Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Genet ; 15: 1394636, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737126

RESUMEN

Introduction: Xinjiang Brown cattle constitute the largest breed of cattle in Xinjiang. Therefore, it is crucial to establish a genomic evaluation system, especially for those with low levels of breed improvement. Methods: This study aimed to establish a cross breed joint reference population by analyzing the genetic structure of 485 Xinjiang Brown cattle and 2,633 Chinese Holstein cattle (Illumina GeneSeek GGP bovine 150 K chip). The Bayes method single-step genome-wide best linear unbiased prediction was used to conduct a genomic evaluation of the joint reference population for the milk traits of Xinjiang Brown cattle. The reference population of Chinese Holstein cattle was randomly divided into groups to construct the joint reference population. By comparing the prediction accuracy, estimation bias, and inflation coefficient of the validation population, the optimal number of joint reference populations was determined. Results and Discussion: The results indicated a distinct genetic structure difference between the two breeds of adult cows, and both breeds should be considered when constructing multi-breed joint reference and validation populations. The reliability range of genome prediction of milk traits in the joint reference population was 0.142-0.465. Initially, it was determined that the inclusion of 600 and 900 Chinese Holstein cattle in the joint reference population positively impacted the genomic prediction of Xinjiang Brown cattle to certain extent. It was feasible to incorporate the Chinese Holstein into Xinjiang Brown cattle population to form a joint reference population for multi-breed genomic evaluation. However, for different Xinjiang Brown cattle populations, a fixed number of Chinese Holstein cattle cannot be directly added during multi-breed genomic selection. Pre-evaluation analysis based on the genetic structure, kinship, and other factors of the current population is required to ensure the authenticity and reliability of genomic predictions and improve estimation accuracy.

2.
Genes (Basel) ; 15(2)2024 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-38397242

RESUMEN

Numerous studies have shown that combining populations from similar or closely related genetic breeds improves the accuracy of genomic predictions (GP). Extensive experimentation with diverse Bayesian and genomic best linear unbiased prediction (GBLUP) models have been developed to explore multi-breed genomic selection (GS) in livestock, ultimately establishing them as successful approaches for predicting genomic estimated breeding value (GEBV). This study aimed to assess the effectiveness of using BayesR and GBLUP models with linkage disequilibrium (LD)-weighted genomic relationship matrices (GRMs) for genomic prediction in three different beef cattle breeds to identify the best approach for enhancing the accuracy of multi-breed genomic selection in beef cattle. Additionally, a comparison was conducted to evaluate the predictive precision of different marker densities and genetic correlations among the three breeds of beef cattle. The GRM between Yunling cattle (YL) and other breeds demonstrated modest affinity and highlighted a notable genetic concordance of 0.87 between Chinese Wagyu (WG) and Huaxi (HX) cattle. In the within-breed GS, BayesR demonstrated an advantage over GBLUP. The prediction accuracies for HX cattle using the BayesR model were 0.52 with BovineHD BeadChip data (HD) and 0.46 with whole-genome sequencing data (WGS). In comparison to the GBLUP model, the accuracy increased by 26.8% for HD data and 9.5% for WGS data. For WG and YL, BayesR doubled the within-breed prediction accuracy to 14.3% from 7.1%, outperforming GBLUP across both HD and WGS datasets. Moreover, analyzing multiple breeds using genomic selection showed that BayesR consistently outperformed GBLUP in terms of predictive accuracy, especially when using WGS. For instance, in a mixed reference population of HX and WG, BayesR achieved a significant accuracy of 0.53 using WGS for HX, which was a substantial enhancement over the accuracies obtained with GBLUP models. The research further highlights the benefit of including various breeds in the reference group, leading to enhanced accuracy in predictions and emphasizing the importance of comprehensive genomic selection methods. Our research findings indicate that BayesR exhibits superior performance compared to GBLUP in multi-breed genomic prediction accuracy, achieving a maximum improvement of 33.3%, especially in genetically diverse breeds. The improvement can be attributed to the effective utilization of higher single nucleotide polymorphism (SNP) marker density by BayesR, resulting in enhanced prediction accuracy. This evidence conclusively demonstrates the significant impact of BayesR on enhancing genomic predictions in diverse cattle populations, underscoring the crucial role of genetic relatedness in selection methodologies. In parallel, subsequent studies should focus on refining GRM and exploring alternative models for GP.


Asunto(s)
Genoma , Genómica , Bovinos/genética , Animales , Teorema de Bayes , Genoma/genética , Genómica/métodos , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple/genética
3.
Anim Biosci ; 37(3): 428-436, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37946424

RESUMEN

OBJECTIVE: This study compared five distinct sets of biological pathways and associated genes related to semen volume (VOL), number of sperm (NS), and sperm motility (MOT) in the Thai multibreed dairy population. METHODS: The phenotypic data included 13,533 VOL records, 12,773 NS records, and 12,660 MOT records from 131 bulls. The genotypic data consisted of 76,519 imputed and actual single nucleotide polymorphisms (SNPs) from 72 animals. The SNP additive genetic variances for VOL, NS, and MOT were estimated for SNP windows of one SNP (SW1), ten SNP (SW10), 30 SNP (SW30), 50 SNP (SW50), and 100 SNP (SW100) using a single-step genomic best linear unbiased prediction approach. The fixed effects in the model were contemporary group, ejaculate order, bull age, ambient temperature, and heterosis. The random effects accounted for animal additive genetic effects, permanent environment effects, and residual. The SNPs explaining at least 0.001% of the additive genetic variance in SW1, 0.01% in SW10, 0.03% in SW30, 0.05% in SW50, and 0.1% in SW100 were selected for gene identification through the NCBI database. The pathway analysis utilized genes associated with the identified SNP windows. RESULTS: Comparison of overlapping and non-overlapping SNP windows revealed notable differences among the identified pathways and genes associated with the studied traits. Overlapping windows consistently yielded a larger number of shared biological pathways and genes than non-overlapping windows. In particular, overlapping SW30 and SW50 identified the largest number of shared pathways and genes in the Thai multibreed dairy population. CONCLUSION: This study yielded valuable insights into the genetic architecture of VOL, NS, and MOT. It also highlighted the importance of assessing overlapping and non-overlapping SNP windows of various sizes for their effectiveness to identify shared pathways and genes influencing multiple traits.

4.
Front Genet ; 13: 840815, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401683

RESUMEN

Numerically small breeds have often been upgraded with mainstream breeds. This historic introgression predisposes the breeds for joint genomic evaluations with mainstream breeds. The linkage disequilibrium structure differs between breeds. The marker effects of a haplotype segment may, therefore, depend on the breed from which the haplotype segment originates. An appropriate method for genomic evaluation would account for this dependency. This study proposes a method for the computation of genomic breeding values for small admixed breeds that incorporate phenotypic and genomic information from large introgressed breeds by considering the breed origin of alleles (BOA) in the evaluation. The proposed BOA model classifies haplotype segments according to their origins and assumes different but correlated SNP effects for the different origins. The BOA model was compared in a simulation study to conventional within-breed genomic best linear unbiased prediction (GBLUP) and conventional multi-breed GBLUP models. The BOA model outperformed within-breed GBLUP as well as multi-breed GBLUP in most cases.

5.
J Anim Breed Genet ; 138(2): 151-160, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33040409

RESUMEN

For numerically small breeds, obtaining a sufficiently large breed-specific reference population for genomic prediction is challenging or simply not possible, but may be overcome by adding individuals from another breed. To prioritize among available breeds, the effective number of chromosome segments (Me ) can be used as an indicator of relatedness between individuals from different breeds. The Me is also an important parameter in determining the accuracy of genomic prediction. The Me can be estimated both within a population and between two populations or breeds, as the reciprocal of the variance of genomic relationships. However, the threshold for number of individuals needed to accurately estimate within or between populations Me is currently unknown. It is also unknown if a discrepancy in number of genotyped individuals in two breeds affects the estimates of Me between populations. In this study, we conducted a simulation that mimics current domestic cattle populations in order to investigate how estimated Me is affected by number of genotyped individuals, single-nucleotide polymorphism (SNP) density and pedigree availability. Our results show that a small sample of 10 genotyped individuals may result in substantial over or underestimation of Me . While estimates of within population Me were hardly affected by SNP density, between population Me values were highly dependent on the number of available SNPs, with higher SNP densities being able to detect more independent chromosome segments. When subtracting pedigree from genomic relationships before computing Me , estimates of within population Me were three to four times higher than estimates with genotypes only; however, between Me estimates remained the same. For accurate estimation of within and between population Me , at least 50 individuals should be genotyped per population. Estimates of within Me were highly affected by whether pedigree was used or not. For within Me , even the smallest SNP density (~11k) resulted in accurate representation of family relationships in the population; however, for between Me , many more markers are needed to capture all independent segments.


Asunto(s)
Cromosomas , Genoma , Genómica , Animales , Bovinos , Genotipo , Linaje , Polimorfismo de Nucleótido Simple
6.
Front Genet ; 11: 598580, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33381150

RESUMEN

This study assessed the accuracy and bias of genomic prediction (GP) in purebred Holstein (H) and Jersey (J) as well as crossbred (H and J) validation cows using different reference sets and prediction strategies. The reference sets were made up of different combinations of 36,695 H and J purebreds and crossbreds. Additionally, the effect of using different sets of marker genotypes on GP was studied (conventional panel: 50k, custom panel enriched with, or close to, causal mutations: XT_50k, and conventional high-density with a limited custom set: pruned HDnGBS). We also compared the use of genomic best linear unbiased prediction (GBLUP) and Bayesian (emBayesR) models, and the traits tested were milk, fat, and protein yields. On average, by including crossbred cows in the reference population, the prediction accuracies increased by 0.01-0.08 and were less biased (regression coefficient closer to 1 by 0.02-0.16), and the benefit was greater for crossbreds compared to purebreds. The accuracy of prediction increased by 0.02 using XT_50k compared to 50k genotypes without affecting the bias. Although using pruned HDnGBS instead of 50k also increased the prediction accuracy by about 0.02, it increased the bias for purebred predictions in emBayesR models. Generally, emBayesR outperformed GBLUP for prediction accuracy when using 50k or pruned HDnGBS genotypes, but the benefits diminished with XT_50k genotypes. Crossbred predictions derived from a joint pure H and J reference were similar in accuracy to crossbred predictions derived from the two separate purebred reference sets and combined proportional to breed composition. However, the latter approach was less biased by 0.13. Most interestingly, using an equalized breed reference instead of an H-dominated reference, on average, reduced the bias of prediction by 0.16-0.19 and increased the accuracy by 0.04 for crossbred and J cows, with a little change in the H accuracy. In conclusion, we observed improved genomic predictions for both crossbreds and purebreds by equalizing breed contributions in a mixed breed reference that included crossbred cows. Furthermore, we demonstrate, that compared to the conventional 50k or high-density panels, our customized set of 50k sequence markers improved or matched the prediction accuracy and reduced bias with both GBLUP and Bayesian models.

7.
BMC Genomics ; 21(1): 783, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33176675

RESUMEN

BACKGROUND: Specific adaptive features including disease resistance and growth abilities in harsh environments are attributed to indigenous cattle breeds of Benin, but these breeds are endangered due to crossbreeding. So far, there is a lack of systematic trait recording, being the basis for breed characterizations, and for structured breeding program designs aiming on conservation. Bridging this gap, own phenotyping for morphological traits considered measurements for height at withers (HAW), sacrum height (SH), heart girth (HG), hip width (HW), body length (BL) and ear length (EL), including 449 cattle from the four indigenous Benin breeds Lagune, Somba, Borgou and Pabli. In order to utilize recent genomic tools for breed characterizations and genetic evaluations, phenotypes for novel traits were merged with high-density SNP marker data. Multi-breed genetic parameter estimations and genome-wide association studies (GWAS) for the six morphometric traits were carried out. Continuatively, we aimed on inferring genomic regions and functional loci potentially associated with conformation, carcass and adaptive traits. RESULTS: SNP-based heritability estimates for the morphometric traits ranged between 0.46 ± 0.14 (HG) and 0.74 ± 0.13 (HW). Phenotypic and genetic correlations ranged from 0.25 ± 0.05 (HW-BL) to 0.89 ± 0.01 (HAW-SH), and from 0.14 ± 0.10 (HW-BL) to 0.85 ± 0.02 (HAW-SH), respectively. Three genome-wide and 25 chromosome-wide significant SNP positioned on different chromosomes were detected, located in very close chromosomal distance (±25 kb) to 15 genes (or located within the genes). The genes PIK3R6 and PIK3R1 showed direct functional associations with height and body size. We inferred the potential candidate genes VEPH1, CNTNAP5, GYPC for conformation, growth and carcass traits including body weight and body fat deposition. According to their functional annotations, detected potential candidate genes were associated with stress or immune response (genes PTAFR, PBRM1, ADAMTS12) and with feed efficiency (genes MEGF11 SLC16A4, CCDC117). CONCLUSIONS: Accurate measurements contributed to large SNP heritabilities for some morphological traits, even for a small mixed-breed sample size. Multi-breed GWAS detected different loci associated with conformation or carcass traits. The identified potential candidate genes for immune response or feed efficiency indicators reflect the evolutionary development and adaptability features of the breeds.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Animales , Bovinos/genética , Genoma , Genómica , Fenotipo
8.
J Dairy Sci ; 103(7): 6276-6298, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32331891

RESUMEN

The reliability of genomic prediction is influenced by several factors, including the size of the reference population, which makes genomic prediction for breeds with a relatively small population size challenging, such as Australian Red dairy cattle. Including other breeds in the reference population may help to increase the size of the reference population, but the reliability of genomic prediction is also influenced by the relatedness between the reference and validation population. Our objective was to optimize the reference population for genomic prediction of Australian Red dairy cattle. A reference population comprising up to 3,248 Holstein bulls, 48,386 Holstein cows, 807 Jersey bulls, 8,734 Jersey cows, and 3,041 Australian Red cows and a validation population with between 208 and 224 Australian Red Bulls were used, with records for milk, fat, and protein yield, somatic cell count, fertility, and survival. Three different analyses were implemented: single-trait genomic best linear unbiased predictor (GBLUP), multi-trait GBLUP, and single-trait Bayes R, using 2 different medium-density SNP panels: the standard 50K chip and a custom array of variants that were expected to be enriched for causative mutations. Various reference populations were constructed containing the Australian Red cows and all Holstein and Jersey bulls and cows, all Holstein and Jersey bulls, all Holstein bulls and cows, all Holstein bulls, and a subset of the Holstein individuals varying the relatedness between Holsteins and Australian Reds and the number of Holsteins. Varying the relatedness between reference and validation populations only led to small changes in reliability. Whereas adding a limited number of closely related Holsteins increased reliabilities compared with within-breed prediction, increasing the number of Holsteins decreased the reliability. The multi-trait GBLUP, which considered the same trait in different breeds as correlated traits, yielded higher reliabilities than the single-trait GBLUP. Bayes R yielded lower reliabilities than multi-trait GBLUP and outperformed single-trait GBLUP for larger reference populations. Our results show that increasing the size of a multi-breed reference population may result in a reference population dominated by one breed and reduce the reliability to predict in other breeds.


Asunto(s)
Bovinos/genética , Genómica , Selección Artificial , Animales , Australia , Teorema de Bayes , Recuento de Células , Femenino , Fertilidad/genética , Genómica/métodos , Genotipo , Masculino , Leche/citología , Fenotipo , Reproducibilidad de los Resultados
9.
J Dairy Sci ; 103(2): 1711-1728, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31864746

RESUMEN

Increasing the reliability of genomic prediction (GP) of economic traits in the pasture-based dairy production systems of New Zealand (NZ) and Australia (AU) is important to both countries. This study assessed if sharing cow phenotype and genotype data of NZ and AU improves the reliability of GP for NZ bulls. Data from approximately 32,000 NZ genotyped cows and their contemporaries were included in the May 2018 routine genetic evaluation of the Australian Dairy cattle in an attempt to provide consistent phenotypes for both countries. After the genetic evaluation, deregressed proofs of cows were calculated for milk yield traits. The April 2018 multiple across-country evaluation of Interbull was also used to calculate deregressed proofs for bulls on the NZ scale. Approximately 1,178 Jersey (Jer) and 6,422 Holstein (Hol) bulls had genotype and phenotype data. In addition to NZ cows, phenotype data of close to 60,000 genotyped Australian (AU) cows from the same genetic evaluation run as NZ cows were used. All AU and NZ females were genotyped using low-density SNP chips (<10K SNP) and were imputed first to 50K and then to ∼600K (referred to as high density; HD). We used up to 98,000 animals in the reference populations, both by expanding the NZ reference set (cow, bull, single breed to multi-breed set) and by adding AU cows. Reliabilities of GP were calculated for 508 Jer and 1,251 Hol bulls whose sires are not included in the reference set (RS) to ensure that real differences are not masked by close relationships. The GP was tested using 50K or high-density SNP chip using genomic BLUP in bivariate (considering country as a trait) or single trait models. The RS that gave the highest reliability for each breed were also tested using a hybrid GP method that combines expectation maximization with Bayes R. The addition of the AU cows to an NZ RS that included either NZ cows only, or cows and bulls, improved the reliability of GP for both NZ Hol and Jer validation bulls for all traits. Using single breed reference populations also increased reliability when NZ crossbred cows were added to reference populations that included only purebred NZ bulls and cows and AU cows. The full multi-breed RS (all NZ cows and bulls and AU cows) provided similar reliabilities in NZ Hol bulls, when compared with the single breed reference with crossbred NZ cows. For Jer validation bulls, the RS that included Jer cows and bulls and crossbred cows from NZ and Jer cows from AU was marginally better than the all-breed, all-country RS. In terms of reliability, the advantage of the HD SNP chip was small but captured more of the genomic variance than the 50K, particularly for Hol. The expectation maximization Bayes R GP method was slightly (up to 3 percentage points) better than genomic BLUP. We conclude that GP of milk production traits in NZ bulls improves by up to 7 percentage points in reliability by expanding the NZ reference population to include AU cows.


Asunto(s)
Cruzamiento , Bovinos/genética , Industria Lechera , Difusión de la Información , Leche , Animales , Australia , Teorema de Bayes , Femenino , Genómica , Genotipo , Masculino , Nueva Zelanda , Análisis de Secuencia por Matrices de Oligonucleótidos/veterinaria , Fenotipo , Valores de Referencia , Reproducibilidad de los Resultados
10.
J Dairy Sci ; 102(4): 3155-3174, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30738664

RESUMEN

Genomic prediction is widely used to select candidates for breeding. Size and composition of the reference population are important factors influencing prediction accuracy. In Holstein dairy cattle, large reference populations are used, but this is difficult to achieve in numerically small breeds and for traits that are not routinely recorded. The prediction accuracy is usually estimated using cross-validation, requiring the full data set. It would be useful to have a method to predict the benefit of multibreed reference populations that does not require the availability of the full data set. Our objective was to study the effect of the size and breed composition of the reference population on the accuracy of genomic prediction using genomic BLUP and Bayes R. We also examined the effect of trait heritability and validation breed on prediction accuracy. Using these empirical results, we investigated the use of a formula to predict the effect of the size and composition of the reference population on the accuracy of genomic prediction. Phenotypes were simulated in a data set containing real genotypes of imputed sequence variants for 22,752 dairy bulls and cows, including Holstein, Jersey, Red Holstein, and Australian Red cattle. Different reference populations were constructed, varying in size and composition, to study within-breed, multibreed, and across-breed prediction. Phenotypes were simulated varying in heritability, number of chromosomes, and number of quantitative trait loci. Genomic prediction was carried out using genomic BLUP and Bayes R. We used either the genomic relationship matrix (GRM) to estimate the number of independent chromosomal segments and subsequently to predict accuracy, or the accuracies obtained from single-breed reference populations to predict the accuracies of larger or multibreed reference populations. Using the GRM overestimated the accuracy; this overestimation was likely due to close relationships among some of the reference animals. Consequently, the GRM could not be used to predict the accuracy of genomic prediction reliably. However, a method using the prediction accuracies obtained by cross-validation using a small, single-breed reference population predicted the accuracy using a multibreed reference population well and slightly overestimated the accuracy for a larger reference population of the same breed, but gave a reasonably close estimate of the accuracy for a multibreed reference population. This method could be useful for making decisions regarding the size and composition of the reference population.


Asunto(s)
Bovinos/genética , Animales , Teorema de Bayes , Cruzamiento , Bovinos/fisiología , Femenino , Genómica , Genotipo , Masculino , Modelos Genéticos , Fenotipo , Sitios de Carácter Cuantitativo
11.
J Anim Sci ; 97(4): 1550-1567, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30722011

RESUMEN

The objective of the present study was to quantify the accuracy of imputing medium-density single nucleotide polymorphism (SNP) genotypes from lower-density panels (384 to 12,000 SNPs) derived using alternative selection methods to select the most informative SNPs. Four different selection methods were used to select SNPs based on genomic characteristics (i.e., minor allele frequency (MAF) and linkage disequilibrium (LD)) within five sheep breeds (642 Belclare, 645 Charollais, 715 Suffolk, 440 Texel, and 620 Vendeen) separately. Selection methods evaluated included (i) random, (ii) splitting the genome into blocks of equal length and selecting SNPs within block based on MAF and LD patterns, (iii) equidistant location while optimizing MAF, (iv) a combination of MAF, distance from already selected SNPs, and weak LD with the SNP(s) already selected. All animals were genotyped on the Illumina OvineSNP50 Beadchip containing 51,135 SNPs of which 44,040 remained after edits. Within each breed separately, the youngest 100 animals were assumed to represent the validation population; the remaining animals represented the reference population. Imputation was undertaken under three different conditions: (i) SNPs were selected within a given breed and imputed for all breeds individually, (ii) all breeds were collectively used to select SNPs and were included as the reference population, and (iii) the SNPs were selected for each breed separately and imputation was undertaken for all breeds but excluding from the reference population, the breed from which the SNPs were selected. Regardless of SNP selection method, mean animal allele concordance rate improved at a diminishing rate while the variability in mean animal allele concordance rate reduced as the panel density increased. The SNP selection method impacted the accuracy of imputation although the effect reduced as the density of the panel increased. Overall, the most accurate SNP selection method for panels with <9,000 SNPs was that based on MAF and LD pattern within genomic blocks. The mean animal allele concordance rate varied from 0.89 in Texel to 0.97 in Vendeen. Greater imputation accuracy was achieved when SNPs were selected and imputed within each breed individually compared with when SNPs were selected across all breeds and imputed using a multi-breed reference population. In all, results indicate that accurate genotype imputation to medium density is achievable with low-density genotype panels with at least 6,000 SNPs.


Asunto(s)
Frecuencia de los Genes , Genómica , Polimorfismo de Nucleótido Simple/genética , Ovinos/genética , Algoritmos , Alelos , Animales , Cruzamiento , Exactitud de los Datos , Genotipo , Desequilibrio de Ligamiento , Análisis de Secuencia por Matrices de Oligonucleótidos/veterinaria
12.
J Dairy Sci ; 102(4): 3230-3240, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30712930

RESUMEN

Service sire has a major effect on reproductive success in dairy cattle. Recent studies have reported accurate predictions for Holstein bull fertility using genomic data. The objective of this study was to assess the feasibility of genomic prediction of sire conception rate (SCR) in US Jersey cattle using alternative predictive models. Data set consisted of 1.5k Jersey bulls with SCR records and 95k SNP covering the entire genome. The analyses included the use of linear and Gaussian kernel-based models fitting either all the SNP or subsets of markers with presumed functional roles, such as SNP significantly associated with SCR or SNP located within or close to annotated genes. Model predictive ability was evaluated using 5-fold cross-validation with 10 replicates. The entire SNP set exhibited predictive correlations around 0.30. Interestingly, either SNP marginally associated with SCR or genic SNP achieved higher predictive abilities than their counterparts using random sets of SNP. Among alternative SNP subsets, Gaussian kernel models fitting significant SNP achieved the best performance with increases in predictive correlation up to 7% compared with the standard whole-genome approach. Notably, the use of a multi-breed reference population including the entire US Holstein SCR data set (11.5k bulls) allowed us to achieve predictive correlations up to 0.315, gaining 8% in accuracy compared with the standard model fitting a pure Jersey reference set. Overall, our findings indicate that genomic prediction of Jersey bull fertility is feasible. The use of Gaussian kernels fitting markers with relevant roles and the inclusion of Holstein records in the training set seem to be promising alternatives to the standard whole-genome approach. These results have the potential to help the dairy industry improve US Jersey sire fertility through accurate genome-guided decisions.


Asunto(s)
Bovinos/genética , Fertilidad/genética , Animales , Industria Lechera , Análisis de Datos , Femenino , Genoma , Genotipo , Masculino , Modelos Biológicos , Polimorfismo de Nucleótido Simple , Embarazo
13.
J Anim Sci ; 97(4): 1513-1522, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30726939

RESUMEN

Genomic selection (GS) is routinely applied to many purebreds and lines of farm species. However, this method can be extended to predictions across purebreds as well as for crossbreds. This is useful for swine and poultry, for which selection in nucleus herds is typically performed on purebred animals, whereas the commercial product is the crossbred animal. Single-step genomic BLUP (ssGBLUP) is a widely applied method that can explore the recently developed algorithm for proven and young (APY). The APY allows for greater efficiency in computing BLUP solutions by exploiting the theory of limited dimensionality of genomic information and chromosome segments (Me). This study investigates the predictivity as a proxy for accuracy across and within 2 purebred pig lines and their crosses, under the application of APY in ssGBLUP setup, and different levels of Me overlapping across populations. The data consisted of approximately 210k phenotypic records for 2 traits (T1 and T2) with moderate heritability. Genotypes for 43k SNP markers were available for approximately 46k animals, from which 26k and 16k belong to 2 pure lines (L1 and L2), and approximately 4k are crossbreds. The complete pedigree had more than 720k animals. Different multivariate ssGBLUP models were applied, either with the regular or APY inverse of the genomic relationship matrix (G). The models included a standard bivariate animal model with 3 lines evaluated as 1 joint line, and for each trait individually, a 3-trait animal model with each line treated as a separate trait. Both models provided the same predictivity across and within the lines. Using either of the pure lines data as a training set resulted in a similar predictivity for the crossbreed animals (0.18 to 0.21). Across-line predictive ability was limited to less than half of the maximum predictivity for each line (L1T1 0.33, L1T2 0.25, L2T1 0.35, L2T2 0.36). For crossbred predictions, APY performed equivalently to regular G inverse when the number of core animals was equal to the number of eigenvalues explaining between 98% and 99% of the variance of G (4k to 8k) including all lines. Predictivity across the lines is achievable because of the shared Me between them. The number of those shared segments can be obtained via eigenvalue decomposition of genomic information available for each line.


Asunto(s)
Algoritmos , Genoma/genética , Genómica , Hibridación Genética , Porcinos/genética , Animales , Granjas , Femenino , Genotipo , Masculino , Linaje , Fenotipo
14.
Asian-Australas J Anim Sci ; 32(4): 508-518, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30056656

RESUMEN

OBJECTIVE: This research aimed to determine biological pathways and protein-protein interaction (PPI) networks for 305-d milk yield (MY), 305-d fat yield (FY), and age at first calving (AFC) in the Thai multibreed dairy population. METHODS: Genotypic information contained 75,776 imputed and actual single nucleotide polymorphisms (SNP) from 2,661 animals. Single-step genomic best linear unbiased predictions were utilized to estimate SNP genetic variances for MY, FY, and AFC. Fixed effects included herd-year-season, breed regression and heterosis regression effects. Random effects were animal additive genetic and residual. Individual SNP explaining at least 0.001% of the genetic variance for each trait were used to identify nearby genes in the National Center for Biotechnology Information database. Pathway enrichment analysis was performed. The PPI of genes were identified and visualized of the PPI network. RESULTS: Identified genes were involved in 16 enriched pathways related to MY, FY, and AFC. Most genes had two or more connections with other genes in the PPI network. Genes associated with MY, FY, and AFC based on the biological pathways and PPI were primarily involved in cellular processes. The percent of the genetic variance explained by genes in enriched pathways (303) was 2.63% for MY, 2.59% for FY, and 2.49% for AFC. Genes in the PPI network (265) explained 2.28% of the genetic variance for MY, 2.26% for FY, and 2.12% for AFC. CONCLUSION: These sets of SNP associated with genes in the set enriched pathways and the PPI network could be used as genomic selection targets in the Thai multibreed dairy population. This study should be continued both in this and other populations subject to a variety of environmental conditions because predicted SNP values will likely differ across populations subject to different environmental conditions and changes over time.

15.
Anim Reprod Sci ; 197: 324-334, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30213568

RESUMEN

The objective of this research was to characterize biological pathways associated with semen volume (VOL), number of sperm (NS), and sperm motility (MOT) of dairy bulls in the Thai multibreed dairy population. Phenotypes for VOL (n = 13,535), NS (n = 12,773), and MOT (n = 12,660) came from 131 bulls of the Dairy Farming Promotion Organization of Thailand. Genotypic data consisted of 76,519 imputed and actual single nucleotide polymorphisms (SNP) from 72 animals. The SNP variances for VOL, NS, and MOT were estimated using a three-trait genomic-polygenic repeatability model. Fixed effects were contemporary group, ejaculate order, age of bull, ambient temperature, and heterosis. Random effects were animal additive genetic, permanent environmental, and residual. Individual SNP explaining at least 0.001% of the total genetic variance for each trait were selected to identify associated genes in the NCBI database (UMD Bos taurus 3.1 assembly) using the R package Map2NCBI. A set of 1,999 NCBI genes associated with all three semen traits was utilized for the pathway analysis conducted with the ClueGO plugin of Cytoscape using information from the Kyoto Encyclopedia of Genes and Genomes database. The pathway analysis revealed seven significant biological pathways involving 127 genes that explained 1.04% of the genetic variance for VOL, NS, and MOT. These genes were known to affect cell structure, motility, migration, proliferation, differentiation, survival, apoptosis, signal transduction, oxytocin release, calcium channel, neural development, and immune system functions related to sperm morphology and physiology during spermatogenesis.


Asunto(s)
Cruzamiento , Bovinos , Semen/fisiología , Animales , Industria Lechera , Masculino , Recuento de Espermatozoides , Motilidad Espermática/fisiología , Espermatozoides/fisiología , Tailandia
16.
J Dairy Sci ; 101(5): 4279-4294, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29550121

RESUMEN

Genomic prediction is applicable to individuals of different breeds. Empirical results to date, however, show limited benefits in using information on multiple breeds in the context of genomic prediction. We investigated a multitask Bayesian model, presented previously by others, implemented in a Bayesian stochastic search variable selection (BSSVS) model. This model allowed for evidence of quantitative trait loci (QTL) to be accumulated across breeds or for both QTL that segregate across breeds and breed-specific QTL. In both cases, single nucleotide polymorphism effects were estimated with information from a single breed. Other models considered were a single-trait and multitrait genomic residual maximum likelihood (GREML) model, with breeds considered as different traits, and a single-trait BSSVS model. All single-trait models were applied to each of the 2 breeds separately and to the pooled data of both breeds. The data used included a training data set of 6,278 Holstein and 722 Jersey bulls, as well as 374 Jersey validation bulls. All animals had genotypes for 474,773 single nucleotide polymorphisms after editing and phenotypes for milk, fat, and protein yields. Using the same training data, BSSVS consistently outperformed GREML. The multitask BSSVS, however, did not outperform single-trait BSSVS, which used pooled Holstein and Jersey data for training. Thus, the rigorous assumption that the traits are the same in both breeds yielded a slightly better prediction than a model that had to estimate the correlation between the breeds from the data. Adding the Holstein data significantly increased the accuracy of the single-trait GREML and BSSVS in predicting the Jerseys for milk and protein, in line with estimated correlations between the breeds of 0.66 and 0.47 for milk and protein yields, whereas only the BSSVS model significantly improved the accuracy for fat yield with an estimated correlation between breeds of only 0.05. The relatively high genetic correlations for milk and protein yields, and the superiority of the pooling strategy, is likely the result of the observed admixture between both breeds in our data. The Bayesian model was able to detect several QTL in Holsteins, which likely enabled it to outperform GREML. The inability of the multitask Bayesian models to outperform a simple pooling strategy may be explained by the fact that the pooling strategy assumes equal effects in both breeds; furthermore, this assumption may be valid for moderate- to large-sized QTL, which are important for multibreed genomic prediction.


Asunto(s)
Bovinos/genética , Animales , Teorema de Bayes , Cruzamiento , Bovinos/metabolismo , Femenino , Genoma , Genómica/métodos , Genotipo , Funciones de Verosimilitud , Masculino , Leche/metabolismo , Modelos Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
17.
J Dairy Sci ; 101(4): 3126-3139, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29428760

RESUMEN

As a result of the 1000 Bull Genome Project, it has become possible to impute millions of variants, with many of these potentially causative for traits of interest, for thousands of animals that have been genotyped with medium-density chips. This enormous source of data opens up very interesting possibilities for the inclusion of these variants in genomic evaluations. However, for computational reasons, it is not possible to include all variants in genomic evaluation procedures. One potential approach could be to select the most relevant variants based on the results of genome-wide association studies (GWAS); however, the identification of causative mutations is still difficult with this method, partly because of weak imputation accuracy for rare variants. To address this problem, this study assesses the ability of different approaches based on multi-breed GWAS (joint and meta-analyses) to identify single-nucleotide polymorphisms (SNP) for use in genomic evaluation in the 3 main French dairy cattle breeds. A total of 6,262 Holstein bulls, 2,434 Montbéliarde bulls, and 2,175 Normande bulls with daughter yield deviations for 5 milk production traits were imputed for 27 million variants. Within-breed and joint (including all 3 breeds) GWAS were performed and 3 models of meta-analysis were tested: fixed effect, random effect, and Z-score. Comparison of the results of within- and multi-breed GWAS showed that most of the quantitative trait loci identified using within-breed approaches were also found with multi-breed methods. However, the most significant variants identified in each region differed depending on the method used. To determine which approach highlighted the most predictive SNP for each trait, we used a marker-assisted best unbiased linear prediction model to evaluate lists of SNP generated by the different GWAS methods; each list contained between 25 and 2,000 candidate variants per trait, which were identified using a single within- or multi-breed GWAS approach. Among all the multi-breed methods tested in this study, variant selection based on meta-analysis (fixed effect) resulted in the most-accurate genomic evaluation (+1 to +3 points compared with other multi-breed approaches). However, the accuracies of genomic evaluation were always better when variants were selected using the results of within-breed GWAS. As has generally been found in studies of quantitative trait loci, these results suggest that part of the genetic variance of milk production traits is breed specific in Holstein, Montbéliarde, and Normande cattle.


Asunto(s)
Cruzamiento , Bovinos/fisiología , Leche/química , Polimorfismo de Nucleótido Simple , Animales , Bovinos/genética , Femenino , Francia , Estudio de Asociación del Genoma Completo , Masculino , Sitios de Carácter Cuantitativo
18.
J Anim Breed Genet ; 134(1): 3-13, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27917542

RESUMEN

An important prerequisite for high prediction accuracy in genomic prediction is the availability of a large training population, which allows accurate marker effect estimation. This requirement is not fulfilled in case of regional breeds with a limited number of breeding animals. We assessed the efficiency of the current French routine genomic evaluation procedure in four regional breeds (Abondance, Tarentaise, French Simmental and Vosgienne) as well as the potential benefits when the training populations consisting of males and females of these breeds are merged to form a multibreed training population. Genomic evaluation was 5-11% more accurate than a pedigree-based BLUP in three of the four breeds, while the numerically smallest breed showed a < 1% increase in accuracy. Multibreed genomic evaluation was beneficial for two breeds (Abondance and French Simmental) with maximum gains of 5 and 8% in correlation coefficients between yield deviations and genomic estimated breeding values, when compared to the single-breed genomic evaluation results. Inflation of genomic evaluation of young candidates was also reduced. Our results indicate that genomic selection can be effective in regional breeds as well. Here, we provide empirical evidence proving that genetic distance between breeds is only one of the factors affecting the efficiency of multibreed genomic evaluation.


Asunto(s)
Bovinos/clasificación , Bovinos/genética , Linaje , Animales , Animales Endogámicos , Femenino , Haplotipos , Masculino , Sitios de Carácter Cuantitativo , Reproducción
19.
J Dairy Sci ; 99(11): 8932-8945, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27568046

RESUMEN

The objective of this study was to compare mapping precision and power of within-breed and multibreed genome-wide association studies (GWAS) and to compare the results obtained by the multibreed GWAS with 3 meta-analysis methods. The multibreed GWAS was expected to improve mapping precision compared with a within-breed GWAS because linkage disequilibrium is conserved over shorter distances across breeds than within breeds. The multibreed GWAS was also expected to increase detection power for quantitative trait loci (QTL) segregating across breeds. GWAS were performed for production traits in dairy cattle, using imputed full genome sequences of 16,031 bulls, originating from 6 French and Danish dairy cattle populations. Our results show that a multibreed GWAS can be a valuable tool for the detection and fine mapping of quantitative trait loci. The number of QTL detected with the multibreed GWAS was larger than the number detected by the within-breed GWAS, indicating an increase in power, especially when the 2 Holstein populations were combined. The largest number of QTL was detected when all populations were combined. The analysis combining all breeds was, however, dominated by Holstein, and QTL segregating in other breeds but not in Holstein were sometimes overshadowed by larger QTL segregating in Holstein. Therefore, the GWAS combining all breeds except Holstein was useful to detect such peaks. Combining all breeds except Holstein resulted in smaller QTL intervals on average, but this outcome was not the case when the Holstein populations were included in the analysis. Although no decrease in the average QTL size was observed, mapping precision did improve for several QTL. Out of 3 different multibreed meta-analysis methods, the weighted z-scores model resulted in the most similar results to the full multibreed GWAS and can be useful as an alternative to a full multibreed GWAS. Differences between the multibreed GWAS and the meta-analyses were larger when different breeds were combined than when the 2 Holstein populations were combined.


Asunto(s)
Cruzamiento , Estudio de Asociación del Genoma Completo , Animales , Bovinos , Desequilibrio de Ligamiento , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
20.
Anim Genet ; 47(5): 588-96, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27166871

RESUMEN

This study was designed to investigate the genetic basis of growth and egg traits in Dongxiang blue-shelled chickens and White Leghorn chickens. In this study, we employed a reduced representation sequencing approach called genotyping by genome reducing and sequencing to detect genome-wide SNPs in 252 Dongxiang blue-shelled chickens and 252 White Leghorn chickens. The Dongxiang blue-shelled chicken breed has many specific traits and is characterized by blue-shelled eggs, black plumage, black skin, black bone and black organs. The White Leghorn chicken is an egg-type breed with high productivity. As multibreed genome-wide association studies (GWASs) can improve precision due to less linkage disequilibrium across breeds, a multibreed GWAS was performed with 156 575 SNPs to identify the associated variants underlying growth and egg traits within the two chicken breeds. The analysis revealed 32 SNPs exhibiting a significant genome-wide association with growth and egg traits. Some of the significant SNPs are located in genes that are known to impact growth and egg traits, but nearly half of the significant SNPs are located in genes with unclear functions in chickens. To our knowledge, this is the first multibreed genome-wide report for the genetics of growth and egg traits in the Dongxiang blue-shelled and White Leghorn chickens.


Asunto(s)
Pollos/crecimiento & desarrollo , Pollos/genética , Óvulo/fisiología , Polimorfismo de Nucleótido Simple , Animales , Peso Corporal , Cruzamiento , Cáscara de Huevo/fisiología , Estudios de Asociación Genética , Genotipo , Desequilibrio de Ligamiento , Fenotipo , Pigmentación , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA