Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Imaging Inform Med ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514595

RESUMEN

Deep learning models have demonstrated great potential in medical imaging but are limited by the expensive, large volume of annotations required. To address this, we compared different active learning strategies by training models on subsets of the most informative images using real-world clinical datasets for brain tumor segmentation and proposing a framework that minimizes the data needed while maintaining performance. Then, 638 multi-institutional brain tumor magnetic resonance imaging scans were used to train three-dimensional U-net models and compare active learning strategies. Uncertainty estimation techniques including Bayesian estimation with dropout, bootstrapping, and margins sampling were compared to random query. Strategies to avoid annotating similar images were also considered. We determined the minimum data necessary to achieve performance equivalent to the model trained on the full dataset (α = 0.05). Bayesian approximation with dropout at training and testing showed results equivalent to that of the full data model (target) with around 30% of the training data needed by random query to achieve target performance (p = 0.018). Annotation redundancy restriction techniques can reduce the training data needed by random query to achieve target performance by 20%. We investigated various active learning strategies to minimize the annotation burden for three-dimensional brain tumor segmentation. Dropout uncertainty estimation achieved target performance with the least annotated data.

2.
Neuroradiology ; 66(5): 737-747, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38462584

RESUMEN

PURPOSE: To assess the performance of a 2.5-minute multi-contrast brain MRI sequence (NeuroMix) in diagnosing acute cerebral infarctions. METHODS: Adult patients with a clinical suspicion of acute ischemic stroke were retrospectively included. Brain MRI at 3 T included NeuroMix and routine clinical MRI (cMRI) sequences, with DWI/ADC, T2-FLAIR, T2-weighted, T2*, SWI-EPI, and T1-weighted contrasts. Three radiologists (R1-3) independently assessed NeuroMix and cMRI for the presence of acute infarcts (DWI ↑, ADC = or ↓) and infarct-associated abnormalities on other image contrasts. Sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC) were calculated and compared using DeLong's test. Inter- and intra-rater agreements were studied with kappa statistics. Relative DWI (rDWI) and T2-FLAIR (rT2-FLAIR) signal intensity for infarctions were semi-automatically rendered, and the correlation between methods was evaluated. RESULTS: According to the reference standard, acute infarction was present in 34 out of 44 (77%) patients (63 ± 17 years, 31 men). Other infarct-associated signal abnormalities were reported in similar frequencies on NeuroMix and cMRI (p > .08). Sensitivity for infarction detection was 94%, 100%, and 94% evaluated by R1, R2, R3, for NeuroMix and 94%, 100%, and 100% for cMRI. Specificity was 100%, 90%, and 100% for NeuroMix and 100%, 100%, and 100% for cMRI. AUC for NeuroMix was .97, .95, and .97 and .97, 1, and 1 for cMRI (DeLong p = 1, .32, .15), respectively. Inter- and intra-rater agreement was κ = .88-1. The correlation between NeuroMix and cMRI was R = .73 for rDWI and R = .83 for rT2-FLAIR. CONCLUSION: Fast multi-contrast MRI NeuroMix has high diagnostic performance for detecting acute cerebral infarctions.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Adulto , Masculino , Humanos , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Isquemia Encefálica/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Enfermedad Aguda , Encéfalo/diagnóstico por imagen , Infarto Cerebral , Infarto , Accidente Cerebrovascular/diagnóstico por imagen
3.
Phys Med Biol ; 69(8)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38479022

RESUMEN

Objective.Multi-contrast magnetic resonance imaging (MC MRI) can obtain more comprehensive anatomical information of the same scanning object but requires a longer acquisition time than single-contrast MRI. To accelerate MC MRI speed, recent studies only collect partial k-space data of one modality (target contrast) to reconstruct the remaining non-sampled measurements using a deep learning-based model with the assistance of another fully sampled modality (reference contrast). However, MC MRI reconstruction mainly performs the image domain reconstruction with conventional CNN-based structures by full supervision. It ignores the prior information from reference contrast images in other sparse domains and requires fully sampled target contrast data. In addition, because of the limited receptive field, conventional CNN-based networks are difficult to build a high-quality non-local dependency.Approach.In the paper, we propose an Image-Wavelet domain ConvNeXt-based network (IWNeXt) for self-supervised MC MRI reconstruction. Firstly, INeXt and WNeXt based on ConvNeXt reconstruct undersampled target contrast data in the image domain and refine the initial reconstructed result in the wavelet domain respectively. To generate more tissue details in the refinement stage, reference contrast wavelet sub-bands are used as additional supplementary information for wavelet domain reconstruction. Then we design a novel attention ConvNeXt block for feature extraction, which can capture the non-local information of the MC image. Finally, the cross-domain consistency loss is designed for self-supervised learning. Especially, the frequency domain consistency loss deduces the non-sampled data, while the image and wavelet domain consistency loss retain more high-frequency information in the final reconstruction.Main results.Numerous experiments are conducted on the HCP dataset and the M4Raw dataset with different sampling trajectories. Compared with DuDoRNet, our model improves by 1.651 dB in the peak signal-to-noise ratio.Significance.IWNeXt is a potential cross-domain method that can enhance the accuracy of MC MRI reconstruction and reduce reliance on fully sampled target contrast images.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador/métodos , Tiempo , Imagen por Resonancia Magnética/métodos , Relación Señal-Ruido
4.
Med Image Anal ; 93: 103072, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38176356

RESUMEN

Accurate quantification of cerebral blood flow (CBF) is essential for the diagnosis and assessment of a wide range of neurological diseases. Positron emission tomography (PET) with radiolabeled water (15O-water) is the gold-standard for the measurement of CBF in humans, however, it is not widely available due to its prohibitive costs and the use of short-lived radiopharmaceutical tracers that require onsite cyclotron production. Magnetic resonance imaging (MRI), in contrast, is more accessible and does not involve ionizing radiation. This study presents a convolutional encoder-decoder network with attention mechanisms to predict the gold-standard 15O-water PET CBF from multi-contrast MRI scans, thus eliminating the need for radioactive tracers. The model was trained and validated using 5-fold cross-validation in a group of 126 subjects consisting of healthy controls and cerebrovascular disease patients, all of whom underwent simultaneous 15O-water PET/MRI. The results demonstrate that the model can successfully synthesize high-quality PET CBF measurements (with an average SSIM of 0.924 and PSNR of 38.8 dB) and is more accurate compared to concurrent and previous PET synthesis methods. We also demonstrate the clinical significance of the proposed algorithm by evaluating the agreement for identifying the vascular territories with impaired CBF. Such methods may enable more widespread and accurate CBF evaluation in larger cohorts who cannot undergo PET imaging due to radiation concerns, lack of access, or logistic challenges.


Asunto(s)
Encéfalo , Tomografía de Emisión de Positrones , Humanos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Circulación Cerebrovascular , Algoritmos
5.
Magn Reson Imaging ; 106: 43-54, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38092082

RESUMEN

Synthetic magnetic resonance imaging (MRI) offers a scanning paradigm where a fast multi-contrast sequence can be used to estimate underlying quantitative tissue parameter maps, which are then used to synthesize any desirable clinical contrast by retrospectively changing scan parameters in silico. Two benefits of this approach are the reduced exam time and the ability to generate arbitrary contrasts offline. However, synthetically generated contrasts are known to deviate from the contrast of experimental scans. The reason for contrast mismatch is the necessary exclusion of some unmodeled physical effects such as partial voluming, diffusion, flow, susceptibility, magnetization transfer, and more. The inclusion of these effects in signal encoding would improve the synthetic images, but would make the quantitative imaging protocol impractical due to long scan times. Therefore, in this work, we propose a novel deep learning approach that generates a multiplicative correction term to capture unmodeled effects and correct the synthetic contrast images to better match experimental contrasts for arbitrary scan parameters. The physics inspired deep learning model implicitly accounts for some unmodeled physical effects occurring during the scan. As a proof of principle, we validate our approach on synthesizing arbitrary inversion recovery fast spin-echo scans using a commercially available 2D multi-contrast sequence. We observe that the proposed correction visually and numerically reduces the mismatch with experimentally collected contrasts compared to conventional synthetic MRI. Finally, we show results of a preliminary reader study and find that the proposed method statistically significantly improves in contrast and SNR as compared to synthetic MR images.


Asunto(s)
Aprendizaje Profundo , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Medios de Contraste
6.
J Pers Med ; 13(7)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37511674

RESUMEN

Determining histological subtypes, such as invasive ductal and invasive lobular carcinomas (IDCs and ILCs) and immunohistochemical markers, such as estrogen response (ER), progesterone response (PR), and the HER2 protein status is important in planning breast cancer treatment. MRI-based radiomic analysis is emerging as a non-invasive substitute for biopsy to determine these signatures. We explore the effectiveness of radiomics-based and CNN (convolutional neural network)-based classification models to this end. T1-weighted dynamic contrast-enhanced, contrast-subtracted T1, and T2-weighted MR images of 429 breast cancer tumors from 323 patients are used. Various combinations of input data and classification schemes are applied for ER+ vs. ER-, PR+ vs. PR-, HER2+ vs. HER2-, and IDC vs. ILC classification tasks. The best results were obtained for the ER+ vs. ER- and IDC vs. ILC classification tasks, with their respective AUCs reaching 0.78 and 0.73 on test data. The results with multi-contrast input data were generally better than the mono-contrast alone. The radiomics and CNN-based approaches generally exhibited comparable results. ER and IDC/ILC classification results were promising. PR and HER2 classifications need further investigation through a larger dataset. Better results by using multi-contrast data might indicate that multi-parametric quantitative MRI could be used to achieve more reliable classifiers.

7.
Bioengineering (Basel) ; 10(7)2023 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-37508897

RESUMEN

Multi-contrast magnetic resonance imaging (MRI) is wildly applied to identify tuberous sclerosis complex (TSC) children in a clinic. In this work, a deep convolutional neural network with multi-contrast MRI is proposed to diagnose pediatric TSC. Firstly, by combining T2W and FLAIR images, a new synthesis modality named FLAIR3 was created to enhance the contrast between TSC lesions and normal brain tissues. After that, a deep weighted fusion network (DWF-net) using a late fusion strategy is proposed to diagnose TSC children. In experiments, a total of 680 children were enrolled, including 331 healthy children and 349 TSC children. The experimental results indicate that FLAIR3 successfully enhances the visibility of TSC lesions and improves the classification performance. Additionally, the proposed DWF-net delivers a superior classification performance compared to previous methods, achieving an AUC of 0.998 and an accuracy of 0.985. The proposed method has the potential to be a reliable computer-aided diagnostic tool for assisting radiologists in diagnosing TSC children.

8.
Phys Med Biol ; 68(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37285863

RESUMEN

Objective.High-resolution multi-modal magnetic resonance imaging (MRI) is crucial in clinical practice for accurate diagnosis and treatment. However, challenges such as budget constraints, potential contrast agent deposition, and image corruption often limit the acquisition of multiple sequences from a single patient. Therefore, the development of novel methods to reconstruct under-sampled images and synthesize missing sequences is crucial for clinical and research applications.Approach. In this paper, we propose a unified hybrid framework called SIFormer, which utilizes any available low-resolution MRI contrast configurations to complete super-resolution (SR) of poor-quality MR images and impute missing sequences simultaneously in one forward process. SIFormer consists of a hybrid generator and a convolution-based discriminator. The generator incorporates two key blocks. First, the dual branch attention block combines the long-range dependency building capability of the transformer with the high-frequency local information capture capability of the convolutional neural network in a channel-wise split manner. Second, we introduce a learnable gating adaptation multi-layer perception in the feed-forward block to optimize information transmission efficiently.Main results. Comparative evaluations against six state-of-the-art methods demonstrate that SIFormer achieves enhanced quantitative performance and produces more visually pleasing results for image SR and synthesis tasks across multiple datasets.Significance. Extensive experiments conducted on multi-center multi-contrast MRI datasets, including both healthy individuals and brain tumor patients, highlight the potential of our proposed method to serve as a valuable supplement to MRI sequence acquisition in clinical and research settings.


Asunto(s)
Imagen por Resonancia Magnética , Redes Neurales de la Computación , Humanos , Imagen por Resonancia Magnética/métodos , Medios de Contraste , Procesamiento de Imagen Asistido por Computador/métodos
9.
J Digit Imaging ; 36(5): 2075-2087, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37340197

RESUMEN

Deep convolutional neural networks (DCNNs) have shown promise in brain tumor segmentation from multi-modal MRI sequences, accommodating heterogeneity in tumor shape and appearance. The fusion of multiple MRI sequences allows networks to explore complementary tumor information for segmentation. However, developing a network that maintains clinical relevance in situations where certain MRI sequence(s) might be unavailable or unusual poses a significant challenge. While one solution is to train multiple models with different MRI sequence combinations, it is impractical to train every model from all possible sequence combinations. In this paper, we propose a DCNN-based brain tumor segmentation framework incorporating a novel sequence dropout technique in which networks are trained to be robust to missing MRI sequences while employing all other available sequences. Experiments were performed on the RSNA-ASNR-MICCAI BraTS 2021 Challenge dataset. When all MRI sequences were available, there were no significant differences in performance of the model with and without dropout for enhanced tumor (ET), tumor (TC), and whole tumor (WT) (p-values 1.000, 1.000, 0.799, respectively), demonstrating that the addition of dropout improves robustness without hindering overall performance. When key sequences were unavailable, the network with sequence dropout performed significantly better. For example, when tested on only T1, T2, and FLAIR sequences together, DSC for ET, TC, and WT increased from 0.143 to 0.486, 0.431 to 0.680, and 0.854 to 0.901, respectively. Sequence dropout represents a relatively simple yet effective approach for brain tumor segmentation with missing MRI sequences.


Asunto(s)
Neoplasias Encefálicas , Procesamiento de Imagen Asistido por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Redes Neurales de la Computación , Imagen por Resonancia Magnética/métodos
10.
Med Image Anal ; 87: 102814, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37196537

RESUMEN

Despite success on multi-contrast MR image synthesis, generating specific modalities remains challenging. Those include Magnetic Resonance Angiography (MRA) that highlights details of vascular anatomy using specialised imaging sequences for emphasising inflow effect. This work proposes an end-to-end generative adversarial network that can synthesise anatomically plausible, high-resolution 3D MRA images using commonly acquired multi-contrast MR images (e.g. T1/T2/PD-weighted MR images) for the same subject whilst preserving the continuity of vascular anatomy. A reliable technique for MRA synthesis would unleash the research potential of very few population databases with imaging modalities (such as MRA) that enable quantitative characterisation of whole-brain vasculature. Our work is motivated by the need to generate digital twins and virtual patients of cerebrovascular anatomy for in-silico studies and/or in-silico trials. We propose a dedicated generator and discriminator that leverage the shared and complementary features of multi-source images. We design a composite loss function for emphasising vascular properties by minimising the statistical difference between the feature representations of the target images and the synthesised outputs in both 3D volumetric and 2D projection domains. Experimental results show that the proposed method can synthesise high-quality MRA images and outperform the state-of-the-art generative models both qualitatively and quantitatively. The importance assessment reveals that T2 and PD-weighted images are better predictors of MRA images than T1; and PD-weighted images contribute to better visibility of small vessel branches towards the peripheral regions. In addition, the proposed approach can generalise to unseen data acquired at different imaging centres with different scanners, whilst synthesising MRAs and vascular geometries that maintain vessel continuity. The results show the potential for use of the proposed approach to generating digital twin cohorts of cerebrovascular anatomy at scale from structural MR images typically acquired in population imaging initiatives.


Asunto(s)
Angiografía por Resonancia Magnética , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Angiografía por Resonancia Magnética/métodos , Imagenología Tridimensional/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Procesamiento de Imagen Asistido por Computador/métodos
11.
J Xray Sci Technol ; 31(4): 797-810, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37248943

RESUMEN

BACKGROUND: As one of the significant preoperative imaging modalities in medical diagnosis, Magnetic resonance imaging (MRI) takes a long scanning time due to its special imaging principle. OBJECTIVE: We propose an innovative MRI reconstruction strategy and data consistency method based on deep learning to reconstruct high-quality brain MRIs from down-sampled data and accelerate the MR imaging process. METHODS: Sixteen healthy subjects undergoing T1-weighted spin-echo (SE) and T2-weighted fast spin-echo (FSE) sequences by a 1.5T MRI scanner were recruited. A Y-Net3+ network was used to facilitate the high-quality MRI reconstruction through context information. In addition, the existing data consistency fidelity method was improved. The difference between the reconstructed K-space and the original K-space was shorten by the linear regression algorithm. Therefore, the redundant artifacts derived from under-sampling were avoided. The Structural Similarity (SSIM) and Peak Signal to Noise Ratio (PSNR) were applied to quantitatively evaluate image reconstruction performance of different down-sampling patterns. RESULTS: Compared with the classical Y-Net, Y-Net3+ network improved SSIM and PSNR of MRI images from 0.9164±0.0178 and 33.2216±3.2919 to 0.9387±0.0363 and 35.1785±3.3105, respectively, under compressed sensing reconstruction with acceleration factor of 4. The improved network increases signal-to-noise ratio and adds more image texture information in the reconstructed images. Furthermore, in the process of data consistency, linear regression analysis was used to reduce the difference between the reconstructed K-space and the original K-space, so that the SSIM and PSNR were increased to 0.9808±0.0081 and 40.9254±1.1911, respectively. CONCLUSIONS: The improved Y-Net combined with data consistency fidelity method elucidates its potential in reconstructing high-quality T2-weighted images from the down-sampled data by fully exploring the T1-weighted information. With the advantage of avoiding down-sampled artifacts, the improved network exhibits remarkable clinical promise for fast MRI applications.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Neuroimagen , Relación Señal-Ruido
12.
Biomed Phys Eng Express ; 9(3)2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36898146

RESUMEN

Purpose.To determine glioma grading by applying radiomic analysis or deep convolutional neural networks (DCNN) and to benchmark both approaches on broader validation sets.Methods.Seven public datasets were considered: (1) low-grade glioma or high-grade glioma (369 patients, BraTS'20) (2) well-differentiated liposarcoma or lipoma (115, LIPO); (3) desmoid-type fibromatosis or extremity soft-tissue sarcomas (203, Desmoid); (4) primary solid liver tumors, either malignant or benign (186, LIVER); (5) gastrointestinal stromal tumors (GISTs) or intra-abdominal gastrointestinal tumors radiologically resembling GISTs (246, GIST); (6) colorectal liver metastases (77, CRLM); and (7) lung metastases of metastatic melanoma (103, Melanoma). Radiomic analysis was performed on 464 (2016) radiomic features for the BraTS'20 (others) datasets respectively. Random forests (RF), Extreme Gradient Boosting (XGBOOST) and a voting algorithm comprising both classifiers were tested. The parameters of the classifiers were optimized using a repeated nested stratified cross-validation process. The feature importance of each classifier was computed using the Gini index or permutation feature importance. DCNN was performed on 2D axial and sagittal slices encompassing the tumor. A balanced database was created, when necessary, using smart slices selection. ResNet50, Xception, EficientNetB0, and EfficientNetB3 were transferred from the ImageNet application to the tumor classification and were fine-tuned. Five-fold stratified cross-validation was performed to evaluate the models. The classification performance of the models was measured using multiple indices including area under the receiver operating characteristic curve (AUC).Results.The best radiomic approach was based on XGBOOST for all datasets; AUC was 0.934 (BraTS'20), 0.86 (LIPO), 0.73 (LIVER), (0.844) Desmoid, 0.76 (GIST), 0.664 (CRLM), and 0.577 (Melanoma) respectively. The best DCNN was based on EfficientNetB0; AUC was 0.99 (BraTS'20), 0.982 (LIPO), 0.977 (LIVER), (0.961) Desmoid, 0.926 (GIST), 0.901 (CRLM), and 0.89 (Melanoma) respectively.Conclusion.Tumor classification can be accurately determined by adapting state-of-the-art machine learning algorithms to the medical context.


Asunto(s)
Aprendizaje Profundo , Glioma , Radiómica , Glioma/diagnóstico por imagen , Glioma/patología , Clasificación del Tumor , Humanos , Conjuntos de Datos como Asunto
13.
Cancer Sci ; 114(4): 1596-1605, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36541519

RESUMEN

To achieve a better treatment regimen and follow-up assessment design for intensity-modulated radiotherapy (IMRT)-treated nasopharyngeal carcinoma (NPC) patients, an accurate progression-free survival (PFS) time prediction algorithm is needed. We propose developing a PFS prediction model of NPC patients after IMRT treatment using a deep learning method and comparing that with the traditional texture analysis method. One hundred and fifty-one NPC patients were included in this retrospective study. T1-weighted, proton density and dynamic contrast-enhanced magnetic resonance (MR) images were acquired. The expression level of five genes (HIF-1α, EGFR, PTEN, Ki-67, and VEGF) and infection of Epstein-Barr (EB) virus were tested. A residual network was trained to predict PFS from MR images. The output as well as patient characteristics were combined using a linear regression model to provide a final PFS prediction. The prediction accuracy was compared with that of the traditional texture analysis method. A regression model combining the deep learning output with HIF-1α expression and Epstein-Barr infection provides the best PFS prediction accuracy (Spearman correlation R2  = 0.53; Harrell's C-index = 0.82; receiver operative curve [ROC] analysis area under the curve [AUC] = 0.88; log-rank test hazard ratio [HR] = 8.45), higher than a regression model combining texture analysis with HIF-1α expression (Spearman correlation R2  = 0.14; Harrell's C-index =0.68; ROC analysis AUC = 0.76; log-rank test HR = 2.85). The deep learning method does not require a manually drawn tumor region of interest. MR image processing using deep learning combined with patient characteristics can provide accurate PFS prediction for nasopharyngeal carcinoma patients and does not rely on specific kernels or tumor regions of interest, which is needed for the texture analysis method.


Asunto(s)
Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/diagnóstico por imagen , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Estudios Retrospectivos , Tasa de Supervivencia , Pronóstico , Imagen por Resonancia Magnética/métodos , Herpesvirus Humano 4/genética , Redes Neurales de la Computación , Expresión Génica
14.
Med Biol Eng Comput ; 60(9): 2693-2706, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35856128

RESUMEN

Carotid atherosclerosis is one of the leading causes of cardiovascular disease with high mortality. Multi-contrast MRI can identify atherosclerotic plaque components with high sensitivity and specificity. Accurate segmentation of the diseased carotid artery from MR images is very essential to quantitatively evaluate the state of atherosclerosis. However, due to the complex morphology of atherosclerosis plaques and the lack of well-annotated data, the segmentation of lumen and wall is very challenging. Different from popular deep learning methods, in this paper, we propose an integration segmentation framework by introducing a lightweight prediction model and improved optimal surface graph cuts (OSG), which adopts a simplified flow line sampling and post-reconstructing method to reduce the cost of graph construction. Moreover, a flexibly adaptive smoothing penalty is presented for maintaining the shape of diseased carotid surface. For the experiments, we have collected an MR image dataset from patients with carotid atherosclerosis and evaluated our method by cross-validation. It can reach 89.68%/80.29% of dice coefficients and 0.2480 mm/0.3396 mm of average surface distances on the lumen/wall segmentation, respectively. The experimental results show that our method can generate precise and reliable segmentation of both lumen and wall of diseased carotid artery with a quite small training cost.


Asunto(s)
Aterosclerosis , Enfermedades de las Arterias Carótidas , Placa Aterosclerótica , Arterias Carótidas/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Arteria Carótida Común , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Placa Aterosclerótica/diagnóstico por imagen
15.
Med Phys ; 49(9): 5964-5980, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35678739

RESUMEN

BACKGROUND: Acceleration of MR imaging (MRI) is a popular research area, and usage of deep learning for acceleration has become highly widespread in the MR community. Joint acceleration of multiple-acquisition MRI was proven to be effective over a single-acquisition approach. Also, optimization in the sampling pattern demonstrated its advantage over conventional undersampling pattern. However, optimizing the sampling patterns for joint acceleration of multiple-acquisition MRI has not been investigated well. PURPOSE: To develop a model-based deep learning scheme to optimize sampling patterns for a joint acceleration of multi-contrast MRI. METHODS: The proposed scheme combines sampling pattern optimization and multi-contrast MRI reconstruction. It was extended from the physics-guided method of the joint model-based deep learning (J-MoDL) scheme to optimize the separate sampling pattern for each of multiple contrasts simultaneously for their joint reconstruction. Tests were performed with three contrasts of T2-weighted, FLAIR, and T1-weighted images. The proposed multi-contrast method was compared to (i) single-contrast method with sampling optimization (baseline J-MoDL), (ii) multi-contrast method without sampling optimization, and (iii) multi-contrast method with single common sampling optimization for all contrasts. The optimized sampling patterns were analyzed for sampling location overlap across contrasts. The scheme was also tested in a data-driven scenario, where the inversion between input and label was learned from the under-sampled data directly and tested on knee datasets for generalization test. RESULTS: The proposed scheme demonstrated a quantitative and qualitative advantage over the single-contrast scheme with sampling pattern optimization and the multi-contrast scheme without sampling pattern optimization. Optimizing the separate sampling pattern for each of the multi-contrasts was superior to optimizing only one common sampling pattern for all contrasts. The proposed scheme showed less overlap in sampling locations than the single-contrast scheme. The main hypothesis was also held in the data-driven situation as well. The brain-trained model worked well on the knee images, demonstrating its generalizability. CONCLUSION: Our study introduced an effective scheme that combines the sampling optimization and the multi-contrast acceleration. The seamless combination resulted in superior performance over the other existing methods.


Asunto(s)
Aprendizaje Profundo , Aceleración , Encéfalo , Procesamiento de Imagen Asistido por Computador/métodos , Articulación de la Rodilla , Imagen por Resonancia Magnética/métodos
16.
Med Phys ; 48(12): 7984-7997, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34706072

RESUMEN

PURPOSE: To develop a novel multi-contrast four-dimensional magnetic resonance imaging (MC-4D-MRI) technique that expands single image contrast 4D-MRI to a spectrum of native and synthetic image contrasts and to evaluate its feasibility in liver tumor patients. METHODS AND MATERIALS: The MC-4D-MRI technique integrates multi-parametric MRI fusion, 4D-MRI, and deformable image registration (DIR) techniques. The fusion technique consists of native MRI as input, image pre-processing, fusion algorithm, adaptation, and fused multi-contrast MRI as output. Four-dimensional deformation vector fields (4D-DVF) were generated from an original T2/T1-w 4D-MRI by deforming end-of-inhalation (EOI) to nine other phase volumes via DIR. The 4D-DVF were applied to multi-contrast MRI to generate a spectrum of 4D-MRI in different image contrasts. The MC-4D-MRI technique was evaluated in five liver tumor patients on tumor contrast-to-noise ratio (CNR), internal target volume (ITV) contouring consistency, diaphragm motion range, and tumor motion trajectory; and in digital anthropomorphic phantoms on 4D-DIR introduced errors in tumor motion range, centroid location, extent, and volume. RESULTS: MC-4D-MRI consisting of 4D-MRIs in native image contrasts (T1-w, T2-w, and T2/T1-w) and synthetic image contrasts, such as tumor-enhanced contrast (TEC) were generated in five liver tumor patients. Patient tumor CNR increased from 2.6 ± 1.8 in the T2/T1-w MRI, to -4.4 ± 2.4, 6.6 ± 3.0, and 9.6 ± 3.9 in the T1-w, T2-w, and TEC MRI, respectively. Patient ITV inter-observer mean Dice similarity coefficient (mDSC) increased from 0.65 ± 0.10 in the original T2/T1-w 4D-MRI, to 0.76 ± 0.14, 0.77 ± 0.12, and 0.86 ± 0.05 in the T1-w, T2-w, and TEC 4D-MRI, respectively. Patient diaphragm motion range absolute differences between the three new 4D-MRIs and original T2/T1-w 4D-MRI were 1.2 ± 1.3, 0.3 ± 0.7, and 0.5 ± 0.5 mm, respectively. Patient tumor displacement phase-averaged absolute differences between the three 4D-MRIs and the original 4D-MRI were 0.72 ± 0.33, 0.62 ± 0.54, and 0.74 ± 0.43 mm in the superior-inferior (SI) direction, and 0.59 ± 0.36, 0.51 ± 0.30, and 0.50 ± 0.24 mm in the anterior-posterior (AP) direction, respectively. In the digital phantoms, phase-averaged absolute tumor centroid shift caused by the 4D-DIR were at or below 0.5 mm in SI, AP, and left-right (LR) directions. CONCLUSION: We developed an MC-4D-MRI technique capable of expanding single image contrast 4D-MRI along a new dimension of image contrast. Initial evaluations in liver tumor patients showed enhancements in image contrast variety, tumor contrast, and ITV contouring consistencies using MC-4D-MRI. The technique might offer new perspectives on the image contrast of MRI and 4D-MRI in MR-guided radiotherapy.


Asunto(s)
Neoplasias Hepáticas , Imagen por Resonancia Magnética , Tomografía Computarizada Cuatridimensional , Humanos , Procesamiento de Imagen Asistido por Computador , Neoplasias Hepáticas/diagnóstico por imagen , Movimiento (Física) , Fantasmas de Imagen
17.
MAGMA ; 34(6): 833-844, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34255206

RESUMEN

INTRODUCTION: To assess pre-therapeutic MRI-based radiomic analysis to predict the pathological complete response to neoadjuvant chemotherapy (NAC) in women with early triple negative breast cancer (TN). MATERIALS AND METHODS: This monocentric retrospective study included 75 TN female patients with MRI (T1-weighted, T2-weighted, diffusion-weighted and dynamic contrast enhancement images) performed before NAC. For each patient, the tumor(s) and the parenchyma were independently segmented and analyzed with radiomic analysis to extract shape, size, and texture features. Several sets of features were realized based on the 4 different sequence images. Performances of 4 classifiers (random forest, multilayer perceptron, support vector machine (SVM) with linear or quadratic kernel) were compared based on pathological complete response (defined on the excised tissues), on 100 draws with 75% as training set and 25% as test. RESULTS: The combination of features extracted from different MR images improved the classifier performance (more precisely, the features from T1W, T2W and DWI). The SVM with quadratic kernel showed the best performance with a mean AUC of 0.83, a sensitivity of 0.85 and a specificity of 0.75 in the test set. CONCLUSION: MRI-based radiomics may be relevant to predict NAC response in TN cancer. Our results promote the use of multi-contrast MRI sources for radiomics, providing enrich source of information to enhance model generalization.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Humanos , Imagen por Resonancia Magnética , Terapia Neoadyuvante , Estudios Retrospectivos , Máquina de Vectores de Soporte , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
18.
Magn Reson Imaging ; 81: 82-87, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34146651

RESUMEN

PURPOSE: This study aimed at introducing short-T1/T2 compartment to MR fingerprinting (MRF) at 3 T. Water that is bound to myelin macromolecules have significantly shorter T1 and T2 than free water and can be distinguished from free water by multi-compartment analysis. METHODS: We developed a new multi-inversion-recovery (mIR) water mapping-MRF based on an unbalanced steady-state coherent sequence (FISP). mIR pulses with an interval of 400 or 500 repetition times (TRs) were inserted into the conventional FISP MRF sequence. Data from our proposed mIR MRF was used to quantify different compartments, including myelin water, gray matter free water, and white matter free water, of brain water by virtue of the iterative non-negative least square (NNLS) with reweighting. Three healthy volunteers were scanned with mIR MRF on a clinical 3 T MRI. RESULTS: Using an extended phase graph simulation, we found that our proposed mIR scheme with four IR pulses allowed differentiation between short and long T1/T2 components. For in vivo experiments, we achieved the quantification of myelin water, gray matter water, and white matter water at an image resolution of 1.17 × 1.17 × 5 mm3/pixel. As compared to the conventional MRF technique with single IR, our proposed mIR improved the detection of myelin water content. In addition, mIR MRF using spiral-in/out trajectory provided a higher signal level compared with that with spiral-out trajectory. Myelin water quantification using mIR MRF with 4 IR and 5 IR pulses were qualitatively similar. Meanwhile, 5 IR MRF showed fewer artifacts in myelin water detection. CONCLUSION: We developed a new mIR MRF sequence for the rapid quantification of brain water compartments.


Asunto(s)
Algoritmos , Agua , Encéfalo/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Fantasmas de Imagen
19.
Neuroimage ; 239: 118285, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34147632

RESUMEN

There is an increasing interest in quantitative imaging of T1, T2 and diffusion contrast in the brain due to greater robustness against bias fields and artifacts, as well as better biophysical interpretability in terms of microstructure. However, acquisition time constraints are a challenge, particularly when multiple quantitative contrasts are desired and when extensive sampling of diffusion directions, high b-values or long diffusion times are needed for multi-compartment microstructure modeling. Although ultra-high fields of 7 T and above have desirable properties for many MR modalities, the shortening T2 and the high specific absorption rate (SAR) of inversion and refocusing pulses bring great challenges to quantitative T1, T2 and diffusion imaging. Here, we present the MESMERISED sequence (Multiplexed Echo Shifted Multiband Excited and Recalled Imaging of STEAM Encoded Diffusion). MESMERISED removes the dead time in Stimulated Echo Acquisition Mode (STEAM) imaging by an echo-shifting mechanism. The echo-shift (ES) factor is independent of multiband (MB) acceleration and allows for very high multiplicative (ESxMB) acceleration factors, particularly under moderate and long mixing times. This results in super-acceleration and high time efficiency at 7 T for quantitative T1 and diffusion imaging, while also retaining the capacity to perform quantitative T2 and B1 mapping. We demonstrate the super-acceleration of MESMERISED for whole-brain T1 relaxometry with total acceleration factors up to 36 at 1.8 mm isotropic resolution, and up to 54 at 1.25 mm resolution qT1 imaging, corresponding to a 6x and 9x speedup, respectively, compared to MB-only accelerated acquisitions. We then demonstrate highly efficient diffusion MRI with high b-values and long diffusion times in two separate cases. First, we show that super-accelerated multi-shell diffusion acquisitions with 370 whole-brain diffusion volumes over 8 b-value shells up to b = 7000 s/mm2 can be generated at 2 mm isotropic in under 8 minutes, a data rate of almost a volume per second, or at 1.8 mm isotropic in under 11 minutes, achieving up to 3.4x speedup compared to MB-only. A comparison of b = 7000 s/mm2 MESMERISED against standard MB pulsed gradient spin echo (PGSE) diffusion imaging shows 70% higher SNR efficiency and greater effectiveness in supporting complex diffusion signal modeling. Second, we demonstrate time-efficient sampling of different diffusion times with 1.8 mm isotropic diffusion data acquired at four diffusion times up to 290 ms, which supports both Diffusion Tensor Imaging (DTI) and Diffusion Kurtosis Imaging (DKI) at each diffusion time. Finally, we demonstrate how adding quantitative T2 and B1+ mapping to super-accelerated qT1 and diffusion imaging enables efficient quantitative multi-contrast mapping with the same MESMERISED sequence and the same readout train. MESMERISED extends possibilities to efficiently probe T1, T2 and diffusion contrast for multi-component modeling of tissue microstructure.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Imagen Eco-Planar/métodos , Neuroimagen/métodos , Mapeo Encefálico/instrumentación , Mapeo Encefálico/métodos , Imagen de Difusión por Resonancia Magnética/instrumentación , Imagen Eco-Planar/instrumentación , Humanos , Procesamiento de Imagen Asistido por Computador , Modelos Teóricos , Neuroimagen/instrumentación
20.
J Magn Reson Imaging ; 54(4): 1088-1095, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33942426

RESUMEN

BACKGROUND: Fast multi-contrast echo planar MRI (EPIMix) has comparable diagnostic performance to standard MRI for detecting brain pathology but its performance in detecting acute cerebral infarctions has not been determined. PURPOSE: To assess the diagnostic performance of EPIMix for the detection of acute cerebral infarctions. STUDY TYPE: Retrospective observational cohort. POPULATION: One hundred and seventy-two consecutive patients with a clinical suspicion of non-hyperacute ischemic stroke (January 2018 to December 2019). FIELD STRENGTH AND SEQUENCE: 1.5 T or 3 T. EPIMix ((echo-planar based: diffusion weighted (DWI), T2*-weighted, T2-weighted, T2- and T1-fluid attenuated inversion recovery (FLAIR) images) vs. standard MRI: echo-planar DWI, echo-planar T2*-weighted or susceptibility weighted, turbo spin-echo T2-weighted, T2- and T1-FLAIR turbo spin-echo sequences. ASSESSMENT: Three neuroradiologists rated EPIMix and standard MRI on two separate occasions. Incongruent assessments were resolved in consensus with the fourth reader. The ratings included the diagnostic category (acute infarct, normal, and other pathology). Congruent diagnoses together with consensus diagnoses served as the reference standard. STATISTICAL TESTS: The diagnostic performance of EPIMix and standard MRI against the reference standard was calculated by the area under the receiver operating characteristic curve (AUC) and compared by DeLong's test. Sensitivity and specificity were determined. Inter-rater agreements were evaluated by Fleiss's kappa. RESULTS: Of 172 patients (61 ± 16 years, 103 men), acute infarcts were present in 80/172 (47%), normal findings in 60/172 (35%), and other pathology in 32/172 (19%). Across readers, the AUCs were .94-.95 for EPIMix and .95-.99 for standard MRI, with overlapping 95% CI (P = .02-.18). Inter-rater agreement for EPIMix was 0.90 and for standard MRI was 0.93. The sensitivity for EPIMix and standard MRI was 88-91% and 91-98%, respectively, while the specificity was 98-100% and 98-99%, both with overlapping 95% CI. CONCLUSION: Multi-contrast echo planar MRI showed a high but marginally lower diagnostic performance compared to standard MRI for the detection and characterization of acute brain infarct. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Accidente Cerebrovascular Isquémico , Encéfalo/diagnóstico por imagen , Imagen Eco-Planar , Humanos , Imagen por Resonancia Magnética , Masculino , Estudios Retrospectivos , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA