infarction size and myocardial apoptotic cells after myocardial I/R injury. Sev treatment elevated miR-542-3p expression and decreased ADAM9 expression in myocardial tissues after myocardial I/R injury. miR-542-3p overexpression could enhance the ameliorative effects of Sev on myocardial injury and myocardial autophagy in I/R mice. miR-542-3p targeted and negatively regulated ADAM9 expression. ADAM9 overexpression reversed the ameliorative effects of miR-542-3p up-regulation on myocardial injury and myocardial autophagy in Sev-treated I/R mice. Sev treatment could ameliorate myocardial injury and myocardial autophagy in I/R mice, mediated by mechanisms that include miR-542-3p up-regulation and ADAM9 down-regulation.

20.
Colloids Surf B Biointerfaces ; 243: 114159, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39137530

RESUMEN

After myocardial ischemia/reperfusion injury (MI/RI), endothelial cell injury causes impaired angiogenesis and obstruction of microcirculation, resulting in an inflammatory outburst that exacerbates the damage. Therefore, synergistic blood vessel repair and inflammation inhibition are effective therapeutic strategies. In this study, we developed a platelet membrane (PM)-encapsulated baicalin nanocrystalline (BA NC) nanoplatform with a high drug load, BA NC@PM, which co-target to endothelial cells and macrophages through the transmembrane proteins of the PM to promote angiogenesis and achieve anti-inflammatory effects. In vitro cell scratch assays and transwell assay manifested that BA NC@PM could promote endothelial cell migration, as well as increase mRNA expression of CD31 and VEGF in the heart after treatment of MI/RI mice, suggesting its favorable vascular repair function. In addition, the preparation significantly reduced the expression of pro-inflammatory factors and increased the expression of anti-inflammatory factors in plasma, promoting the polarization of macrophages. Our study highlights a strategy for enhancing the treatment of MI/RI by promoting angiogenesis and regulating macrophage polarization via the biomimetic BA NC@PM nanoplatform.


Asunto(s)
Inflamación , Daño por Reperfusión Miocárdica , Nanopartículas , Animales , Ratones , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/patología , Inflamación/metabolismo , Nanopartículas/química , Flavonoides/farmacología , Flavonoides/química , Materiales Biomiméticos/farmacología , Materiales Biomiméticos/química , Humanos , Ratones Endogámicos C57BL , Masculino , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Movimiento Celular/efectos de los fármacos , Células RAW 264.7 , Tamaño de la Partícula , Angiogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA