Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Neurosci ; 15: 734186, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858126

RESUMEN

Closed-loop strategies for deep brain stimulation (DBS) are paving the way for improving the efficacy of existing neuromodulation therapies across neurological disorders. Unlike continuous DBS, closed-loop DBS approaches (cl-DBS) optimize the delivery of stimulation in the temporal domain. However, clinical and neurophysiological manifestations exhibit highly diverse temporal properties and evolve over multiple time-constants. Moreover, throughout the day, patients are engaged in different activities such as walking, talking, or sleeping that may require specific therapeutic adjustments. This broad range of temporal properties, along with inter-dependencies affecting parallel manifestations, need to be integrated in the development of therapies to achieve a sustained, optimized control of multiple symptoms over time. This requires an extended view on future cl-DBS design. Here we propose a conceptual framework to guide the development of multi-objective therapies embedding parallel control loops. Its modular organization allows to optimize the personalization of cl-DBS therapies to heterogeneous patient profiles. We provide an overview of clinical states and symptoms, as well as putative electrophysiological biomarkers that may be integrated within this structure. This integrative framework may guide future developments and become an integral part of next-generation precision medicine instruments.

2.
J Biomech ; 119: 110314, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33667882

RESUMEN

People walk in complex environments where they must adapt their steps to maintain balance and satisfy changing task goals. How people do this is not well understood. We recently developed computational models of lateral stepping, based on Goal Equivalent Manifolds that serve as motor regulation templates, to identify how people regulate walking movements from step-to-step. In normal walking, healthy adults strongly maintain step width, but also lateral position on their path. Here, we used this framework to pose empirically-testable hypotheses about how humans might adapt their lateral stepping dynamics when asked to prioritize different stepping goals. Participants walked on a treadmill in a virtual-reality environment under 4 conditions: normal walking and, while given direct feedback at each step, walking while trying to maintain constant step width, constant absolute lateral position, or constant heading (direction). Time series of lateral stepping variables were extracted, and variability and statistical persistence (reflecting step-to-step regulation) quantified. Participants exhibited less variability of the prescribed stepping variable compared to normal walking during each feedback condition. Stepping regulation results supported our models' predictions: to maintain constant step width or position, people either maintained or increased regulation of the prescribed variable, but also decreased regulation of its complement. Thus, people regulated lateral foot placements in predictable and systematic ways determined by specific task goals. Humans regulate stepping movements to not only "just walk" (step without falling), but also to achieve specific goal-directed tasks within a specific environment. The framework and motor regulation templates presented here capture these important interactions.


Asunto(s)
Objetivos , Caminata , Adaptación Fisiológica , Adulto , Pie , Marcha , Humanos , Equilibrio Postural
3.
J Biomech ; 104: 109714, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32139095

RESUMEN

Gait variability is generally associated with falls, but specific connections remain disputed. To reduce falls, we must first understand how older adults maintain lateral balance while walking, particularly when their stability is challenged. We recently developed computational models of lateral stepping, based on Goal Equivalent Manifolds, that separate effects of step-to-step regulation from variability. These show walking humans seek to strongly maintain step width, but also lateral position on their path. Here, 17 healthy older (ages 60+) and 17 healthy young (ages 18-31) adults walked in a virtual environment with no perturbations and with laterally destabilizing perturbations of either the visual field or treadmill platform. For step-to-step time series of step widths and lateral positions, we computed variability, statistical persistence and how much participants directly corrected deviations at each step. All participants exhibited significantly increased variability, decreased persistence and tighter direct control when perturbed. Simulations from our stepping regulation models indicate people responded to the increased variability imposed by these perturbations by either maintaining or tightening control of both step width and lateral position. Thus, while people strive to maintain lateral balance, they also actively strive to stay on their path. Healthy older participants exhibited slightly increased variability, but no differences from young in stepping regulation and no evidence of greater reliance on visual feedback, even when subjected to substantially destabilizing perturbations. Thus, age alone need not degrade lateral stepping control. This may help explain why directly connecting gait variability to fall risk has proven difficult.


Asunto(s)
Equilibrio Postural , Caminata , Accidentes por Caídas/prevención & control , Adolescente , Adulto , Anciano , Retroalimentación Sensorial , Pie , Marcha , Humanos , Persona de Mediana Edad , Adulto Joven
4.
Artif Organs ; 44(8): 785-796, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31944337

RESUMEN

Left ventricular assist devices (LVADs) have been used as a bridge to transplantation or as destination therapy to treat patients with heart failure (HF). The inability of control strategy to respond automatically to changes in hemodynamic conditions can impact the patients' quality of life. The developed control system/algorithm consists of a control system that harmoniously adjusts pump speed without additional sensors, considering the patient's clinical condition and his physical activity. The control system consists of three layers: (a) Actuator speed control; (b) LVAD flow control (FwC); and (c) Fuzzy control system (FzC), with the input variables: heart rate (HR), mean arterial pressure (MAP), minimum pump flow, level of physical activity (data from patient), and clinical condition (data from physician, INTERMACS profile). FzC output is the set point for the second LVAD control schemer (FwC) which in turn adjusts the speed. Pump flow, MAP, and HR are estimated from actuator drive parameters (speed and power). Evaluation of control was performed using a centrifugal blood pump in a hybrid cardiovascular simulator, where the left heart function is the mechanical model and right heart function is the computational model. The control system was able to maintain MAP and cardiac output in the physiological level, even under variation of EF. Apart from this, also the rotational pump speed is adjusted following the simulated clinical condition. No backflow from the aorta in the ventricle occurred through LVAD during tests. The control algorithm results were considered satisfactory for simulations, but it still should be confirmed during in vivo tests.


Asunto(s)
Corazón Auxiliar , Hemodinámica/fisiología , Presión Arterial , Ejercicio Físico/fisiología , Lógica Difusa , Frecuencia Cardíaca/fisiología , Humanos , Modelos Biológicos , Diseño de Prótesis
5.
J R Soc Interface ; 16(158): 20190227, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31506049

RESUMEN

Minimization of metabolic energy is considered a fundamental principle of human locomotion, as demonstrated by an alignment between the preferred walking speed (PWS) and the speed incurring the lowest metabolic cost of transport. We aimed to (i) simultaneously disrupt metabolic cost and an alternate acute task requirement, namely speed error regulation, and (ii) assess whether the PWS could be explained on the basis of either optimality criterion in this new performance and energetic landscape. Healthy adults (N = 21) walked on an instrumented treadmill under normal conditions and, while negotiating a continuous gait perturbation, imposed leg-length asymmetry. Oxygen consumption, motion capture data and ground reaction forces were continuously recorded for each condition at speeds ranging from 0.6 to 1.8 m s-1, including the PWS. Both metabolic and speed regulation measures were disrupted by the perturbation (p < 0.05). Perturbed PWS selection did not exhibit energetic prioritization (although we find some indication of energy minimization after motor adaptation). Similarly, PWS selection did not support prioritization of speed error regulation, which was found to be independent of speed in both conditions. It appears that, during acute exposure to a mechanical gait perturbation of imposed leg-length asymmetry, humans minimize neither energetic cost nor speed regulation errors. Despite the abundance of evidence pointing to energy minimization during normal, steady-state gait, this may not extend acutely to perturbed gait. Understanding how the nervous system acutely controls gait perturbations requires further research that embraces multi-objective control paradigms.


Asunto(s)
Metabolismo Energético/fisiología , Modelos Biológicos , Consumo de Oxígeno/fisiología , Caminata/fisiología , Adulto , Femenino , Humanos , Masculino
6.
Math Biosci ; 315: 108232, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31330135

RESUMEN

The total number of infections (epidemic size) and the time needed for the infection to go extinct (epidemic duration) represent two of the main indicators for the severity of infectious disease epidemics in human and livestock. However, few attempts have been made to address the problem of minimizing at the same time the epidemic size and duration from a theoretical point of view by using optimal control theory. Here, we investigate the multi-objective optimal control problem aiming to minimize, through either vaccination or isolation, a suitable combination of epidemic size and duration when both maximum control effort and total amount of resources available during the entire epidemic period are limited. Application of Pontryagin's Maximum Principle to a Susceptible-Infected-Removed epidemic model, shows that, when the resources are not sufficient to maintain the maximum control effort for the entire duration of the epidemic, the optimal vaccination control admits only bang-bang solutions with one or two switches, while the optimal isolation control admits only bang-bang solutions with one switch. We also find that, especially when the maximum control effort is low, there may exist a trade-off between the minimization of the two objectives. Consideration of this conflict among objectives can be crucial in successfully tackling real-world problems, where different stakeholders with potentially different objectives are involved. Finally, the particular case of the minimum time optimal control problem with limited resources is discussed.


Asunto(s)
Epidemias/prevención & control , Métodos Epidemiológicos , Modelos Teóricos , Aislamiento de Pacientes , Vacunación , Humanos , Factores de Tiempo
7.
ISA Trans ; 80: 491-502, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29866578

RESUMEN

A novel kinematic formation controller based on null-space theory is proposed to transport a cable-suspended payload with two rotorcraft UAVs considering collision avoidance, wind perturbations, and properly distribution of the load weight. An accurate 6-DoF nonlinear dynamic model of a helicopter and models for flexible cables and payload are included to test the proposal in a realistic scenario. System stability is demonstrated using Lyapunov theory and several simulation results show the good performance of the approach.

8.
ISA Trans ; 58: 35-49, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26096954

RESUMEN

An optimal trade-off design for fractional order (FO)-PID controller is proposed with a Linear Quadratic Regulator (LQR) based technique using two conflicting time domain objectives. A class of delayed FO systems with single non-integer order element, exhibiting both sluggish and oscillatory open loop responses, have been controlled here. The FO time delay processes are handled within a multi-objective optimization (MOO) formalism of LQR based FOPID design. A comparison is made between two contemporary approaches of stabilizing time-delay systems withinLQR. The MOO control design methodology yields the Pareto optimal trade-off solutions between the tracking performance and total variation (TV) of the control signal. Tuning rules are formed for the optimal LQR-FOPID controller parameters, using median of the non-dominated Pareto solutions to handle delayed FO processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA