Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36232477

RESUMEN

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by multiple dysplastic organ lesions and neuropsychiatric symptoms, caused by loss of function mutations in either TSC1 or TSC2. Genotype and phenotype analyses are conducted worldwide, but there have been few large-scale studies on Japanese patients, and there are still many unclear points. This study analyzed 283 Japanese patients with TSC (225 definite, 53 possible, and 5 genetic diagnoses). A total of 200 mutations (64 TSC1, 136 TSC2) were identified, of which 17 were mosaic mutations, 11 were large intragenic deletions, and four were splicing abnormalities due to deep intronic mutations. Several lesions and symptoms differed in prevalence and severity between TSC1 and TSC2 patients and were generally more severe in TSC2 patients. Moreover, TSC2 missense and in-frame mutations may attenuate skin and renal symptoms compared to other TSC2 mutations. Genetic testing revealed that approximately 20% of parents of a proband had mild TSC, which could have been missed. The patient demographics presented in this study revealed a high frequency of TSC1 patients and a low prevalence of epilepsy compared to global statistics. More patients with mild neuropsychiatric phenotypes were diagnosed in Japan, seemingly due to a higher utilization of brain imaging, and suggesting the possibility that a significant amount of mild TSC patients may not be correctly diagnosed worldwide.


Asunto(s)
Esclerosis Tuberosa , Humanos , Análisis Mutacional de ADN/métodos , Genotipo , Japón/epidemiología , Mutación , Fenotipo , Esclerosis Tuberosa/epidemiología , Esclerosis Tuberosa/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteínas Supresoras de Tumor/genética
2.
Gynecol Oncol ; 163(3): 563-568, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34742578

RESUMEN

OBJECTIVE: Maintenance olaparib provided a progression-free survival benefit in the phase III SOLO2 trial (NCT01874353) in patients with platinum-sensitive relapsed ovarian cancer and a BRCA mutation (BRCAm). However, questions remain regarding tumor versus germline BRCA testing and the impact of heterozygous versus bi-allelic loss of BRCA1 or BRCA2 in the tumor. METHODS: Blood and tumor samples were analyzed. A concordance analysis of germline BRCAm status (BRACAnalysis® CLIA test) and tumor BRCAm status (myChoice® CDx test) was conducted (Myriad Genetic Laboratories, Inc.). Bi-allelic loss of BRCA1 and BRCA2 and a genomic instability score (GIS) (myChoice® CDx test) were also determined. RESULTS: 289 of 295 enrolled patients had a germline BRCAm confirmed centrally and tumor BRCAm status was evaluable in 241 patients. There was 98% and 100% concordance between tumor and germline testing for BRCA1m and BRCA2m, respectively, with discordance found in four cases. Of 210 tumor samples evaluable for BRCA zygosity, 100% of germline BRCA1-mutated tumors (n = 144) and 98% of germline BRCA2-mutated tumors (n = 66) had bi-allelic loss of BRCA. One patient with a heterozygous BRCA2m had a GIS of 53, was progression free for 911 days and remained on olaparib at data cut-off. CONCLUSIONS: Very high concordance was demonstrated between tumor and germline BRCA testing, supporting wider implementation of tumor BRCA testing in ovarian cancer. Near 100% rates of bi-allelic loss of BRCA in platinum-sensitive relapsed ovarian tumors suggest routine testing for BRCA zygosity is not required in this population and reflects BRCA loss being a driver of tumorigenesis.


Asunto(s)
Proteína BRCA2/genética , Mutación de Línea Germinal , Pérdida de Heterocigocidad , Neoplasias Ováricas/genética , Ubiquitina-Proteína Ligasas/genética , Antineoplásicos/uso terapéutico , Proteína BRCA2/sangre , Carcinoma Endometrioide/sangre , Carcinoma Endometrioide/genética , Ensayos Clínicos Fase III como Asunto , Neoplasias de las Trompas Uterinas/sangre , Neoplasias de las Trompas Uterinas/genética , Femenino , Humanos , Neoplasias Ováricas/sangre , Neoplasias Peritoneales/sangre , Neoplasias Peritoneales/genética , Ftalazinas/uso terapéutico , Piperazinas/uso terapéutico , Polimorfismo de Nucleótido Simple , Ensayos Clínicos Controlados Aleatorios como Asunto , Ubiquitina-Proteína Ligasas/sangre
3.
J Cancer Res Clin Oncol ; 144(10): 2001-2010, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30019318

RESUMEN

PURPOSE: To validate a next-generation sequencing (NGS)-based companion diagnostic using the MiSeqDx® sequencing instrument to simultaneously detect 56 RAS mutations in DNA extracted from formalin-fixed paraffin-embedded metastatic colorectal cancer (mCRC) tumor samples from the PRIME study. The test's ability to identify patients with mCRC likely to benefit from panitumumab treatment was assessed. METHODS: Samples from PRIME, which compared first-line panitumumab + FOLFOX4 with FOLFOX4, were processed according to predefined criteria using a multiplex assay that included input DNA qualification, library preparation, sequencing, and the bioinformatics reporting pipeline. NGS mutational analysis of KRAS and NRAS exons 2, 3, and 4 was performed and compared with Sanger sequencing. RESULTS: In 441 samples, positive percent agreement of the Extended RAS Panel with Sanger sequencing was 98.7% and negative percent agreement was 97.6%. For clinical validation (n = 528), progression-free survival (PFS) and overall survival (OS) were compared between patients with RAS mutations (RAS Positive) and those without (RAS Negative). Panitumumab + FOLFOX4 improved PFS in RAS Negative patients (P = 0.02). Quantitative interaction testing indicated the treatment effect (measured by the hazard ratio of panitumumab + FOLFOX4 versus FOLFOX4) differed for RAS Negative versus RAS Positive for PFS (P = 0.0038) and OS (P = 0.0323). CONCLUSIONS: NGS allows for broad, rapid, highly specific analyses of genomic regions. These results support use of the Extended RAS Panel as a companion diagnostic for selecting patients for panitumumab, and utilization is consistent with recent clinical guidelines regarding mCRC RAS testing. Overall, approximately 13% more patients were detected with the Extended RAS Panel versus KRAS exon 2 alone. CLINICAL TRIAL REGISTRY IDENTIFIER: NCT00364013 (ClinicalTrials.gov).


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias Hepáticas/genética , Mutación , Proteínas ras/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Humanos , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/terapia , Pronóstico
4.
Front Oncol ; 4: 78, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24860780

RESUMEN

Over the past decade, next-generation sequencing (NGS) technology has experienced meteoric growth in the aspects of platform, technology, and supporting bioinformatics development allowing its widespread and rapid uptake in research settings. More recently, NGS-based genomic data have been exploited to better understand disease development and patient characteristics that influence response to a given therapeutic intervention. Cancer, as a disease characterized by and driven by the tumor genetic landscape, is particularly amenable to NGS-based diagnostic (Dx) approaches. NGS-based technologies are particularly well suited to studying cancer disease development, progression and emergence of resistance, all key factors in the development of next-generation cancer Dxs. Yet, to achieve the promise of NGS-based patient treatment, drug developers will need to overcome a number of operational, technical, regulatory, and strategic challenges. Here, we provide a succinct overview of the state of the clinical NGS field in terms of the available clinically targeted platforms and sequencing technologies. We discuss the various operational and practical aspects of clinical NGS testing that will facilitate or limit the uptake of such assays in routine clinical care. We examine the current strategies for analytical validation and Food and Drug Administration (FDA)-approval of NGS-based assays and ongoing efforts to standardize clinical NGS and build quality control standards for the same. The rapidly evolving companion diagnostic (CDx) landscape for NGS-based assays will be reviewed, highlighting the key areas of concern and suggesting strategies to mitigate risk. The review will conclude with a series of strategic questions that face drug developers and a discussion of the likely future course of NGS-based CDx development efforts.

5.
Onco Targets Ther ; 5: 439-47, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23251095

RESUMEN

BACKGROUND: Previous studies have reported that epidermal growth factor receptor (EGFR) mutation in tumor tissue and peripheral blood can predict the response to EGFR tyrosine kinase inhibitor (TKI) in non-small cell lung cancer (NSCLC). However, the heterogeneity of the sample sources makes it difficult to evaluate the detecting methodologies. The goal of this study is to compare different methods for analyzing EGFR mutation in blood and tumor tissue. MATERIALS AND METHODS: Fifty-one advanced NSCLC patients treated with gefitinib were included in the study. The EGFR mutation status of each patients' blood was analyzed by denaturing high-performance liquid chromatography (DHPLC), mutant-enriched liquidchip (ME-Liquidchip), and Scorpion Amplification Refractory Mutation System (Scorpion-ARMS) kits. EGFR mutation information in paired tumor samples detected by Scorpion-ARMS served as a reference. Comparative analyses were performed on mutation status results obtained from different methods and on the association between the clinical outcome of TKI treatment and EGFR mutation status. RESULTS: The response rate (RR) in the whole group was 33.3%. EGFR mutation rates were identified as 15.7%, 27.5%, and 29.4% by DHPLC, ME-Liquidchip, and Scorpion-ARMS in blood, respectively. In 34 cases that had paired tumor samples, the mutation rate in tissue was 41.2%. The RRs of patients with mutation detected by different methods were 71.4% (tumor), 62.5% (blood, DHPLC), 50.0% (blood, ME-Liquidchip), and 66.7% (blood, Scorpion-ARMS). EGFR mutation detected by Scorpion-ARMS in blood and tumor tissues had better prediction of RR to EGFR-TKI (P = 0.002 and P = 0.001) than mutation detected with DHPLC and ME-Liquidchip. CONCLUSION: Tumor tissue sample is the best source for EGFR mutation analysis in NSCLC patients. Peripheral blood samples may be used as an alternative source only in special conditions. Scorpion-ARMS, DHPLC, or ME-Liquidchip methods are all optional for detecting tumor EGFR mutation from blood.

6.
Case Rep Oncol ; 5(2): 280-9, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22740817

RESUMEN

BACKGROUND: Melanoma is characterized by a high frequency of BRAF mutations. It is unknown if the BRAF mutation status has any predictive value for therapeutic approaches such as angiogenesis inhibition. PATIENTS AND METHODS: We used 2 methods to analyze the BRAF mutation status in 52 of 62 melanoma patients. Method 1 (mutation-specific real-time PCR) specifically detects the most frequent BRAF mutations, V600E and V600K. Method 2 (denaturing gel gradient electrophoresis and direct sequencing) identifies any mutations affecting exons 11 and 15. RESULTS: Eighteen BRAF mutations and 15 wild-type mutations were identified with both methods. One tumor had a double mutation (GAA) in codon 600. Results of 3 samples were discrepant. Additional mutations (V600M, K601E) were detected using method 2. Sixteen DNA samples were analyzable with either method 1 or method 2. There was a significant association between BRAF V600E mutation and survival. CONCLUSION: Standardized tissue fixation protocols are needed to optimize BRAF mutation analysis in melanoma. For melanoma treatment decisions, the availability of a fast and reliable BRAF V600E screening method may be sufficient. If other BRAF mutations in exons 11 and 15 are found to be of predictive value, a combination of the 2 methods would be useful.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA