Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Small ; : e2405559, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177189

RESUMEN

This study explores the encapsulation of Ru(bpy)3 2+ within Zeolite Y (ZY) to improve photocatalytic singlet oxygen generation for the degradation of a mustard gas simulant, namely 2-chloroethyl ethyl sulfide (CEES). Mustard gas simulants are known to disrupt several biological processes; thus, their effective degradation is essential. Zeolite Y, with its hierarchical structure and adjustable Si/Al ratios, is an ideal host for Ru(bpy)3 2+, significantly improving its photocatalytic efficiency and stability. It is demonstrated through XRD and spectroscopic analyses that encapsulated Ru(bpy)3 2+ maintains its structural and photophysical properties, which are essential for generating singlet oxygen. Ru(bpy)3(1.0) loaded ZY(15) (where 1.0 and 15 represent the encapsulated amount of Ru(bpy)3 2+ and Si/Al ratio, respectively) outperforms other investigated photocatalytic systems in the oxidation of CEES, demonstrating high conversion rates and selectivity toward nontoxic sulfoxide products. Immobilization of Ru(bpy)3 2+-encapsulated zeolite Y onto cotton fabric results in effective degradation of CEES. The experimental results, validated by theoretical calculations, indicate an improved oxygen affinity and accessibility in zeolites with higher Si/Al ratios. This study advances the design of photocatalytic materials for environmental and defense applications, providing sustainable solutions for hazardous chemical degradation.

2.
Gels ; 10(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39057451

RESUMEN

This study describes the development of hydrogel formulations with ionic crosslinking capacity and photocatalytic characteristics. The objective of this research is to provide an effective, accessible, "green", and facile route for the decontamination of chemical warfare agents (CWAs, namely the blistering agent-mustard gas/sulfur mustard (HD)) from contaminated surfaces, by decomposition and entrapment of CWAs and their degradation products inside the hydrogel films generated "on-site". The decontamination of the notorious warfare agent HD was successfully achieved through a dual hydrolytic-photocatalytic degradation process. Subsequently, the post-decontamination residues were encapsulated within a hydrogel membrane film produced via an ionic crosslinking mechanism. Polyvinyl alcohol (PVA) and sodium alginate (ALG) are the primary constituents of the decontaminating formulations. These polymeric components were chosen for this application due to their cost-effectiveness, versatility, and their ability to form hydrogen bonds, facilitating hydrogel formation. In the presence of divalent metallic ions, ALG undergoes ionic crosslinking, resulting in rapid gelation. This facilitated prompt PVA-ALG film curing and allowed for immediate decontamination of targeted surfaces. Additionally, bentonite nanoclay, titanium nanoparticles, and a tetrasulfonated nickel phthalocyanine (NiPc) derivative were incorporated into the formulations to enhance absorption capacity, improve mechanical properties, and confer photocatalytic activity to the hydrogels obtained via Zn2+-mediated ionic crosslinking. The resulting hydrogels underwent characterization using a variety of analytical techniques, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), viscometry, and mechanical analysis (shear, tensile, and compression tests), as well as swelling investigations, to establish the optimal formulations for CWA decontamination applications. The introduction of the fillers led to an increase in the maximum strain up to 0.14 MPa (maximum tensile resistance) and 0.39 MPa (maximum compressive stress). The UV-Vis characterization of the hydrogels allowed the determination of the band-gap value and absorption domain. A gas chromatography-mass spectrometry assay was employed to evaluate the decontamination efficacy for a chemical warfare agent (sulfur mustard-HD) and confirmed that the ionic crosslinked hydrogel films achieved decontamination efficiencies of up to 92.3%. Furthermore, the presence of the photocatalytic species can facilitate the degradation of up to 90% of the HD removed from the surface and entrapped inside the hydrogel matrix, which renders the post-decontamination residue significantly less dangerous.

3.
ACS Appl Mater Interfaces ; 16(26): 34135-34140, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38900936

RESUMEN

Hydrogen peroxide (H2O2) is a highly effective decontaminant against chemical warfare agents (CWAs) when present both in a liquid and as a solid powder. For the latter, this can be in the form of H2O2 being complexed to a polymer, such as polyvinylpyrrolidone (PVP). While a H2O2-PVP complex is indeed effective at decontaminating CWAs, it is vulnerable to environmental conditions such as high relative humidities (RH), which can dissociate the H2O2 from the complex before it is given the opportunity to react with CWAs. In this paper, we demonstrate that the cross-linked version of PVP forms a highly stable complex with H2O2, which can withstand both high (40 °C) and low (-20 °C) temperatures as well as maintain stability at high RH up to 90% over several days. Collectively, this lays the framework for processing the H2O2-PVP complex in a variety of form factors that can maintain efficacy under a wide range of real-world environmental conditions.

4.
ACS Appl Mater Interfaces ; 16(12): 15298-15307, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38488122

RESUMEN

Functional materials that can quickly absorb and degrade mustard gas are essential for chemical warfare emergency response kits. In this study, a fiber membrane with excellent adsorption and catalytic degradation activity was developed by solution blow spinning polystyrene (PS)/polyurethane (PU) and hydrothermal in situ growth of a zirconium-based MOF (MOF-808). The mechanical properties of the PS/PU fibers were improved by adding a trimethylolpropane tris (2-methyl-1-aziridine propionate) (TTMA) cross-linking agent. Moreover, the C═O bonds in TTMA provided abundant growth sites for MOF-808 in the hydrothermal process, thereby greatly increasing the loading capacity. The fiber surface was completely covered with the MOF-808 particles within 24 h. The PS/PU/TTMA/MOF-808 fiber membrane was used for the catalytic degradation of 2-chloroethyl ethyl sulfide (CEES). The degradation efficiency reached 97.7% after 72 h, indicating its great application potential in emergency wiping cloths for mustard gas adsorption and degradation.

5.
Polymers (Basel) ; 16(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38399835

RESUMEN

There have been many studies on surface acoustic wave (SAW) sensors for detecting sulfur-containing toxic or harmful gases. This paper aims to give an overview of the current state of polymer films used in SAW sensors for detecting deleterious gases. By covering most of the important polymer materials, the structures and types of polymers are summarized, and a variety of devices with different frequencies, such as delay lines and array sensors for detecting mustard gas, hydrogen sulfide, and sulfur dioxide, are introduced. The preparation method of polymer films, the sensitivity of the SAW gas sensor, the limit of detection, the influence of temperature and humidity, and the anti-interference ability are discussed in detail. The advantages and disadvantages of the films are analyzed, and the potential application of polymer films in the future is also forecasted.

6.
Iran J Allergy Asthma Immunol ; 22(4): 366-378, 2023 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-37767679

RESUMEN

Sulfur mustard (SM) or mustard gas is a blister chemical agent that causes pulmonary damage by triggering inflammation and oxidative injury. Alterations in microRNA (miR) transcript levels are found in pulmonary diseases and even inflammation. Therefore, we evaluated the expression levels of miR-20a-5p, miR-21-5p, and two target transcripts (transforming growth factor-beta [TGF-ß1] and TGF-ß receptor 2 [TGFR2]) in lung, serum, and skin samples from patients exposed to SM. Total RNA was extracted from lung, serum, and skin samples of patients with moderate (n=10) and high (n=10) SM exposure, as well as 10 healthy subjects. Following the synthesis of complementary deoxyribonucleic acid using real-time polymerase chain reaction, we determined the expression levels of miR-20a-5p, miR-21-5p, TGF-ß1, and TGFR2 transcripts. Furthermore, we evaluated the sensitivity and specificity of the chosen miRs by employing receiver operating characteristic (ROC) curves and calculating the area under the ROC curve. The results showed that miR-20a-5p and miR-21-5p expressions in the groups with moderate and high SM exposure were significantly lower than the normal controls. The expression analysis demonstrated that TGFR2 was significantly less expressed in skin samples exposed to SM in both groups of patients compared with healthy controls. Furthermore, the TGF-ß1 expression in the skin samples of the group with moderate SM exposure was lower than that of the normal control group. Our findings suggest that miR-20a-5p, miR-21-5p, TGF-ß1, and TGFR2 expressions could be used as potential biomarkers for discriminating SM-exposed patients from healthy individuals.

7.
Exp Eye Res ; 235: 109644, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37683796

RESUMEN

Sulfur mustard (SM) ocular exposure severely damages the cornea and causes vision impairment. At present, no specific therapy exists to mitigate SM-induced corneal injury and vision loss. This study performed transcriptome profiling of naïve, SM-damaged, and SM-undamaged rabbit corneas using RNA-seq analysis and bioinformatic tools to gain a better mechanistic understanding and develop SM-specific medical countermeasures. The mRNA profiles of rabbit corneas 4 weeks post SM vapor exposure were generated using Illumina-NextSeq deep sequencing (Gene Expression Omnibus accession # GSE127708). The RNA sequences of naïve (n = 4), SM-damaged (n = 5), and SM-undamaged (n = 5) corneas were subjected to differential expression (DE) analysis after quality control profiling with FastQC. DE analysis was performed using HISAT2, StringTie, and DESeq2. The log2(FC)±2 and adjusted p˂0.05 were chosen to identify the most relevant genes. A total of 5930 differentially expressed genes (DEGs) (upregulated: 3196, downregulated: 2734) were found in SM-damaged corneas compared to naïve corneas, whereas SM-undamaged corneas showed 1884 DEGs (upregulated: 1029, downregulated: 855) compared to naïve corneas. DE profiling of SM-damaged corneas to SM-undamaged corneas revealed 985 genes (upregulated: 308, downregulated: 677). The DE profiles were subsequently subjected to signaling pathway enrichment, and protein‒protein interactions (PPIs) were analyzed. Pathway enrichment was performed for the genes associated with cellular apoptosis, death, adhesion, migration, differentiation, proliferation, extracellular matrix, and tumor necrosis factor production. To identify novel targets, we narrowed the pathway analysis to upregulated and downregulated genes associated with cell proliferation and differentiation, and PPI networks were developed. Furthermore, protein targets associated with cell differentiation and proliferation that may play vital roles in corneal fibrosis and wound healing post SM injury were identified.


Asunto(s)
Gas Mostaza , Animales , Conejos , Gas Mostaza/toxicidad , Mapas de Interacción de Proteínas , RNA-Seq , Córnea , Perfilación de la Expresión Génica , Expresión Génica , Biología Computacional
8.
Exp Eye Res ; 236: 109657, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37722586

RESUMEN

Exposure to mustard agents, such as sulfur mustard (SM) and nitrogen mustard (NM), often results in ocular surface damage. This can lead to the emergence of various corneal disorders that are collectively referred to as mustard gas keratopathy (MGK). In this study, we aimed to develop a mouse model of MGK by using ocular NM exposure, and describe the subsequent structural changes analyzed across the different layers of the cornea. A 3 µL solution of 0.25 mg/mL or 5 mg/mL NM was applied to the center of the cornea via a 2-mm filter paper for 5 min. Mice were evaluated prior to and after exposure on days 1, 3, 7, 14, and 28 for 4 weeks using slit lamp examination with fluorescein staining. Anterior segment optical coherence tomography (AS-OCT) and in vivo confocal microscopy (IVCM) tracked changes in the epithelium, stroma, and endothelium of the cornea. Histologic evaluation was used to examine corneal cross-sections collected at the completion of follow-up. Following exposure, mice experienced central corneal epithelial erosion and thinning, accompanied by a decreased number of nerve branches in the subbasal plexus and increased activated keratocytes in the stroma in both dosages. The epithelium was recovered by day 3 in the low dose group, followed by exacerbated punctuate erosions alongside persistent corneal edema that arose and continued onward to four weeks post-exposure. The high dose group showed persistent epitheliopathy throughout the study. The endothelial cell density was reduced, more prominent in the high dose group, early after NM exposure, which persisted until the end of follow-up, along with increased polymegethism and pleomorphism. Microstructural changes in the central cornea at 4 weeks post-exposure included dysmorphic basal epithelial cells and reduced epithelial thickness, and in the limbal cornea included decreased cellular layers. We present a mouse model of MGK using NM that successfully replicates ocular injury caused by SM in humans who have been exposed to mustard gas.


Asunto(s)
Enfermedades de la Córnea , Edema Corneal , Úlcera de la Córnea , Gas Mostaza , Humanos , Animales , Ratones , Gas Mostaza/toxicidad , Mecloretamina/toxicidad , Córnea/patología , Enfermedades de la Córnea/inducido químicamente , Enfermedades de la Córnea/patología , Úlcera de la Córnea/patología , Trastornos de la Visión/patología , Microscopía Confocal
9.
Exp Eye Res ; 233: 109565, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37406956

RESUMEN

Mustard agents are vesicants that were used in warfare multiple times. They are potent alkylating agents that activate cellular pathways of apoptosis, increase oxidative stress, and induce inflammation. Eyes are particularly susceptible to mustard exposure with a wide range of ocular surface damage. Three main categories of mustard-related eye injuries are acute, chronic, and delayed-onset manifestations. Mustard keratopathy (MK) is a known complication characterized by corneal opacification, ulceration, thinning, and neovascularization that can lead to severe vision loss and discomfort. Recently, a few reports demonstrated the role of senescence induction as a new pathological mechanism in mustard-related injuries that could affect wound healing. We ran the first murine model of delayed-onset MK and nitrogen mustard-induced senescence, evaluating the pathological signs of senescence in the cornea using beta-galactosidase staining. Our results suggest that nitrogen mustard exposure causes senescence in the corneal cells, which could be the underlying mechanism for chronic and late-onset ocular surface damage. We also found a significant correlation between the percentage of positive beta-galactosidase staining and the degree of fibrosis in the cornea. This provides valuable insight into the possible role of anti-senescence drugs in the near future for accelerating corneal healing and restricting fibrosis in patients with mustard keratopathy.


Asunto(s)
Sustancias para la Guerra Química , Enfermedades de la Córnea , Gas Mostaza , Humanos , Animales , Ratones , Sustancias para la Guerra Química/toxicidad , Gas Mostaza/toxicidad , Mecloretamina/toxicidad , Enfermedades de la Córnea/patología , Córnea/metabolismo , Senescencia Celular
10.
Cells ; 12(11)2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37296653

RESUMEN

Sulfur mustard gas (SM) is a vesicating and alkylating agent used as a chemical weapon in many mass-casualty incidents since World War I. Ocular injuries were reported in >90% of exposed victims. The mechanisms underlying SM-induced blindness remain elusive. This study tested the hypothesis that SM-induced corneal fibrosis occurs due to the generation of myofibroblasts from resident fibroblasts via the SMAD2/3 signaling pathway in rabbit eyes in vivo and primary human corneal fibroblasts (hCSFs) isolated from donor corneas in vitro. Fifty-four New Zealand White Rabbits were divided into three groups (Naïve, Vehicle, SM-Vapor treated). The SM-Vapor group was exposed to SM at 200 mg-min/m3 for 8 min at the MRI Global facility. Rabbit corneas were collected on day 3, day 7, and day 14 for immunohistochemistry, RNA, and protein lysates. SM caused a significant increase in SMAD2/3, pSMAD, and ɑSMA expression on day 3, day 7, and day 14 in rabbit corneas. For mechanistic studies, hCSFs were treated with nitrogen mustard (NM) or NM + SIS3 (SMAD3-specific inhibitor) and collected at 30 m, 8 h, 24 h, 48 h, and 72 h. NM significantly increased TGFß, pSMAD3, and SMAD2/3 levels. On the contrary, inhibition of SMAD2/3 signaling by SIS3 treatment significantly reduced SMAD2/3, pSMAD3, and ɑSMA expression in hCSFs. We conclude that SMAD2/3 signaling appears to play a vital role in myofibroblast formation in the cornea following mustard gas exposure.


Asunto(s)
Sustancias para la Guerra Química , Gas Mostaza , Humanos , Animales , Conejos , Gas Mostaza/toxicidad , Gas Mostaza/metabolismo , Miofibroblastos/metabolismo , Sustancias para la Guerra Química/toxicidad , Sustancias para la Guerra Química/metabolismo , Córnea/metabolismo , Mecloretamina/metabolismo , Mecloretamina/farmacología , Transducción de Señal , Proteína Smad2/metabolismo
11.
Small ; 19(36): e2301050, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37162490

RESUMEN

Developing effective catalysts to degrade chemical warfare agents is of great significance. Herein, a mesoporous MIL-101(Cr) composite material dangled with porphyrin molecules (denote as TCPP@MIL-101(Cr), TCPP = tetra(4-carboxyphenyl)porphyrin) is reported, which can be used as a heterogeneous photocatalyst for detoxification of mustard gas simulants 2-chloroethyl ethyl sulfide (CEES) to 2-chloroethyl ethyl sulfoxide (CEESO) with a half-life of 1 min. The catalytic performance of TCPP@MIL-101(Cr) is comparable to that of homogeneous molecular porphyrin. Mechanistic studies reveal that both 1 O2 and O2 •- are efficiently generated and play vital roles in the oxidation reaction. Gold nanoparticles (AuNPs) are attached to the TCPP@MIL-101(Cr) to further enhance the catalytic activity with a benchmark half-life of 45 s, which is the fastest record so far. A medical mask loaded TCPP@MIL-101(Cr) is fabricated for practical applications, which can selectively photoxidize CEES to CEESO under sunlight and air atmosphere, exhibiting the best degradation performance among the reported fabric-like composite materials.

12.
Exp Eye Res ; : 109495, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37142048

RESUMEN

Exposure to mustard agents, such as sulfur mustard (SM) and nitrogen mustard (NM), often results in ocular surface damage. This can lead to the emergence of various corneal disorders that are collectively referred to as mustard gas keratopathy (MGK). In this study, we aimed to develop a mouse model of MGK by using ocular NM exposure, and describe the subsequent structural changes analyzed across the different layers of the cornea. A 3 µL solution of 0.25 mg/mL NM was applied to the center of the cornea via a 2-mm filter paper for 5 min. Mice were evaluated prior to and after exposure on days 1 and 3, and weekly for 4 weeks using slit lamp examination with fluorescein staining. Anterior segment optical coherence tomography (AS-OCT) and in vivo confocal microscopy (IVCM) tracked changes in the epithelium, stroma, and endothelium of the cornea. Histologic evaluation and immunostaining were used to examine corneal cross-sections collected at the completion of follow-up. A biphasic ocular injury was observed in mice exposed to NM, most prominent in the corneal epithelium and anterior stroma. Following exposure, mice experienced central corneal epithelial erosions and thinning, accompanied by a decreased number of nerve branches in the subbasal plexus and increased activated keratocytes in the stroma. The epithelium was recovered by day 3, followed by exacerbated punctuate erosions alongside persistent stromal edema that arose and continued onward to four weeks post-exposure. The endothelial cell density was reduced on the first day after NM exposure, which persisted until the end of follow-up, along with increased polymegethism and pleomorphism. Microstructural changes in the central cornea at this time included dysmorphic basal epithelial cells, and in the limbal cornea included decreased cellular layers and p63+ area, along with increased DNA oxidization. We present a mouse model of MGK using NM that successfully replicates ocular injury caused by SM in humans who have been exposed to mustard gas. Our research suggests DNA oxidation contributes to the long-term effects of nitrogen mustard on limbal stem cells.

13.
Small ; 19(34): e2302045, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37165579

RESUMEN

The development of efficient metal-free photocatalysts for the generation of reactive oxygen species (ROS) for sulfur mustard (HD) decontamination can play a vital role against the stockpiling of chemical warfare agents (CWAs). Herein, one novel concept is conceived by smartly choosing a specific ionic monomer and a donor tritopic aldehyde, which can trigger linker-independent regioselective protonation/deprotonation in the polymeric backbone. In this context, the newly developed vinylene-linked ionic polymers (TPA/TPD-Ionic) are further explored for visible-light-assisted detoxification of HD simulants. Time-resolved-photoluminescence (TRPL) study reveals the protonation effect in the polymeric backbone by significantly enhancing the life span of photoexcited electrons. In terms of catalytic performance, TPA-Ionic outperformed TPD-Ionic because of its enhanced excitons formation and charge carrier abilities caused by the donor-acceptor (D-A) backbone and protonation effects. Moreover, the formation of singlet oxygen (1 O2 ) species is confirmed via in-situ Electron Spin Resonance (ESR) spectroscopy and density functional theory (DFT) analysis, which explained the crucial role of solvents in the reaction medium to regulate the (1 O2 ) formation. This study creates a new avenue for developing novel porous photocatalysts and highlights the crucial roles of sacrificial electron donors and solvents in the reaction medium to establish the structure-activity relationship.

14.
Exp Eye Res ; 230: 109461, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37023936

RESUMEN

Sulfur mustard (SM) is a chemical warfare agent (CWA) that causes severe eye pain, photophobia, excessive lacrimation, corneal and ocular surface defects, and blindness. However, SM's effects on retinal cells are relatively meager. This study investigated the role of SM toxicity on Müller glial cells responsible for cellular architecture, inner blood-retinal barrier maintenance, neurotransmitter recycling, neuronal survival, and retinal homeostasis. Müller glial cells (MIO-M1) were exposed to SM analog, nitrogen mustard (NM), at varying concentrations (50-500 µM) for 3 h, 24 h, and 72 h. Müller cell gliosis was evaluated using morphological, cellular, and biochemical methods. Real-time cellular integrity and morphological evaluation were performed using the xCELLigence real-time monitoring system. Cellular viability and toxicity were measured using TUNEL and PrestoBlue assays. Müller glia hyperactivity was calculated based on glial fibrillary acidic protein (GFAP) and vimentin immunostaining. Intracellular oxidative stress was measured using DCFDA and DHE cell-based assays. Inflammatory markers and antioxidant enzyme levels were determined by quantitative real-time PCR (qRT-PCR). AO/Br and DAPI staining further evaluated DNA damage, apoptosis, necrosis, and cell death. Inflammasome-associated Caspase-1, ASC, and NLRP3 were studied to identify mechanistic insights into NM toxicity in Müller glial cells. The cellular and morphological evaluation revealed the Müller glia hyperactivity after NM exposure in a dose- and time-dependent manner. NM exposure caused significant oxidative stress and enhanced cell death at 72 h. A significant increase in antioxidant indices was observed at the lower concentrations of NM. Mechanistically, we found that NM-treated MIO-M1 cells increased caspase-1 levels that activated NLRP3 inflammasome-induced production of IL-1ß and IL-18, and elevated Gasdermin D (GSDMD) expression, a crucial component actuating pyroptosis. In conclusion, NM-induced Müller cell gliosis via increased oxidative stress results in caspase-1-dependent activation of the NLRP3 inflammasome and cell death driven primarily by pyroptosis.


Asunto(s)
Células Ependimogliales , Gas Mostaza , Humanos , Células Ependimogliales/metabolismo , Gliosis/etiología , Gas Mostaza/toxicidad , Antioxidantes/farmacología , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Caspasas/metabolismo
15.
J R Coll Physicians Edinb ; 53(2): 119-127, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36927337

RESUMEN

The fruit fly, Drosophila melanogaster, is a simple and powerful model organism. It has played a critical role over more than a century, for example in establishing the field of genetics, and in foundational insights into the molecular basis of development. From the 1930s until today, researchers at the University of Edinburgh have used Drosophila to tackle questions in basic and biomedical science. Here the history of the initial decades of this research is explored, beginning with the introduction of Drosophila research to Edinburgh by Francis Albert Eley Crew, in the newly established Institute of Animal Genetics. This period of research includes the discovery that chemicals can cause genetic mutation. This was demonstrated by research of the effects of mustard gas on flies by Charlotte Auerbach and colleagues, guided by the future Nobel laureate Hermann Muller. Drosophila research was also formative in Conrad Hal Waddington's conceptual thinking about developmental biology, including in his vision of the epigenetic landscape. This holistic, systems-level view of the control of development was far before its time and has continued to be influential to this day in our conceptualisation of developmental biology and in the increasingly important field of systems biology. Waddington's experiments with Drosophila in Edinburgh also gave rise to the evolutionary concept of genetic assimilation, in which an environmentally induced phenotype subsequently becomes genetically encoded.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Drosophila/genética , Fenotipo , Evolución Biológica , Mutación
16.
Exp Eye Res ; 228: 109395, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36731603

RESUMEN

Sulfur mustard (SM) remains a highly dangerous chemical weapon capable of producing mass casualties through liquid or vapor exposure. The cornea is highly sensitive to SM toxicity and exposure to low vapor doses can cause incapacitating acute injuries. At higher doses, corneas fail to fully heal and subsequently develop a constellation of symptoms known as mustard gas keratopathy (MGK) that causes reduced quality of life and impaired or lost vision. Despite a century of research, there are no specific treatments for acute or persistent ocular SM injuries. Here I summarize toxicological, clinical and pathophysiological mechanisms of SM vapor injury in the cornea, describe a preclinical model of ocular SM vapor exposure for reproducible therapeutic studies, and propose new approaches to improve evaluation of therapeutic effects. I also describe recent findings illustrating the delayed development of a transient but severe recurrent corneal lesion that, in turn, triggers the emergence of secondary keratopathies characteristic of the chronic form of MGK. Development of this recurrent lesion is SM dose-dependent, although the severity of the recurrent lesion appears SM dose-independent. Similar recurrent lesions have been reported in multiple species, including humans. Given the mechanistic relationship between the recurrent lesion and chronic, secondary keratopathies, I hypothesize that preventing the development of the recurrent lesion represents a novel and potentially valuable therapeutic approach for treatment of severe corneal SM injuries. Although ocular exposure to SM vapor continues to be a challenging therapeutic target, establishing consistent and reproducible models of corneal injury that enhance mechanistic and pathophysiological understanding will help satisfy regulatory requirements and accelerate the development of effective therapies.


Asunto(s)
Sustancias para la Guerra Química , Enfermedades de la Córnea , Lesiones de la Cornea , Gas Mostaza , Humanos , Gas Mostaza/toxicidad , Sustancias para la Guerra Química/toxicidad , Calidad de Vida , Enfermedades de la Córnea/patología
17.
BMC Pulm Med ; 22(1): 481, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539770

RESUMEN

BACKGROUND: Respiratory diseases are the leading cause of morbidity and mortality in the survivors exposed to Sulfur Mustard (SM). The late abnormalities can be present as chronic bronchitis, tracheobronchial stenosis, asthma, bronchiectasis, airway narrowing, lung fibrosis, and lung cancers. This study aims to investigate the association between radiological findings and lung cancer development in patients exposed to sulfur mustard gas. METHODS: We entered 719 victims exposed to SM during the Iran-Iraq war into our follow-up study in a consensus manner. They were periodically followed with Chest HRCT scans from 2001 to an interval of 2014-2019. The mean year interval between exposure and the last follow-up was 38 years. For confirming the lung cancer in those with evidence of malignancy in their imaging, fine needle aspiration/biopsy and/or surgical intervention were done. RESULTS: Among 719 patients, 57% were free from any pathologic findings in their HRCT scan. Among the subjects who had the abnormal radiologic findings, Air Trapping (AT), Lung Fibrosis (LF), Bronchiectasis (B), and the evidence of lung cancer were found in 265 (36.9%), 207 (28.8%), 151 (21.0%), and 42 (5.8%), respectively. Adenocarcinoma (38.1%) was the most common type of cancer. The right lung was involved more than the left one regarding LF, B, and cancer (p value < 0.05). Considering the laterality, a significant correlation was found between the side of LF and B and the tumor side. Furthermore, it was shown that the lung lobes with LF were statistically correlated to tumor-involved lobes. The relative risk of AT and B existence for tumor development was 11.73 [4.87-28.26] and 10.14 [5.12-20.090], respectively. The most predictive finding was LF which caused the risk of developing tumor 17.75 [7.35-42.86] times higher in the patient with this pathology. By each increment of the number of LF and B, the risk of developing tumors increased by 51% and 76%, respectively. CONCLUSION: In survivors exposed to Sulfur Mustard, those with bronchiectasis and lung fibrosis have a significantly higher risk of developing lung cancers, so a close follow-up of these victims is recommended. Trial registration This study was confirmed by the institutional review board and ethics committee at Shiraz University of Medical Sciences (SUMS) with the ethical code IR.SUMS.MED.REC.1399.637.


Asunto(s)
Bronquiectasia , Sustancias para la Guerra Química , Neoplasias Pulmonares , Gas Mostaza , Fibrosis Pulmonar , Trastornos Respiratorios , Humanos , Gas Mostaza/toxicidad , Estudios de Seguimiento , Sustancias para la Guerra Química/toxicidad , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/diagnóstico por imagen , Bronquiectasia/inducido químicamente , Bronquiectasia/diagnóstico por imagen , Irán
18.
Iran J Pathol ; 17(3): 354-359, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247510

RESUMEN

Background & Objective: Delayed mustard gas keratopathy (DMGK) is the main chronic outcome in eye-chemical injured patients. The aim of this study was the histopathological evaluation of mustard-exposed cornea after more than 30 years. Methods: Fourteen corneas after Lamellar keratoplasty were evaluated in this study. Corneal tissues were prepared by histologic methods and stained by H&E. Results: The main histopathological findings in these cases were the presence of severe stromal edema and corneal scar. In the sections with visible superficial epithelium, subepithelial bullae formation was observed. Focal or diffuse disruption of Bowman's membrane and replacement with fibrosis were also seen. There was no evidence of stromal vascularization and inflammation in all specimens. Conclusion: After more than 30 years, an extensive corneal scar is seen in sulfur mustard exposed patients. Scar tissue without vascularization and fibroblastic proliferation is the main finding in the sulfur mustard exposed cornea. This pathology result is different from other scars. No evidence of inflammation or immune cell infiltration should be considered in managing DMGK.

19.
ACS Appl Mater Interfaces ; 14(38): 42940-42949, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36122369

RESUMEN

The peroxidase-like catalytic activity of various nanozymes was extensively applied in various fields. In this study, we have demonstrated the preparation of Fe-doped MoS2 (Fe@MoS2) nanomaterials with enhanced peroxidase-like activity of MoS2 in a co-catalytic pathway. In view of Fenton reaction, the peroxidase-like Fe@MoS2 nanozyme prompted the decomposition of hydrogen peroxide (H2O2) to a reactive hydroxyl radical (·OH). The efficient decomposition of H2O2 in the presence of Fe@MoS2 has been employed toward the antibacterial activity and detoxification of mustard gas simulant. The combined effect of Fe@MoS2 and H2O2 showed remarkable antibacterial activity against the drug-resistant bacterial strain methicillin-resistant Staphylococcus aureus and Escherichia coli with the use of minimal concentration of H2O2. Fe@MoS2 was further applied for the detoxification of the chemical warfare agent sulfur mustard simulant, 2-chloroethyl ethyl sulfide, by selective conversion to the nontoxic sulfoxide. This work demonstrates the development of a hybrid nanozyme and its environmental remediation from harmful chemicals to microbes.


Asunto(s)
Sustancias para la Guerra Química , Staphylococcus aureus Resistente a Meticilina , Gas Mostaza , Antibacterianos/química , Antibacterianos/farmacología , Escherichia coli , Peróxido de Hidrógeno/química , Radical Hidroxilo/farmacología , Molibdeno/química , Molibdeno/farmacología , Gas Mostaza/farmacología , Peroxidasa/química , Peroxidasas/química , Sulfóxidos/farmacología
20.
Exp Eye Res ; 224: 109247, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36113569

RESUMEN

An array of corneal pathologies collectively called mustard gas keratopathy (MGK) resulting from ocular exposure to sulfur mustard (SM) gas are the most prevalent chemical warfare injury. MGK involves chronic ocular discomfort that results in vision impairment. The etiology of MGK remains unclear and poorly understood primarily due to a lack of scientific data regarding structural and cellular changes in different layers of the cornea altered by mustard vapor exposure in vivo. The goals of this study were to (a) characterize time-dependent changes in different layers of corneal epithelium, stroma, and endothelium in live animals in situ by employing state-of-the-art multimodal clinical ophthalmic imaging techniques and (b) determine if SM-induced acute changes in corneal cells could be rescued by a topical eye drop (TED) treatment using in an established rabbit in vivo model. Forty-five New Zealand White Rabbit eyes were divided into four groups (Naïve, TED, SM, and SM + TED). Only one eye was exposed to SM (200 mg-min/m3 for 8 min), and each group had three time points with six eyes each (Table-1). TED was topically applied twice a day for seven days. Clinical eye examinations and imaging were performed in live rabbits with stereo, Slit-lamp, HRT-RCM3, and Spectralis microscopy system. Fantes grading, fluorescein staining, Schirmer's tests, and applanation tonometry were conducted to measure corneal haze, ocular surface aberrations, tears, and intraocular pressure respectively. H&E and PSR staining were used for histopathological cellular changes in the cornea. In vivo confocal and OCT imaging revealed significant changes in structural and morphological appearance of corneal epithelium, stroma, and endothelium in vivo in SM-exposed rabbit corneas in a time-dependent manner compared to naïve cornea. Also, SM-exposed eyes showed loss of corneal transparency characterized by increased stromal thickness and light-scattering myofibroblasts or activated keratocytes, representing haze formation in the cornea. Neither naive nor TED-alone treated eyes showed any structural, cellular, and functional abnormalities. Topical TED treatment significantly reduced SM-induced abnormalities in primary corneal layers. We conclude that structural and cellular changes in primary corneal layers are early pathological events contributing to MGK in vivo, and efficient targeting of them with suitable agents has the potential to mitigate SM ocular injury.


Asunto(s)
Quemaduras Químicas , Sustancias para la Guerra Química , Enfermedades de la Córnea , Gas Mostaza , Conejos , Animales , Gas Mostaza/toxicidad , Sustancias para la Guerra Química/toxicidad , Córnea/patología , Enfermedades de la Córnea/patología , Quemaduras Químicas/patología , Soluciones Oftálmicas/farmacología , Fluoresceínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA