Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Comput Methods Programs Biomed ; 257: 108400, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39270533

RESUMEN

BACKGROUND AND OBJECTIVE: Accurate prognosis prediction for cancer patients plays a significant role in the formulation of treatment strategies, considerably impacting personalized medicine. Recent advancements in this field indicate that integrating information from various modalities, such as genetic and clinical data, and developing multi-modal deep learning models can enhance prediction accuracy. However, most existing multi-modal deep learning methods either overlook patient similarities that benefit prognosis prediction or fail to effectively capture diverse information due to measuring patient similarities from a single perspective. To address these issues, a novel framework called multi-modal multi-view graph convolutional networks (MMGCN) is proposed for cancer prognosis prediction. METHODS: Initially, we utilize the similarity network fusion (SNF) algorithm to merge patient similarity networks (PSNs), individually constructed using gene expression, copy number alteration, and clinical data, into a fused PSN for integrating multi-modal information. To capture diverse perspectives of patient similarities, we treat the fused PSN as a multi-view graph by considering each single-edge-type subgraph as a view graph, and propose multi-view graph convolutional networks (GCNs) with a view-level attention mechanism. Moreover, an edge homophily prediction module is designed to alleviate the adverse effects of heterophilic edges on the representation power of GCNs. Finally, comprehensive representations of patient nodes are obtained to predict cancer prognosis. RESULTS: Experimental results demonstrate that MMGCN outperforms state-of-the-art baselines on four public datasets, including METABRIC, TCGA-BRCA, TCGA-LGG, and TCGA-LUSC, with the area under the receiver operating characteristic curve achieving 0.827 ± 0.005, 0.805 ± 0.014, 0.925 ± 0.007, and 0.746 ± 0.013, respectively. CONCLUSIONS: Our study reveals the effectiveness of the proposed MMGCN, which deeply explores patient similarities related to different modalities from a broad perspective, in enhancing the performance of multi-modal cancer prognosis prediction. The source code is publicly available at https://github.com/ping-y/MMGCN.

2.
Neural Netw ; 179: 106553, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39053303

RESUMEN

Multi-modal representation learning has received significant attention across diverse research domains due to its ability to model a scenario comprehensively. Learning the cross-modal interactions is essential to combining multi-modal data into a joint representation. However, conventional cross-attention mechanisms can produce noisy and non-meaningful values in the absence of useful cross-modal interactions among input features, thereby introducing uncertainty into the feature representation. These factors have the potential to degrade the performance of downstream tasks. This paper introduces a novel Pre-gating and Contextual Attention Gate (PCAG) module for multi-modal learning comprising two gating mechanisms that operate at distinct information processing levels within the deep learning model. The first gate filters out interactions that lack informativeness for the downstream task, while the second gate reduces the uncertainty introduced by the cross-attention module. Experimental results on eight multi-modal classification tasks spanning various domains show that the multi-modal fusion model with PCAG outperforms state-of-the-art multi-modal fusion models. Additionally, we elucidate how PCAG effectively processes cross-modality interactions.


Asunto(s)
Atención , Aprendizaje Profundo , Atención/fisiología , Humanos , Redes Neurales de la Computación , Algoritmos
3.
Med Image Anal ; 97: 103213, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38850625

RESUMEN

Multi-modal data can provide complementary information of Alzheimer's disease (AD) and its development from different perspectives. Such information is closely related to the diagnosis, prevention, and treatment of AD, and hence it is necessary and critical to study AD through multi-modal data. Existing learning methods, however, usually ignore the influence of feature heterogeneity and directly fuse features in the last stages. Furthermore, most of these methods only focus on local fusion features or global fusion features, neglecting the complementariness of features at different levels and thus not sufficiently leveraging information embedded in multi-modal data. To overcome these shortcomings, we propose a novel framework for AD diagnosis that fuses gene, imaging, protein, and clinical data. Our framework learns feature representations under the same feature space for different modalities through a feature induction learning (FIL) module, thereby alleviating the impact of feature heterogeneity. Furthermore, in our framework, local and global salient multi-modal feature interaction information at different levels is extracted through a novel dual multilevel graph neural network (DMGNN). We extensively validate the proposed method on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and experimental results demonstrate our method consistently outperforms other state-of-the-art multi-modal fusion methods. The code is publicly available on the GitHub website. (https://github.com/xiankantingqianxue/MIA-code.git).


Asunto(s)
Enfermedad de Alzheimer , Imagen Multimodal , Redes Neurales de la Computación , Enfermedad de Alzheimer/diagnóstico por imagen , Humanos , Imagen Multimodal/métodos , Aprendizaje Automático , Interpretación de Imagen Asistida por Computador/métodos , Neuroimagen/métodos , Imagen por Resonancia Magnética/métodos
4.
Skin Res Technol ; 30(6): e13770, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38881051

RESUMEN

BACKGROUND: Melanoma is one of the most malignant forms of skin cancer, with a high mortality rate in the advanced stages. Therefore, early and accurate detection of melanoma plays an important role in improving patients' prognosis. Biopsy is the traditional method for melanoma diagnosis, but this method lacks reliability. Therefore, it is important to apply new methods to diagnose melanoma effectively. AIM: This study presents a new approach to classify melanoma using deep neural networks (DNNs) with combined multiple modal imaging and genomic data, which could potentially provide more reliable diagnosis than current medical methods for melanoma. METHOD: We built a dataset of dermoscopic images, histopathological slides and genomic profiles. We developed a custom framework composed of two widely established types of neural networks for analysing image data Convolutional Neural Networks (CNNs) and networks that can learn graph structure for analysing genomic data-Graph Neural Networks. We trained and evaluated the proposed framework on this dataset. RESULTS: The developed multi-modal DNN achieved higher accuracy than traditional medical approaches. The mean accuracy of the proposed model was 92.5% with an area under the receiver operating characteristic curve of 0.96, suggesting that the multi-modal DNN approach can detect critical morphologic and molecular features of melanoma beyond the limitations of traditional AI and traditional machine learning approaches. The combination of cutting-edge AI may allow access to a broader range of diagnostic data, which can allow dermatologists to make more accurate decisions and refine treatment strategies. However, the application of the framework will have to be validated at a larger scale and more clinical trials need to be conducted to establish whether this novel diagnostic approach will be more effective and feasible.


Asunto(s)
Aprendizaje Profundo , Dermoscopía , Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Melanoma/diagnóstico por imagen , Melanoma/diagnóstico , Melanoma/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/diagnóstico por imagen , Neoplasias Cutáneas/patología , Dermoscopía/métodos , Redes Neurales de la Computación , Reproducibilidad de los Resultados , Genómica/métodos , Femenino , Masculino , Persona de Mediana Edad , Adulto , Anciano
5.
PeerJ Comput Sci ; 10: e1993, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855253

RESUMEN

Non-linear dimensionality reduction can be performed by manifold learning approaches, such as stochastic neighbour embedding (SNE), locally linear embedding (LLE) and isometric feature mapping (ISOMAP). These methods aim to produce two or three latent embeddings, primarily to visualise the data in intelligible representations. This manuscript proposes extensions of Student's t-distributed SNE (t-SNE), LLE and ISOMAP, for dimensionality reduction and visualisation of multi-view data. Multi-view data refers to multiple types of data generated from the same samples. The proposed multi-view approaches provide more comprehensible projections of the samples compared to the ones obtained by visualising each data-view separately. Commonly, visualisation is used for identifying underlying patterns within the samples. By incorporating the obtained low-dimensional embeddings from the multi-view manifold approaches into the K-means clustering algorithm, it is shown that clusters of the samples are accurately identified. Through extensive comparisons of novel and existing multi-view manifold learning algorithms on real and synthetic data, the proposed multi-view extension of t-SNE, named multi-SNE, is found to have the best performance, quantified both qualitatively and quantitatively by assessing the clusterings obtained. The applicability of multi-SNE is illustrated by its implementation in the newly developed and challenging multi-omics single-cell data. The aim is to visualise and identify cell heterogeneity and cell types in biological tissues relevant to health and disease. In this application, multi-SNE provides an improved performance over single-view manifold learning approaches and a promising solution for unified clustering of multi-omics single-cell data.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124454, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38788500

RESUMEN

For species identification analysis, methods based on deep learning are becoming prevalent due to their data-driven and task-oriented nature. The most commonly used convolutional neural network (CNN) model has been well applied in Raman spectra recognition. However, when faced with similar molecules or functional groups, the features of overlapping peaks and weak peaks may not be fully extracted using the CNN model, which can potentially hinder accurate species identification. Based on these practical challenges, the fusion of multi-modal data can effectively meet the comprehensive and accurate analysis of actual samples when compared with single-modal data. In this study, we propose a double-branch CNN model by integrating Raman and image multi-modal data, named SI-DBNet. In addition, we have developed a one-dimensional convolutional neural network combining dilated convolutions and efficient channel attention mechanisms for spectral branching. The effectiveness of the model has been demonstrated using the Grad-CAM method to visualize the key regions concerned by the model. When compared to single-modal and multi-modal classification methods, our SI-DBNet model achieved superior performance with a classification accuracy of 98.8%. The proposed method provided a new reference for species identification based on multi-modal data fusion.

7.
Comput Struct Biotechnol J ; 23: 1786-1795, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38707535

RESUMEN

The rapid growth of spatially resolved transcriptomics technology provides new perspectives on spatial tissue architecture. Deep learning has been widely applied to derive useful representations for spatial transcriptome analysis. However, effectively integrating spatial multi-modal data remains challenging. Here, we present ConGcR, a contrastive learning-based model for integrating gene expression, spatial location, and tissue morphology for data representation and spatial tissue architecture identification. Graph convolution and ResNet were used as encoders for gene expression with spatial location and histological image inputs, respectively. We further enhanced ConGcR with a graph auto-encoder as ConGaR to better model spatially embedded representations. We validated our models using 16 human brains, four chicken hearts, eight breast tumors, and 30 human lung spatial transcriptomics samples. The results showed that our models generated more effective embeddings for obtaining tissue architectures closer to the ground truth than other methods. Overall, our models not only can improve tissue architecture identification's accuracy but also may provide valuable insights and effective data representation for other tasks in spatial transcriptome analyses.

8.
Front Oncol ; 14: 1353446, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690169

RESUMEN

Objective: The objective of this study was to provide a multi-modal deep learning framework for forecasting the survival of rectal cancer patients by utilizing both digital pathological images data and non-imaging clinical data. Materials and methods: The research included patients diagnosed with rectal cancer by pathological confirmation from January 2015 to December 2016. Patients were allocated to training and testing sets in a randomized manner, with a ratio of 4:1. The tissue microarrays (TMAs) and clinical indicators were obtained. Subsequently, we selected distinct deep learning models to individually forecast patient survival. We conducted a scanning procedure on the TMAs in order to transform them into digital pathology pictures. Additionally, we performed pre-processing on the clinical data of the patients. Subsequently, we selected distinct deep learning algorithms to conduct survival prediction analysis using patients' pathological images and clinical data, respectively. Results: A total of 292 patients with rectal cancer were randomly allocated into two groups: a training set consisting of 234 cases, and a testing set consisting of 58 instances. Initially, we make direct predictions about the survival status by using pre-processed Hematoxylin and Eosin (H&E) pathological images of rectal cancer. We utilized the ResNest model to extract data from histopathological images of patients, resulting in a survival status prediction with an AUC (Area Under the Curve) of 0.797. Furthermore, we employ a multi-head attention fusion (MHAF) model to combine image features and clinical features in order to accurately forecast the survival rate of rectal cancer patients. The findings of our experiment show that the multi-modal structure works better than directly predicting from histopathological images. It achieves an AUC of 0.837 in predicting overall survival (OS). Conclusions: Our study highlights the potential of multi-modal deep learning models in predicting survival status from histopathological images and clinical information, thus offering valuable insights for clinical applications.

9.
Front Big Data ; 7: 1295009, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784678

RESUMEN

The evaluation of performance using competencies within a structured framework holds significant importance across various professional domains, particularly in roles like project manager. Typically, this assessment process, overseen by senior evaluators, involves scoring competencies based on data gathered from interviews, completed forms, and evaluation programs. However, this task is tedious and time-consuming, and requires the expertise of qualified professionals. Moreover, it is compounded by the inconsistent scoring biases introduced by different evaluators. In this paper, we propose a novel approach to automatically predict competency scores, thereby facilitating the assessment of project managers' performance. Initially, we performed data fusion to compile a comprehensive dataset from various sources and modalities, including demographic data, profile-related data, and historical competency assessments. Subsequently, NLP techniques were used to pre-process text data. Finally, recommender systems were explored to predict competency scores. We compared four different recommender system approaches: content-based filtering, demographic filtering, collaborative filtering, and hybrid filtering. Using assessment data collected from 38 project managers, encompassing scores across 67 different competencies, we evaluated the performance of each approach. Notably, the content-based approach yielded promising results, achieving a precision rate of 81.03%. Furthermore, we addressed the challenge of cold-starting, which in our context involves predicting scores for either a new project manager lacking competency data or a newly introduced competency without historical records. Our analysis revealed that demographic filtering achieved an average precision of 54.05% when dealing with new project managers. In contrast, content-based filtering exhibited remarkable performance, achieving a precision of 85.79% in predicting scores for new competencies. These findings underscore the potential of recommender systems in competency assessment, thereby facilitating more effective performance evaluation process.

10.
Front Radiol ; 4: 1339612, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38426080

RESUMEN

Image-to-text radiology report generation aims to automatically produce radiology reports that describe the findings in medical images. Most existing methods focus solely on the image data, disregarding the other patient information accessible to radiologists. In this paper, we present a novel multi-modal deep neural network framework for generating chest x-rays reports by integrating structured patient data, such as vital signs and symptoms, alongside unstructured clinical notes. We introduce a conditioned cross-multi-head attention module to fuse these heterogeneous data modalities, bridging the semantic gap between visual and textual data. Experiments demonstrate substantial improvements from using additional modalities compared to relying on images alone. Notably, our model achieves the highest reported performance on the ROUGE-L metric compared to relevant state-of-the-art models in the literature. Furthermore, we employed both human evaluation and clinical semantic similarity measurement alongside word-overlap metrics to improve the depth of quantitative analysis. A human evaluation, conducted by a board-certified radiologist, confirms the model's accuracy in identifying high-level findings, however, it also highlights that more improvement is needed to capture nuanced details and clinical context.

11.
Bioengineering (Basel) ; 11(3)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38534493

RESUMEN

Disease diagnosis represents a critical and arduous endeavor within the medical field. Artificial intelligence (AI) techniques, spanning from machine learning and deep learning to large model paradigms, stand poised to significantly augment physicians in rendering more evidence-based decisions, thus presenting a pioneering solution for clinical practice. Traditionally, the amalgamation of diverse medical data modalities (e.g., image, text, speech, genetic data, physiological signals) is imperative to facilitate a comprehensive disease analysis, a topic of burgeoning interest among both researchers and clinicians in recent times. Hence, there exists a pressing need to synthesize the latest strides in multi-modal data and AI technologies in the realm of medical diagnosis. In this paper, we narrow our focus to five specific disorders (Alzheimer's disease, breast cancer, depression, heart disease, epilepsy), elucidating advanced endeavors in their diagnosis and treatment through the lens of artificial intelligence. Our survey not only delineates detailed diagnostic methodologies across varying modalities but also underscores commonly utilized public datasets, the intricacies of feature engineering, prevalent classification models, and envisaged challenges for future endeavors. In essence, our research endeavors to contribute to the advancement of diagnostic methodologies, furnishing invaluable insights for clinical decision making.

12.
Food Chem ; 448: 139103, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38547708

RESUMEN

The protein content (PC) and wet gluten content (WGC) are crucial indicators determining the quality of wheat, playing a pivotal role in evaluating processing and baking performance. Original reflectance (OR), wavelet feature (WF), and color index (CI) were extracted from hyperspectral and RGB sensors. Combining Pearson-competitive adaptive reweighted sampling (CARs)-variance inflation factor (VIF) with four machine learning (ML) algorithms were used to model accuracy of PC and WGC. As a result, three CIs, six ORs, and twelve WFs were selected for PC and WGC datasets. For single-modal data, the back-propagation neural network exhibited superior accuracy, with estimation accuracies (WF > OR > CI). For multi-modal data, the random forest regression paired with OR + WF + CI showed the highest validation accuracy. Utilizing the Gini impurity, WF outweighed OR and CI in the PC and WGC models. The amalgamation of MLs with multimodal data harnessed the synergies among various remote sensing sources, substantially augmenting model precision and stability.


Asunto(s)
Algoritmos , Glútenes , Aprendizaje Automático , Proteínas de Plantas , Triticum , Triticum/química , Glútenes/análisis , Glútenes/química , Proteínas de Plantas/análisis , Proteínas de Plantas/química
13.
Entropy (Basel) ; 26(1)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38275499

RESUMEN

The profound impacts of severe air pollution on human health, ecological balance, and economic stability are undeniable. Precise air quality forecasting stands as a crucial necessity, enabling governmental bodies and vulnerable communities to proactively take essential measures to reduce exposure to detrimental pollutants. Previous research has primarily focused on predicting air quality using only time-series data. However, the importance of remote-sensing image data has received limited attention. This paper proposes a new multi-modal deep-learning model, Res-GCN, which integrates high spatial resolution remote-sensing images and time-series air quality data from multiple stations to forecast future air quality. Res-GCN employs two deep-learning networks, one utilizing the residual network to extract hidden visual information from remote-sensing images, and another using a dynamic spatio-temporal graph convolution network to capture spatio-temporal information from time-series data. By extracting features from two different modalities, improved predictive performance can be achieved. To demonstrate the effectiveness of the proposed model, experiments were conducted on two real-world datasets. The results show that the Res-GCN model effectively extracts multi-modal features, significantly enhancing the accuracy of multi-step predictions. Compared to the best-performing baseline model, the multi-step prediction's mean absolute error, root mean square error, and mean absolute percentage error increased by approximately 6%, 7%, and 7%, respectively.

14.
Chin Med ; 19(1): 2, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38163913

RESUMEN

BACKGROUND: Determination of batch-to-batch consistency of botanical drugs (BDs) has long been the bottleneck in quality evaluation primarily due to the chemical diversity inherent in BDs. This diversity presents an obstacle to achieving comprehensive standardization for BDs. Basically, a single detection mode likely leads to substandard analysis results as different classes of structures always possess distinct physicochemical properties. Whereas representing a workaround for multi-target standardization using multi-modal data, data processing for information from diverse sources is of great importance for the accuracy of classification. METHODS: In this research, multi-modal data of 78 batches of Guhong injections (GHIs) consisting of 52 normal and 26 abnormal samples were acquired by employing HPLC-UV, -ELSD, and quantitative 1H NMR (q1HNMR), of which data obtained was then individually used for Pearson correlation coefficient (PCC) calculation and partial least square-discriminant analysis (PLS-DA). Then, a mid-level data fusion method with data containing qualitative and quantitative information to establish a support vector machine (SVM) model for evaluating the batch-to-batch consistency of GHIs. RESULTS: The resulting outcomes showed that datasets from one detection mode (e.g., data from UV detectors only) are inadequate for accurately assessing the product's quality. The mid-level data fusion strategy for the quality evaluation enabled the classification of normal and abnormal batches of GHIs at 100% accuracy. CONCLUSIONS: A quality assessment strategy was successfully developed by leveraging a mid-level data fusion method for the batch-to-batch consistency evaluation of GHIs. This study highlights the promising utility of data from different detection modes for the quality evaluation of BDs. It also reminds manufacturers and researchers about the advantages of involving data fusion to handle multi-modal data. Especially when done jointly, this strategy can significantly increase the accuracy of product classification and serve as a capable tool for studies of other BDs.

16.
Front Genet ; 14: 1286800, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38125750

RESUMEN

Introduction: Multi-view data offer advantages over single-view data for characterizing individuals, which is crucial in precision medicine toward personalized prevention, diagnosis, or treatment follow-up. Methods: Here, we develop a network-guided multi-view clustering framework named netMUG to identify actionable subgroups of individuals. This pipeline first adopts sparse multiple canonical correlation analysis to select multi-view features possibly informed by extraneous data, which are then used to construct individual-specific networks (ISNs). Finally, the individual subtypes are automatically derived by hierarchical clustering on these network representations. Results: We applied netMUG to a dataset containing genomic data and facial images to obtain BMI-informed multi-view strata and showed how it could be used for a refined obesity characterization. Benchmark analysis of netMUG on synthetic data with known strata of individuals indicated its superior performance compared with both baseline and benchmark methods for multi-view clustering. The clustering derived from netMUG achieved an adjusted Rand index of 1 with respect to the synthesized true labels. In addition, the real-data analysis revealed subgroups strongly linked to BMI and genetic and facial determinants of these subgroups. Discussion: netMUG provides a powerful strategy, exploiting individual-specific networks to identify meaningful and actionable strata. Moreover, the implementation is easy to generalize to accommodate heterogeneous data sources or highlight data structures.

17.
J Pers Med ; 13(10)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37888133

RESUMEN

One of the most promising advancements in healthcare is the application of digital twin technology, offering valuable applications in monitoring, diagnosis, and development of treatment strategies tailored to individual patients. Furthermore, digital twins could also be helpful in finding novel treatment targets and predicting the effects of drugs and other chemical substances in development. In this review article, we consider digital twins as virtual counterparts of real human patients. The primary aim of this narrative review is to give an in-depth look into the various data sources and methodologies that contribute to the construction of digital twins across several healthcare domains. Each data source, including blood glucose levels, heart MRI and CT scans, cardiac electrophysiology, written reports, and multi-omics data, comes with different challenges regarding standardization, integration, and interpretation. We showcase how various datasets and methods are used to overcome these obstacles and generate a digital twin. While digital twin technology has seen significant progress, there are still hurdles in the way to achieving a fully comprehensive patient digital twin. Developments in non-invasive and high-throughput data collection, as well as advancements in modeling and computational power will be crucial to improve digital twin systems. We discuss a few critical developments in light of the current state of digital twin technology. Despite challenges, digital twin research holds great promise for personalized patient care and has the potential to shape the future of healthcare innovation.

18.
Bioengineering (Basel) ; 10(10)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37892964

RESUMEN

Epilepsy is a chronic brain disease with recurrent seizures. Mesial temporal lobe epilepsy (MTLE) is the most common pathological cause of epilepsy. With the development of computer-aided diagnosis technology, there are many auxiliary diagnostic approaches based on deep learning algorithms. However, the causes of epilepsy are complex, and distinguishing different types of epilepsy accurately is challenging with a single mode of examination. In this study, our aim is to assess the combination of multi-modal epilepsy medical information from structural MRI, PET image, typical clinical symptoms and personal demographic and cognitive data (PDC) by adopting a multi-channel 3D deep convolutional neural network and pre-training PET images. The results show better diagnosis accuracy than using one single type of medical data alone. These findings reveal the potential of a deep neural network in multi-modal medical data fusion.

19.
J Biomed Inform ; 147: 104512, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37813325

RESUMEN

OBJECTIVE: The rapid advancement of high-throughput technologies in the biomedical field has resulted in the accumulation of diverse omics data types, such as mRNA expression, DNA methylation, and microRNA expression, for studying various diseases. Integrating these multi-omics datasets enables a comprehensive understanding of the molecular basis of cancer and facilitates accurate prediction of disease progression. METHODS: However, conventional approaches face challenges due to the dimensionality curse problem. This paper introduces a novel framework called Knowledge Distillation and Supervised Variational AutoEncoders utilizing View Correlation Discovery Network (KD-SVAE-VCDN) to address the integration of high-dimensional multi-omics data with limited common samples. Through our experimental evaluation, we demonstrate that the proposed KD-SVAE-VCDN architecture accurately predicts the progression of breast and kidney carcinoma by effectively classifying patients as long- or short-term survivors. Furthermore, our approach outperforms other state-of-the-art multi-omics integration models. RESULTS: Our findings highlight the efficacy of the KD-SVAE-VCDN architecture in predicting the disease progression of breast and kidney carcinoma. By enabling the classification of patients based on survival outcomes, our model contributes to personalized and targeted treatments. The favorable performance of our approach in comparison to several existing models suggests its potential to contribute to the advancement of cancer understanding and management. CONCLUSION: The development of a robust predictive model capable of accurately forecasting disease progression at the time of diagnosis holds immense promise for advancing personalized medicine. By leveraging multi-omics data integration, our proposed KD-SVAE-VCDN framework offers an effective solution to this challenge, paving the way for more precise and tailored treatment strategies for patients with different types of cancer.


Asunto(s)
Carcinoma , Multiómica , Humanos , Metilación de ADN , Progresión de la Enfermedad
20.
Sensors (Basel) ; 23(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37837167

RESUMEN

In interpreting a scene for numerous applications, including autonomous driving and robotic navigation, semantic segmentation is crucial. Compared to single-modal data, multi-modal data allow us to extract a richer set of features, which is the benefit of improving segmentation accuracy and effect. We propose a point cloud semantic segmentation method, and a fusion graph convolutional network (FGCN) which extracts the semantic information of each point involved in the two-modal data of images and point clouds. The two-channel k-nearest neighbors (KNN) module of the FGCN was created to address the issue of the feature extraction's poor efficiency by utilizing picture data. Notably, the FGCN utilizes the spatial attention mechanism to better distinguish more important features and fuses multi-scale features to enhance the generalization capability of the network and increase the accuracy of the semantic segmentation. In the experiment, a self-made semantic segmentation KITTI (SSKIT) dataset was made for the fusion effect. The mean intersection over union (MIoU) of the SSKIT can reach 88.06%. As well as the public datasets, the S3DIS showed that our method can enhance data features and outperform other methods: the MIoU of the S3DIS can reach up to 78.55%. The segmentation accuracy is significantly improved compared with the existing methods, which verifies the effectiveness of the improved algorithms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA