Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38578562

RESUMEN

Muscle damage resulting from physical activities such as exercise triggers an immune response crucial for tissue repair and recovery. This study investigates the immune cell profiles in muscle biopsies of individuals engaged in resistance exercise (RE) and explores the impact of age and sex on the immune response following exercise-induced muscle damage. Microarray datasets from muscle biopsies of young and old subjects were analyzed, focusing on the gene expression patterns associated with immune cell activation. Genes were compared with immune cell signatures to reveal the cellular landscape during exercise. Results show that the most significant modulated gene after RE was Folliculin Interacting Protein 2 (FNIP2) a crucial regulator in cellular homeostasis. Moreover, the transcriptome was stratified based on the expression of FNIP2 and the 203 genes common to the groups obtained based on sex and age. Gene ontology analysis highlighted the FLCN-FNIP1-FNIP2 complex, which exerts as a negative feedback loop to Pi3k-Akt-mTORC1 pathway. Furthermore, we highlighted that the young females exhibit a distinct innate immune cell activation signature compared to males after a RE session. Specifically, young females demonstrate a notable overlap with dendritic cells (DCs), M1 macrophages, M2 macrophages, and neutrophils, while young males overlap with M1 macrophages, M2 macrophages, and motor neurons. Interestingly, in elderly subjects, both sexes display M1 macrophage activation signatures. Comparison of young and elderly signatures reveals an increased M1 macrophage percentage in young subjects. Additionally, common genes were identified in both sexes across different age groups, elucidating biological functions related to cell remodeling and immune activation. This study underscores the intricate interplay between sex, age, and the immune response in muscle tissue following RE, offering potential directions for future research. Nevertheless, there is a need for further studies to delve deeper and confirm the dynamics of immune cells in response to exercise-induced muscle damage.

2.
Cancers (Basel) ; 16(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38473431

RESUMEN

In the rapidly evolving landscape of cancer cachexia research, the development and refinement of diagnostic and predictive biomarkers constitute an ongoing challenge. This study aims to introduce longitudinal muscle biopsies as a potential framework for disease monitoring and treatment. The initial feasibility and safety assessment was performed for healthy mice and rats that received two consecutive muscle biopsies. The assessment was performed by utilizing three different tools. Subsequently, the protocol was also applied in leiomyosarcoma tumor-bearing rats. Longitudinal muscle biopsies proved to be a safe and feasible technique, especially in rat models. The application of this protocol to tumor-bearing rats further affirmed its tolerability and feasibility, while microscopic evaluation of the biopsies demonstrated varying levels of muscle atrophy with or without leukocyte infiltration. In this tumor model, sequential muscle biopsies confirmed the variability of the cancer cachexia evolution among subjects and at different time-points. Despite the abundance of promising cancer cachexia data during the past decade, the full potential of muscle biopsies is not being leveraged. Sequential muscle biopsies throughout the disease course represent a feasible and safe tool that can be utilized to guide precision treatment and monitor the response in cancer cachexia research.

3.
Neuromuscul Disord ; 36: 6-15, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38306719

RESUMEN

The aim of this study was to identify key routinely used myopathologic biomarkers of FSHD1. Needle muscle biopsies were taken in 34 affected muscles (m. quadriceps femoris (QF), n = 20, m. tibialis anterior (TA), n = 13, m. biceps brachii, n = 1) from 22 patients (age, 53.5 (10) years; M = 12, F = 10). Eleven patients had more than one biopsy (2xQF, n = 1; QF+TA, n = 9; 2xQF+TA, n = 1). Histochemistry, immunoperoxidase, and immunofluorescence stainings were performed and compared to age and muscle type matched muscle specimens of 11 healthy controls. Myopathologic features observed in our FSHD1 cohort were internalized nuclei, type 1 fibre hypertrophy and NADH central clearances/cores. We observed a prominent inflammatory response with MAC deposits, MHC I expression, and muscle regeneration that correlated with the inflammatory score. Our up-to-date characterization of FSHD1 points towards MHC I, MAC, and embryonic Myosin Heavy Chain/muscle regeneration as useful myopathologic readouts of FSHD1.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Humanos , Persona de Mediana Edad , Complejo de Ataque a Membrana del Sistema Complemento , Biopsia , Músculo Esquelético , Regeneración
4.
J Cachexia Sarcopenia Muscle ; 15(1): 292-305, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38183352

RESUMEN

BACKGROUND: Breast cancer patients are commonly treated with sequential administrations of epirubicin-cyclophosphamide (EC) and paclitaxel (TAX). The chronic effect of this treatment induces skeletal muscle alterations, but the specific effect of each chemotherapy agent is unknown. This study aimed to investigate the effect of EC or TAX administration on skeletal muscle homeostasis in breast cancer patients. METHODS: Twenty early breast cancer patients undergoing EC followed by TAX chemotherapies were included. Two groups of 10 women were established and performed vastus lateralis skeletal muscle biopsies either before the first administration (pre) of EC (50 ± 14 years) or TAX (50 ± 16 years) and 4 days later (post). Mitochondrial respiratory capacity recording, reactive oxygen species production, western blotting and histological analyses were performed. RESULTS: Decrease in muscle fibres cross-sectional area was only observed post-EC (-25%; P < 0.001), associated with a reduction in mitochondrial respiratory capacity for the complex I (CI)-linked substrate state (-32%; P = 0.001), oxidative phosphorylation (OXPHOS) by CI (-35%; P = 0.002), CI&CII (-26%; P = 0.022) and CII (-24%; P = 0.027). If H2 O2 production was unchanged post-EC, an increase was observed post-TAX for OXPHOS by CII (+25%; P = 0.022). We found a decrease in makers of mitochondrial content, as shown post-EC by a decrease in the protein levels of citrate synthase (-53%; P < 0.001) and VDAC (-39%; P < 0.001). Despite no changes in markers of mitochondrial fission, a decrease in the expression of a marker of mitochondrial inner-membrane fusion was found post-EC (OPA1; -60%; P < 0.001). We explored markers of mitophagy and found reductions post-EC in the protein levels of PINK1 (-63%; P < 0.001) and Parkin (-56%; P = 0.005), without changes post-TAX. An increasing trend in Bax protein level was found post-EC (+96%; P = 0.068) and post-TAX (+77%; P = 0.073), while the Bcl-2 level was decreased only post-EC (-52%; P = 0.007). If an increasing trend in TUNEL-positive signal was observed post-EC (+68%; P = 0.082), upregulation was highlighted post-TAX (+86%; P < 0.001), suggesting activation of the apoptosis process. CONCLUSIONS: We demonstrated that a single administration of EC induced, in only 4 days, skeletal muscle atrophy and mitochondrial alterations in breast cancer patients. These alterations were characterized by reductions in mitochondrial function and content as well as impairment of mitochondrial dynamics and an increase in apoptosis. TAX administration did not worsen these alterations as this group had already received EC during the preceding weeks. However, it resulted in an increased apoptosis, likely in response to the increased H2 O2 production.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/patología , Complejo I de Transporte de Electrón/metabolismo , Apoptosis
5.
Comput Struct Biotechnol J ; 21: 3696-3704, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37560127

RESUMEN

The assessment of muscle condition is of great importance in various research areas. In particular, evaluating the degree of intramuscular fat (IMF) in tissue sections is a challenging task, which today is still mostly performed qualitatively or quantitatively by a highly subjective and error-prone manual analysis. We here realize the mission to make automated IMF analysis possible that (i) minimizes subjectivity, (ii) provides accurate and quantitative results quickly, and (iii) is cost-effective using standard hematoxylin and eosin (H&E) stained tissue sections. To address all these needs in a deep learning approach, we utilized the convolutional encoder-decoder network SegNet to train the specialized network IMFSegNet allowing to accurately quantify the spatial distribution of IMF in histological sections. Our fully automated analysis was validated on 17 H&E-stained muscle sections from individual sheep and compared to various state-of-the-art approaches. Not only does IMFSegNet outperform all other approaches, but this neural network also provides fully automated and highly accurate results utilizing the most cost-effective procedures of sample preparation and imaging. Furthermore, we shed light on the opacity of black-box approaches such as neural networks by applying an explainable artificial intelligence technique to clarify that the success of IMFSegNet actually lies in identifying the hard-to-detect IMF structures. Embedded in our open-source visual programming language JIPipe that does not require programming skills, it can be expected that IMFSegNet advances muscle condition assessment in basic research across multiple areas as well as in research fields focusing on translational clinical applications.

6.
Neuromuscul Disord ; 33(5): 440-446, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37099913

RESUMEN

Muscle biopsies are used in clinical trials to measure target engagement of the investigational product. With many upcoming therapies for patients with facioscapulohumeral dystrophy (FSHD), the frequency of biopsies in FSHD patients is expected to increase. Muscle biopsies were performed either in the outpatient clinic using a Bergström needle (BN-biopsy) or in a Magnetic Resonance Imaging machine (MRI-biopsy). This study assessed the FSHD patients' experience of biopsies using a customized questionnaire. The questionnaire was sent to all FSHD patients who had undergone a needle muscle biopsy for research purposes, inquiring about biopsy characteristics and burden, and willingness to undergo a subsequent biopsy. Forty-nine of 56 invited patients (88%) completed the questionnaire, reporting on 91 biopsies. The median pain score (scale 0-10) during the procedure was 5 [2-8], reducing to 3 [1-5] and 2 [1-3] after one and 24 h, respectively. Twelve biopsies (13.2%) resulted in complications, eleven resolved within 30 days. BN-biopsies were less painful compared to MRI-biopsies (median NRS: 4 [2-6] vs. 7 [3-9], p = 0.001). The burden of needle muscle biopsies in a research setting is considerate and should not be underestimated. MRI-biopsies have a higher burden compared to BN-biopsies.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Humanos , Distrofia Muscular Facioescapulohumeral/diagnóstico por imagen , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Biopsia , Imagen por Resonancia Magnética/métodos , Instituciones de Atención Ambulatoria
7.
Eur Rev Aging Phys Act ; 19(1): 23, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36182918

RESUMEN

BACKGROUND: A striking effect of old age is the involuntary loss of muscle mass and strength leading to sarcopenia and reduced physiological functions. However, effects of heavy-load exercise in older adults on diseases and functions as predicted by changes in muscle gene expression have been inadequately studied. METHODS: Thigh muscle global transcriptional activity (transcriptome) was analyzed in cohorts of older and younger adults before and after 12-13 weeks heavy-load strength exercise using Affymetrix microarrays. Three age groups, similarly trained, were compared: younger adults (age 24 ± 4 years), older adults of average age 70 years (Oslo cohort) and above 80 years (old BSU cohort). To increase statistical strength, one of the older cohorts was used for validation. Ingenuity Pathway analysis (IPA) was used to identify predicted biological effects of a gene set that changed expression after exercise, and Principal Component Analysis (PCA) was used to visualize differences in muscle gene expressen between cohorts and individual participants as well as overall changes upon exercise. RESULTS: Younger adults, showed few transcriptome changes, but a marked, significant impact was observed in persons of average age 70 years and even more so in persons above 80 years. The 249 transcripts positively or negatively altered in both cohorts of older adults (q-value < 0.1) were submitted to gene set enrichment analysis using IPA. The transcripts predicted increase in several aspects of "vascularization and muscle contractions", whereas functions associated with negative health effects were reduced, e.g., "Glucose metabolism disorder" and "Disorder of blood pressure". Several genes that changed expression after intervention were confirmed at the genome level by containing single nucleotide variants associated with handgrip strength and muscle expression levels, e.g., CYP4B1 (p = 9.2E-20), NOTCH4 (p = 9.7E-8), and FZD4 (p = 5.3E-7). PCA of the 249 genes indicated a differential pattern of muscle gene expression in young and elderly. However, after exercise the expression patterns in both young and old BSU cohorts were changed in the same direction for the vast majority of participants. CONCLUSIONS: The positive impact of heavy-load strength training on the transcriptome increased markedly with age. The identified molecular changes translate to improved vascularization and muscular strength, suggesting highly beneficial health effects for older adults.

8.
Brain Commun ; 4(5): fcac224, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36196089

RESUMEN

Congenital myopathies are a group of early onset muscle diseases of variable severity often with characteristic muscle biopsy findings and involvement of specific muscle types. The clinical diagnosis of patients typically relies on histopathological findings and is confirmed by genetic analysis. The most commonly mutated genes encode proteins involved in skeletal muscle excitation-contraction coupling, calcium regulation, sarcomeric proteins and thin-thick filament interaction. However, mutations in genes encoding proteins involved in other physiological functions (for example mutations in SELENON and MTM1, which encode for ubiquitously expressed proteins of low tissue specificity) have also been identified. This intriguing observation indicates that the presence of a genetic mutation impacts the expression of other genes whose product is important for skeletal muscle function. The aim of the present investigation was to verify if there are common changes in transcript and microRNA expression in muscles from patients with genetically heterogeneous congenital myopathies, focusing on genes encoding proteins involved in excitation-contraction coupling and calcium homeostasis, sarcomeric proteins, transcription factors and epigenetic enzymes. Our results identify RYR1, ATPB2B and miRNA-22 as common transcripts whose expression is decreased in muscles from congenital myopathy patients. The resulting protein deficiency may contribute to the muscle weakness observed in these patients. This study also provides information regarding potential biomarkers for monitoring disease progression and response to pharmacological treatments in patients with congenital myopathies.

9.
Acta Neuropathol Commun ; 10(1): 48, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35395784

RESUMEN

Becker muscular dystrophy (BMD) is a severe X-linked muscle disease. Age of onset, clinical variability, speed of progression and affected tissues display wide variability, making a clinical trial design for drug development very complex. The histopathological changes in skeletal muscle tissue are central to the pathogenesis, but they have not been thoroughly elucidated yet. Here we analysed muscle biopsies from a large cohort of BMD patients, focusing our attention on the histopathological muscle parameters, as fibrosis, fatty replacement, fibre cross sectional area, necrosis, regenerating fibres, splitting fibres, internalized nuclei and dystrophy evaluation. We correlated histological parameters with both demographic features and clinical functional evaluations. The most interesting results of our study are the accurate quantification of fibroadipose tissue replacement and the identification of some histopathological aspects that well correlate with clinical performances. Through correlation analysis, we divided our patients into three clusters with well-defined histological and clinical features. In conclusion, this is the first study that analyses in detail the histological characteristics of muscle biopsies in a large cohort of BMD patients, correlating them to a functional impairment. The collection of these data help to better understand the histopathological progression of the disease and can be useful to validate any pharmacological trial in which the modification of muscle biopsy is utilized as outcome measure.


Asunto(s)
Distrofia Muscular de Duchenne , Biopsia , Estudios de Cohortes , Humanos , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/patología , Regeneración
10.
Scand J Med Sci Sports ; 32(4): 720-727, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34982477

RESUMEN

Sex differences in muscle fiber-type composition have been documented in several muscle groups while the hamstring muscle fiber-type composition has been poorly characterized. This study aimed to compare the semitendinosus muscle composition between men and women. Biopsy samples were obtained from the semitendinosus muscle of twelve men and twelve women during an anterior cruciate ligament reconstruction. SDH and ATPase activities as well as the size and the proportion of muscle fibers expressing myosin heavy chain (MyHC) isoforms were used to compare muscle composition between men and women. The proportion of SDH-positive muscle fibers was significantly lower (37.4 ± 11.2% vs. 49.3 ± 10.6%, p < 0.05), and the percentage of fast muscle fibers (i.e., based on ATPase activity) was significantly higher (65.8 ± 10.1% vs. 54.8 ± 8.3%, p < 0.05) in men versus women. Likewise, men muscles exhibited a lower percentage of the area that was occupied by MyHC-I labeling (35.6 ± 10.1% vs. 48.7 ± 8.9%; p < 0.05) and a higher percentage of the area that was occupied by MyHC-IIA (38.3 ± 6.7% vs. 32.5 ± 6.5%; p < 0.05) and MyHC-IIX labeling (26.1 ± 9.6% vs. 18.8 ± 8.5%; p = 0.06) as compared with women muscles. The cross-sectional area of MyHC-I, MyHC-IIA, and MyHC-IIX muscle fibers was 31%, 43%, and 50% larger in men as compared with women, respectively. We identified sex differences in semitendinosus muscle composition as illustrated by a faster phenotype and larger muscle size in men as compared with women. This sexual dimorphism might have functional consequences.


Asunto(s)
Músculos Isquiosurales , Animales , Femenino , Masculino , Fibras Musculares Esqueléticas , Músculo Esquelético , Cadenas Pesadas de Miosina/genética , Isoformas de Proteínas , Caracteres Sexuales
11.
FASEB J ; 35(9): e21819, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34405910

RESUMEN

Skeletal muscle contains multiple cell types that work together to maintain tissue homeostasis. Among these, satellite cells (SC) and fibroadipogenic progenitors cells (FAPs) are the two main stem cell pools. Studies of these cells using animal models have shown the importance of interactions between these cells in repair of healthy muscle, and degeneration of dystrophic muscle. Due to the unavailability of fresh patient muscle biopsies, similar analysis of interactions between human FAPs and SCs is limited especially among the muscular dystrophy patients. To address this issue here we describe a method that allows the use of frozen human skeletal muscle biopsies to simultaneously isolate and grow SCs and FAPs from healthy or dystrophic patients. We show that while the purified SCs differentiate into mature myotubes, purified FAPs can differentiate into adipocytes or fibroblasts demonstrating their multipotency. We find that these FAPs can be immortalized and the immortalized FAPs (iFAPs) retain their multipotency. These approaches open the door for carrying out personalized analysis of patient FAPs and interactions with the SCs that lead to muscle loss.


Asunto(s)
Biopsia , Separación Celular , Criopreservación , Músculo Esquelético/citología , Músculo Esquelético/patología , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/patología , Adolescente , Adulto , Anciano , Diferenciación Celular , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Células Madre Multipotentes/citología , Células Madre Multipotentes/patología , Distrofia Muscular de Duchenne/patología , Adulto Joven
12.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807278

RESUMEN

Pompe disease is an autosomal recessive disorder caused by a deficiency in the enzyme acid alpha-glucosidase. The late-onset form of Pompe disease (LOPD) is characterized by a slowly progressing proximal muscle weakness, often involving respiratory muscles. In LOPD, the levels of GAA enzyme activity and the severity of the clinical pictures may be highly variable among individuals, even in those who harbour the same combination of GAA mutations. The result is an unpredictable genotype-phenotype correlation. The purpose of this study was to identify the genetic factors responsible for the progression, severity and drug response in LOPD. We report here on a detailed clinical, morphological and genetic study, including a whole exome sequencing (WES) analysis of 11 adult LOPD siblings belonging to two Italian families carrying compound heterozygous GAA mutations. We disclosed a heterogeneous pattern of myopathic impairment, associated, among others, with cardiac defects, intracranial vessels abnormality, osteoporosis, vitamin D deficiency, obesity and adverse response to enzyme replacement therapy (ERT). We identified deleterious variants in the genes involved in autophagy, immunity and bone metabolism, which contributed to the severity of the clinical symptoms observed in the LOPD patients. This study emphasizes the multisystem nature of LOPD and highlights the polygenic nature of the complex phenotype disclosed in these patients.


Asunto(s)
Autofagia/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , alfa-Glucosidasas/genética , Adulto , Anciano , Autofagia/fisiología , Terapia de Reemplazo Enzimático/métodos , Familia , Femenino , Variación Genética/genética , Humanos , Italia , Masculino , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Mutación , Linaje , Músculos Respiratorios , Hermanos , alfa-Glucosidasas/metabolismo
13.
Front Nutr ; 8: 617344, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33659268

RESUMEN

Background: Protein availability around aerobic exercise might benefit aerobic capacity and body composition in normal weight adults. However, it is unknown if individuals with overweight/obesity elicit similar adaptations or improve other cardiometabolic/health-related markers in response to different types of protein. Thus, our aim was to study the effect of supplementation of two different protein drinks in conjunction with exercise on aerobic capacity, body composition and blood health markers in untrained subjects with overweight or obesity. Methods: The present study measured training adaptation and health parameters over a 6 week period in untrained men with overweight/obesity (n = 28; BMI 30.4 ± 2.2 kg/m2) ingesting either plant- (Oat/Potato; n = 8) or animal-based (Milk; n = 10) protein-carbohydrate drinks (10 g of protein/serving), or a control carbohydrate drink (n = 10) acutely before and after each training session (average three sessions/week @ 70% HRmax). Pre-post intervention V ˙ O 2 peak , muscle biopsies and blood samples were collected, body composition measured (DXA) and two different exercise tests performed. Body weight was controlled with participants remaining weight stable throughout the intervention. Results: For the groups combined, the training intervention significantly increased V ˙ O 2 peak (8%; P < 0.001), performance in a time-to-exhaustion trial (~ 100%; P < 0.001), mitochondrial protein content and enzyme activity (~20-200%). Lean body mass increased (1%; P < 0.01) and fat mass decreased (3%; P < 0.01). No significant effects on fasting blood glucose, insulin, lipids or markers of immune function were observed. There were no significant interactions between drink conditions for training adaptation or blood measurements. For body composition, the Oat/Potato and carbohydrate group decreased leg fat mass significantly more than the Milk group (interaction P < 0.05). Conclusions: Aerobic capacity and body composition were improved and a number of mitochondrial, glycolytic and oxidative skeletal muscle proteins and enzyme activities were upregulated by a 6 week training intervention. However, none of the parameters for endurance training adaptation were influenced by protein supplementation before and after each training session.

14.
Metabolism ; 114: 154416, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33137378

RESUMEN

CONTEXT: In this study, we aimed to identify the determinants of mitochondrial dysfunction in skeletal muscle (SKLM) of subjects with type 2 diabetes (T2DM), and to evaluate the effect of pioglitazone (PIO) on SKLM mitochondrial proteome. METHODS: Two different groups of adults were studied. Group I consisted of 8 individuals with normal glucose tolerance (NGT) and 8 with T2DM, subjected to SKLM mitochondrial proteome analysis by 2D-gel electrophoresis followed by mass spectrometry-based protein identification. Group II included 24 individuals with NGT and 24 with T2DM, whose SKLM biopsies were subjected to immunoblot analysis. Of the 24 subjects with T2DM, 20 were randomized to receive placebo or PIO (15 mg daily) for 6 months. After 6 months of treatment, SKLM biopsy was repeated. RESULTS: Mitochondrial proteomic analysis on Group I revealed that several mitochondrial proteins involved in oxidative metabolism were differentially expressed between T2DM and NGT groups, with a downregulation of ATP synthase alpha chain (ATP5A), electron transfer flavoprotein alpha-subunit (ETFA), cytochrome c oxidase subunit VIb isoform 1 (CX6B1), pyruvate dehydrogenase protein X component (ODPX), dihydrolipoamide dehydrogenase (DLDH), dihydrolipoamide-S-succinyltransferase (DLST), and mitofilin, and an up-regulation of hydroxyacyl-CoA-dehydrogenase (HCDH), 3,2-trans-enoyl-CoA-isomerase (D3D2) and delta3,5-delta2,4-dienoyl-CoA-isomerase (ECH1) in T2DM as compared to NGT subjects. By immunoblot analysis on SKLM lysates obtained from Group II we confirmed that, in comparison to NGT subjects, those with T2DM exhibited lower protein levels of ATP5A (-30%, P = 0.006), ETFA (-50%, P = 0.02), CX6B1 (-30%, P = 0.03), key factors for ATP biosynthesis, and of the structural protein mitofilin (-30%, P = 0.01). T2DM was associated with a reduced abundance of the enzymes involved in the Krebs cycle DLST and ODPX (-20%, P ≤ 0.05) and increased levels of HCDH and ECH1, enzymes implicated in the fatty acid catabolism (+30%, P ≤ 0.05). In subjects with type 2 diabetes treated with PIO for 6 months we found a restored SKLM protein abundance of ATP5A, ETFA, CX6B1, and mitofilin. Moreover, protein levels of HCDH and ECH1 were reduced by -10% and - 15% respectively (P ≤ 0.05 for both) after PIO treatment. CONCLUSION: Type 2 diabetes is associated with reduced levels of mitochondrial proteins involved in oxidative phosphorylation and an increased abundance of enzymes implicated in fatty acid catabolism in SKLM. PIO treatment is able to improve SKLM mitochondrial proteomic profile in subjects with T2DM.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Diabetes Mellitus Tipo 2/metabolismo , Mitocondrias Musculares/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/efectos de los fármacos , Pioglitazona/farmacología , Adulto , Femenino , Glucosa/metabolismo , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Fosforilación Oxidativa , Proteómica
15.
Wellcome Open Res ; 5: 84, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32671231

RESUMEN

Background: The benefit and safety of exercise training for patients with neuromuscular disorders (NMDs) has long been a contentious topic. This is, in part, due to recognised challenges associated with rare diseases including small and heterogenous patient populations. We performed a systematic review and meta-analyses to evaluate the effectiveness and safety of interventional exercise and establish minimal clinically important differences (MCID) in outcomes to facilitate clinical interpretation. Methods: We searched six databases from inception to Mar 2018. Aerobic, strength, and combined (aerobic and strength) intervention were eligible. Meta-analyses compared outcomes at baseline with those after at least six weeks (before-after exercise within individuals). A further meta-analysis compared outcomes before-after exercise between groups (exercise training versus usual care). Disease heterogeneity was explored using a random effect model. This study was registered (PROSPERO, CRD42018102183). An interactive database was developed to facilitate full interrogations of data. Results: We identified 130 articles describing 1,805 participants with 35 different forms of NMD. Of these studies, 76 were suitable for meta-analyses. Within group and between group meta-analyses detected an increase in peak aerobic capacity (p=0·04), and peak power (p=0·01). Six-minute walk test (p=0·04), sit-to-stand (STS) (repetitions) (p=0·03), STS (seconds) (p=0·04), rise from supine (p=0·008), SF-36 (p=0·0003), fatigue severity (p=<0·0001), citrate synthase (p=0·0002), central nuclei (p=0·04), type 1 (p=0·002) and type II muscle fibre area (p=0·003), were only able to detect change within group meta-analyses. Substantial I 2 statistic heterogeneity was revealed for STS (seconds) ( I²=58·5%; p=0·04) and citrate synthase ( I²=70·90%; p=0·002), otherwise heterogeneity for all outcomes was low. No study-related serious adverse events were reported nor significant increases in creatine kinase. Conclusions: Exercise training in patients with NMDs appears to cause no harm across a range of outcomes. With the emergence of new therapeutic strategies, defining MCID is vital in informing future clinical trial design.

16.
J Sports Sci ; 38(20): 2390-2395, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32602402

RESUMEN

The purpose of the present study was to compare the myosin heavy chain (MHC) isoform composition of the deltoid and vastus lateralis muscles of the dominant and non-dominant limbs in handball players. Eleven male Greek elite handball players (age 22.6 ± 1.9 yrs, training experience 10.6 ± 2.1 yrs, height 184.1 ± 4.1 cm, and weight 81.0 ± 12.5 kg) participated in the study. Four muscle biopsies were obtained from the dominant and non-dominant deltoid and vastus lateralis muscles during the in-season period. The MHC composition was determined using SDS-PAGE. No significant difference was found between the dominant and non-dominant muscles; Deltoid muscle: MHC I [(95%CI = -1.22, 0.33), P = 0.228], MHC ΙΙa [(95%CI = -0.32, 1.59), P = 0.168] and MHC IIx [(95%CI = -1.49, 1.10), P = 0.749]; Vastus lateralis muscle: MHC I [(95%CI = -0.38, 0.63), P = 0.586], MHC ΙΙa [(95%CI = -0.50, 0.65), P = 0.783] and MHC IIx [(95%CI = -1.08, 0.42), P = 0.355]. The findings of the present study indicate that the greater use of the dominant limbs for throwing actions and body movements in handball do not lead to altered MHC isoform composition compared to the non-dominant limbs.


Asunto(s)
Músculo Deltoides/química , Cadenas Pesadas de Miosina/análisis , Músculo Cuádriceps/química , Deportes/fisiología , Electroforesis en Gel de Poliacrilamida , Humanos , Masculino , Cadenas Pesadas de Miosina/química , Isoformas de Proteínas/análisis , Adulto Joven
17.
Ther Adv Musculoskelet Dis ; 12: 1759720X20929443, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32536985

RESUMEN

BACKGROUND: Clinical evidence suggests that body muscle mass is positively associated with bone mass, of significance for the elderly population at risk of osteoporosis (OP). Furthermore, muscle and bone interact mechanically and functionally, via local interactions as well as remotely via secreted components. Thus, it was of interest to compare muscle transcriptomes in postmenopausal OP and healthy women, and study effects of strength training on the muscle transcriptome, muscle stress proteins and bone mineral density (BMD). METHODS: Skeletal muscle histological and genetic properties were compared in postmenopausal healthy (n = 18) and OP (n = 17) women before and after heavy-load strength training for 13-15 weeks. The cohorts were of similar age and body mass index without interfering diseases, medication or difference in lifestyle factors. Muscle biopsies obtained before and after intervention were studied histologically, and stress proteins and transcriptomes analyzed. RESULTS: The OP women showed distinct muscle transcription profiles when compared with healthy women and had higher levels of the stress proteins HSP70 and α-ß-crystalline. A set of 12 muscle transcripts, including ACSS3, FZD4, GNAI1 and IGF1, were differentially expressed before and after intervention (false discovery rate ⩽0.10, p ⩽0.001), and their corresponding bone transcripts were associated with BMD. Experimental data underline and describe the functionality of these genes in bone biology. OP women had 8% (p <0.01) higher proportion of type I fibres, but muscle fibre cross-sectional area did not differ. Muscle strength increased in both groups (p <0.01). CONCLUSIONS: Postmenopausal healthy and OP women have distinct muscle transcriptomes [messenger ribonucleic acids (mRNAs) and microRNAs] that are modulated by strength training, translating into key protein alterations and muscle fibre changes. The function of common skeletal muscle and bone genes in postmenopausal OP is suggestive of a shared disease trait.

18.
J Sci Med Sport ; 23(10): 999-1004, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32371120

RESUMEN

OBJECTIVES: Military-, rescue- and law-enforcement personnel require a high physical capacity including muscular strength. The present study hypothesized that 9 weeks of volume matched concurrent short frequent training sessions increases strength more efficiently than less frequent longer training sessions. DESIGN: A randomized training intervention study with functional and physiological tests before and after the intervention. METHODS: Military conscripts (n=290) were assigned to micro-training (four 15-min strength and four 15-min endurance bouts weekly); classical-training (one 60-min strength and one 60-min endurance training session weekly) or a control-group (two 60-min standard military physical training sessions weekly). RESULTS: There were no group difference between micro-training and classical-training in measures of strength. Standing long jump remained similar while shotput performance was reduced (P≤0.001) in all three groups. Pull-up performance increased (P≤0.001) in micro-training (7.4±4.6 vs. 8.5±4.0 repetitions, n=59) and classical-training (5.7±4.1 vs. 7.1±4.2 repetitions, n=50). Knee extensor MVC increased (P≤0.01) in all groups (micro-training, n=30, 11.5±8.9%; classical-training, n=24, 8.3±11.5% and control, n=19, 7.5±11.8%) while elbow flexor and hand grip MVC remained similar. Micro-training increased (P≤0.05) type IIa percentage from 32.5±11.0% to 37.6±12.3% (n=20) and control-group increased (P≤0.01) type IIax from 4.4±3.0% to 11.6±7.9% (n=8). In control-group type I, fiber size increased (P≤0.05) from 5121±959µm to 6481±2084µm (n=5). Satellite cell content remained similar in all groups. CONCLUSIONS: Weekly distribution of low-volume concurrent training completed as either eight 15-min bouts or two 60-min sessions of which 50% was strength training did not impact strength gains in a real-world setting.


Asunto(s)
Entrenamiento Aeróbico/métodos , Personal Militar , Fuerza Muscular/fisiología , Entrenamiento de Fuerza/métodos , Femenino , Voluntarios Sanos , Humanos , Masculino , Adulto Joven
19.
J Histochem Cytochem ; 68(2): 139-148, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31880188

RESUMEN

Histidine-rich glycoprotein (HRG) is a plasma protein synthesized by the liver. We have given the first evidence of a tissue localization of HRG demonstrating its presence in skeletal muscle, associated with the zinc enzyme AMP deaminase (AMPD1). Moreover, we have shown that muscle cells do not synthesize HRG, but they can internalize it from plasma. We have recently demonstrated by confocal laser scanning microscopy that in human skeletal muscle, HRG is mainly localized in the myofibrils, preferentially at the I-band of the sarcomere, in the sarcoplasm, and in the nuclei. Using transmission electron microscopy and immunogold analysis, we carried out this study on human and rat normal skeletal muscles with the purpose to deepen the ultrastructural localization of HRG in skeletal muscle fibers. The immunogold analysis evidenced the presence of HRG in the sarcomeres, mainly in the I-band and to a less extent in the A-band, in the heterochromatin of nuclei, and in the sarcoplasmic reticulum. The colocalization of HRG and skeletal muscle AMPD1 was also analyzed. A colabeling of HRG and AMPD1 was evident at sarcomeric, sarcoplasmic reticulum, and nuclear levels. The significance of these interesting and new results is discussed in this article.


Asunto(s)
AMP Desaminasa/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas/metabolismo , Adulto , Anciano , Animales , Femenino , Humanos , Espacio Intracelular/metabolismo , Masculino , Fibras Musculares Esqueléticas/citología , Transporte de Proteínas , Ratas
20.
Curr Res Physiol ; 3: 1-10, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34746815

RESUMEN

This study tested the hypotheses that 1) skeletal muscle biopsies performed with the Bergström needle evoke larger perceptions of pain and greater hemodynamic reactivity compared to biopsies performed with the microbiopsy needle, and 2) both needles yield samples with similar fibre type compositions when samples are collected at similar skeletal muscle depths. Fourteen healthy (age: 21.6 ±â€¯3.2 years; VO2peak: 41.5 ±â€¯5.8 mL/kg/min) males (n = 7) and females (n = 7) provided two resting skeletal muscle biopsies, one with each needle type, following a randomized crossover design. Participants completed the short-form McGill Pain Questionnaire and the Brief Pain Inventory before, during, and after the skeletal muscle biopsies. Hemodynamic reactivity was assessed by measuring heart rate (HR) and mean arterial pressure (MAP) at rest and during the biopsy procedures. Immunofluorescence analysis was used to assess fibre type composition in vastus lateralis samples. Compared to the microbiopsy needle, the Bergström needle elicited a larger perception of pain but similar hemodynamic reactivity during the biopsy. Both needles yielded skeletal muscle samples with similar fibre type composition and resulted in similar perceptions of pain and pain-related interference during the post-biopsy recovery period. Collectively, these findings suggest that studies should consider using the microbiopsy needle rather than the Bergström needle unless large amounts of muscle tissue or certain muscle fibre lengths are required. However, future work should determine whether our findings are generalizable to biopsies performed with different procedures and/or types of Bergström/microbiopsy needles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA