Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 131(7): 1133-1147, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37208295

RESUMEN

BACKGROUND AND AIMS: The genus Buxus has high levels of endemism in the Caribbean flora, with ~50 taxa. In Cuba, 82 % grow on ultramafic substrates and 59 % are nickel (Ni) accumulators or Ni hyperaccumulators. Hence it is an ideal model group to study if this diversification could be related to adaptation to ultramafic substrates and to Ni hyperaccumulation. METHODS: We generated a well-resolved molecular phylogeny, including nearly all of the Neotropical and Caribbean Buxus taxa. To obtain robust divergence times we tested for the effects of different calibration scenarios, and we reconstructed ancestral areas and ancestral character states. Phylogenetic trees were examined for trait-independent shifts in diversification rates and we used multi-state models to test for state-dependent speciation and extinction rates. Storms could have contributed to Cuba acting as a species pump and to Buxus reaching other Caribbean islands and northern South America'. KEY RESULTS: We found a Caribbean Buxus clade with Mexican ancestors, encompassing three major subclades, which started to radiate during the middle Miocene (13.25 Mya). Other Caribbean islands and northern South America were reached from ~3 Mya onwards. CONCLUSIONS: An evolutionary scenario is evident in which Buxus plants able to grow on ultramafic substrates by exaptation became ultramafic substrate endemics and evolved stepwise from Ni tolerance through Ni accumulation to Ni hyperaccumulation, which has triggered species diversification of Buxus in Cuba. Storms could have contributed to Cuba acting as a species pump and to Buxus reaching other Caribbean islands and northern South America'.


Asunto(s)
Buxus , Níquel , Filogenia , Cuba , Islas , Región del Caribe , Indias Occidentales , Especiación Genética
2.
Ann Bot ; 130(2): 199-214, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35737947

RESUMEN

BACKGROUND AND AIMS: Atripliceae evolved and diversified by dispersals and radiations across continents in both hemispheres, colonizing similar semi-arid, saline-alkaline environments throughout the world. Meanwhile, its species developed different life forms, photosynthetic pathways, mono- or dioecy, and different morphological features in flowers, fruiting bracteoles and seeds. In this study, we introduce a first approach to the macroevolutionary patterns and diversification dynamics of the Atripliceae to understand how time, traits, speciation, extinction and new habitats influenced the evolution of this lineage. METHODS: We performed molecular phylogenetic analyses and clade age estimation of Atripliceae to apply time-, trait- and geographic-dependent diversification analyses and ancestral state reconstructions to explore diversification patterns within the tribe. KEY RESULTS: Opposite diversification dynamics within the two major clades of Atripliceae, the Archiatriplex and Atriplex clades, could explain the unbalanced species richness between them; we found low mean speciation rates in the Archiatriplex clade and one shift to higher speciation rates placed in the branch of the Atriplex core. This acceleration in diversification seems to have started before the transition between C3 and C4 metabolism and before the arrival of Atriplex in the Americas, and matches the Mid-Miocene Climatic Optimum. Besides, the American species of Atriplex exhibit slightly higher net diversification rates than the Australian and Eurasian ones. While time seems not to be associated with diversification, traits such as life form, photosynthetic pathway and plant sex may have played roles as diversification drivers. CONCLUSIONS: Traits more than time played a key role in Atripliceae diversification, and we could speculate that climate changes could have triggered speciation. The extreme arid or saline environments where Atripliceae species prevail may explain its particular evolutionary trends and trait correlations compared with other angiosperms and highlight the importance of conservation efforts needed to preserve them as genetic resources to deal with climatic changes.


Asunto(s)
Amaranthaceae , Chenopodiaceae , Amaranthaceae/genética , Australia , Biodiversidad , Evolución Biológica , Especiación Genética , Fenotipo , Filogenia
3.
Am J Bot ; 109(6): 922-938, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35446437

RESUMEN

PREMISE: Biodiversity results from origination and extinction, justifying interest in identifying traits that influence this balance. Traits implicated in the success or failure of lineages include dispersal, colonization ability, and geographic range size. We investigated the impact of dispersal and range size on contemporary diversity in the Rosales. METHODS: We used the multiple-state speciation and extinction (MuSSE) method to explore the effects on genus-level diversification of two genus-level traits (geographic range size and within-genus proclivity to speciate) and two species traits (seed dispersal and growth habit) and the multiple hidden-state speciation and extinction (MuHiSSE) method for species-level associations. Finally, we conducted a PGLS (phylogenetic least-squares) analysis to distinguish between speciation within genera versus origination of new genera. RESULTS: At the species level, animal dispersal enhances diversification rate in both woody and herbaceous lineages, while woody lineages without animal dispersal have higher extinction rates than speciation rates. At the genus level, herbaceous taxa have positive diversification rates regardless of other character states. Diversification rate variation is also explained by two interactions: (1) a three-way interaction between large geographic range, animal-mediated dispersal, and high within-genus species richness, whereby genera possessing all three traits have high diversification rates, and (2) a four-way interaction by which the three-way interaction is stronger in woody genera than in herbaceous genera. CONCLUSIONS: Colonization ability may underlie the relationship between dispersal type and range size and may influence past diversification rates by decreasing extinction rates during late Cenozoic climate volatility. Thus, colonization ability could be used to predict future extinction risk to aid conservation.


Asunto(s)
Rosales , Dispersión de Semillas , Biodiversidad , Clima , Especiación Genética , Filogenia
4.
New Phytol ; 225(2): 1023-1032, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31469440

RESUMEN

Geophytes, plants with buds on underground structures, are found throughout the plant tree of life. These below ground structures allow plants to inhabit highly seasonal and disturbance-prone environments across ecosystems. Past researchers have hypothesised that the bulbous, cormous and tuberous habits promote diversification, but this had yet to be tested. Using a comprehensive monocot data set of almost 13 000 taxa, we investigated the effects of the geophytic habit on diversification using both state-dependent and state-independent models. We found that geophytes exhibit increased rates of diversification relative to nongeophytes. State-dependent analyses recovered higher yet similar rates of diversification for bulbous, cormous and tuberous taxa compared with rhizomatous and nongeophytic taxa. However, the state-independent model returned no difference in rates among the different traits. Geophytism shows higher rates of diversification relative to nongeophytes but we found little support for the hypothesis that the evolution of the bulb, corm or tuber appears to provide a diversification increase relative to rhizomatous and nongeophytic taxa. Our broad-scale analysis highlights the overall evolutionary importance of the geophytic habit (i.e. belowground bud placement). However, our results also suggest that belowground morphological diversity alone cannot explain this rate increase. In order to further test the evolutionary significance of these underground structures, future studies should consider these in combination with other biotic and abiotic factors.


Asunto(s)
Biodiversidad , Flores/fisiología , Simulación por Computador , Extinción Biológica , Especiación Genética , Filogenia , Procesos Estocásticos
5.
BMC Evol Biol ; 19(1): 168, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31412761

RESUMEN

BACKGROUND: Across the tree of life there are numerous evolutionary transitions between different habitats (i.e., aquatic and terrestrial or marine and freshwater). Many of these dramatic evolutionary shifts parallel developmental shifts that require physiological, anatomical and behavioral changes for survival and reproduction. Diadromy (scheduled movement between marine and freshwater) has been characterized as a behavior that acts as an evolutionary intermediate state between marine and freshwater environments, implying that diadromous lineages are evolutionarily transient. This hypothesis comes with assumptions regarding the rates of evolutionary transitions in and out of diadromy as well as rates of speciation and extinction in diadromous fishes. RESULTS: Based on a published phylogeny of 7822 species of ray-finned fishes, state speciation and extinction models of evolutionary transition between marine, freshwater, and diadromous species suggest transition rates out of diadromy are 5-100 times higher that transition between marine and freshwater or into diadromy. Additionally, high speciation and low extinction rates separate diadromous fishes from marine and freshwater species. As a result, net diversification (net diversification = speciation - extinction) is about 7-40 times higher in diadromous fishes compared to freshwater and marine respectively. Together the transition, speciation, and extinction rates suggest diadromy is the least stable of the three states. CONCLUSION: Evolutionary transitions to diadromy are rare in fishes. However, once established, diversification rates in diadromous lineages are high compared to both marine and freshwater species. Diadromous lineages tend to be more transient than marine or freshwater lineages and are found to give rise to marine and freshwater specialists in addition to diadromous descendants. Although diadromy is not a necessary evolutionary intermediate between marine and freshwater, these results support the interpretation of diadromy as an important, occasionally intermediate state, that contributes to biodiversity in fishes in all environments. This evolutionary instability of diadromous lineages is counteracted by their relatively high diversification rates. These findings highlight the importance of integrating the dynamics of diversification and major evolutionary transitions for understanding macroevolutionary patterns.


Asunto(s)
Migración Animal , Evolución Biológica , Ecosistema , Peces/genética , Animales , Biodiversidad , Peces/clasificación , Peces/fisiología , Agua Dulce , Especiación Genética , Modelos Biológicos , Filogenia , Agua de Mar
6.
Brain Behav Evol ; 91(3): 148-157, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30099462

RESUMEN

When comparative neuromorphological studies are extended into evolutionary contexts, traits of interest are often linked to diversification patterns. Features demonstrably associated with increases in diversification rates and the infiltration or occupation of novel niche spaces are often termed "key innovations." Within the past decade, phylogenetically informed methods have been developed to test key innovation hypotheses and evaluate the influence these traits have had in shaping modern faunas. This is primarily accomplished by estimating state-dependent speciation and extinction rates. These methods have important caveats and guidelines related to both calculation and interpretation, which are necessary to understand in cases of discrete (qualitative) character analysis, as can be common when studying the evolution of neuromorphology. In such studies, inclusion of additional characters, acknowledgement of character codistribution, and addition of sister clade comparison should be explored to ensure model accuracy. Even so, phylogenies provide a survivor-only examination of character evolution, and paleontological contexts may be necessary to replicate and confirm results. Here, I review these issues in the context of selective brain cooling - a neurovascular-mediated osmoregulatory physiology that dampens hypothalamic responses to heat stress and reduces evaporative water loss in large-bodied mammals. This binary character provides an example of the interplay between sample size, evenness, and character codistribution. Moreover, it allows for an opportunity to compare phylogenetically constrained results with paleontological data, augmenting survivor-only analyses with observable extinction patterns. This trait- dependent diversification example indicates that selective brain cooling is significantly associated with the generation of modern large-mammal faunas. Importantly, paleontological data validate phylogenetic patterns and demonstrate how suites of characters worked in concert to establish the large-mammal communities of today.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Encéfalo/fisiología , Fósiles , Osmorregulación/fisiología , Filogenia , Animales , Encéfalo/irrigación sanguínea
7.
Mol Phylogenet Evol ; 127: 878-890, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29958983

RESUMEN

Pollinator-mediated selection is a major driver of evolution in flowering plants, contributing to the vast diversity of floral features. Despite long-standing interest in floral variation and the evolution of pollination syndromes in Polemoniaceae, the evolution of floral traits and known pollinators has not been investigated in an explicit phylogenetic context. Here we explore macroevolutionary patterns of both pollinator specificity and three floral traits long considered important determinants of pollinator attraction across the most comprehensive species-level phylogenetic tree yet produced for the family. The presence of floral chlorophyll is reconstructed as the ancestral character state of the family, even though the presence of floral anthocyanins is the most prevalent floral pigment in extant taxa. Mean corolla length and width of the opening of the floral tube are correlated, and both appear to vary with pollinator type. The evolution of pollination systems appears labile, with multiple gains and losses of selfing and conflicting implications for patterns of diversification. Explicit testing of diversification models rejects the hypothesis that selfing is an evolutionary dead-end. This study begins to disentangle the individual components that comprise pollination syndromes and lays the foundation for future work on the genetic mechanisms that control each trait.


Asunto(s)
Biodiversidad , Evolución Biológica , Flores/fisiología , Animales , Extinción Biológica , Flores/genética , Análisis de los Mínimos Cuadrados , Fenotipo , Filogenia , Polinización , Análisis de Componente Principal , Carácter Cuantitativo Heredable , Reproducción/fisiología , Procesos Estocásticos , Factores de Tiempo
8.
Am J Bot ; 105(3): 348-363, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29719043

RESUMEN

PREMISE OF THE STUDY: Polyploidy or whole-genome duplication (WGD) pervades the evolutionary history of angiosperms. Despite extensive progress in our understanding of WGD, the role of these events in promoting diversification is still not well understood. We seek to clarify the possible association between WGD and diversification rates in flowering plants. METHODS: Using a previously published phylogeny spanning all land plants (31,749 tips) and WGD events inferred from analyses of the 1000 Plants (1KP) transcriptome data, we analyzed the association of WGDs and diversification rates following numerous WGD events across the angiosperms. We used a stepwise AIC approach (MEDUSA), a Bayesian mixture model approach (BAMM), and state-dependent diversification analyses (MuSSE) to investigate patterns of diversification. Sister-clade comparisons were used to investigate species richness after WGDs. KEY RESULTS: Based on the density of 1KP taxon sampling, 106 WGDs were unambiguously placed on the angiosperm phylogeny. We identified 334-530 shifts in diversification rates. We found that 61 WGD events were tightly linked to changes in diversification rates, and state-dependent diversification analyses indicated higher speciation rates for subsequent rounds of WGD. Additionally, 70 of 99 WGD events showed an increase in species richness compared to the sister clade. CONCLUSIONS: Forty-six of the 106 WGDs analyzed appear to be closely associated with upshifts in the rate of diversification in angiosperms. Shifts in diversification do not appear more likely than random within a four-node lag phase following a WGD; however, younger WGD events are more likely to be followed by an upshift in diversification than older WGD events.


Asunto(s)
Evolución Biológica , Duplicación de Gen , Genoma de Planta , Magnoliopsida/genética , Filogenia , Poliploidía , Teorema de Bayes , Evolución Molecular , Especiación Genética , Genómica/métodos , Modelos Genéticos , Especificidad de la Especie , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA