Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36835047

RESUMEN

In clinical conditions such as diaphragm paralysis or mechanical ventilation, disuse-induced diaphragmatic dysfunction (DIDD) is a condition that poses a threat to life. MuRF1 is a key E3-ligase involved in regulating skeletal muscle mass, function, and metabolism, which contributes to the onset of DIDD. We investigated if the small-molecule mediated inhibition of MuRF1 activity (MyoMed-205) protects against early DIDD after 12 h of unilateral diaphragm denervation. Wistar rats were used in this study to determine the compound's acute toxicity and optimal dosage. For potential DIDD treatment efficacy, diaphragm contractile function and fiber cross-sectional area (CSA) were evaluated. Western blotting investigated potential mechanisms underlying MyoMed-205's effects in early DIDD. Our results indicate 50 mg/kg bw MyoMed-205 as a suitable dosage to prevent early diaphragmatic contractile dysfunction and atrophy following 12 h of denervation without detectable signs of acute toxicity. Mechanistically, treatment did not affect disuse-induced oxidative stress (4-HNE) increase, whereas phosphorylation of (ser632) HDAC4 was normalized. MyoMed-205 also mitigated FoxO1 activation, inhibited MuRF2, and increased phospho (ser473) Akt protein levels. These findings may suggest that MuRF1 activity significantly contributes to early DIDD pathophysiology. Novel strategies targeting MuRF1 (e.g., MyoMed-205) have potential therapeutic applications for treating early DIDD.


Asunto(s)
Diafragma , Atrofia Muscular , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Animales , Ratas , Diafragma/metabolismo , Diafragma/patología , Atrofia Muscular/metabolismo , Estrés Oxidativo , Ratas Wistar , Respiración Artificial/efectos adversos , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Motivos Tripartitos/antagonistas & inhibidores , Proteínas de Motivos Tripartitos/metabolismo
2.
Cell Biochem Biophys ; 80(2): 415-426, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35191000

RESUMEN

Ubiquitin proteasome system was found to contribute to bone loss by regulating bone turnover and metabolism, by modulating osteoblast differentiation and bone formation as well as formation of osteoclasts that contribute to bone resorption. Muscle Ring Finger (MuRF) are novel ubiquitin ligases, which are muscle specific and have not been much implicated in the bone but have been implicated in several human diseases including heart failure and skeletal muscle atrophy. This study is aimed at understanding the role of MuRF1, MuRF2, MuRF3 and Atrogin which are distinct MuRF family proteins in bone homeostasis. Wildtype, heterozygous and homozygous mice of each of the isoforms were used and the bone microarchitecture and mechanical properties were assessed using microCT and biomechanics. MuRF1 depletion was found to alter cortical properties in both males and females, but only trabecular spacing in the females. MuRF2 depletion let to no changes in the cortical and trabecular properties but change in the strain to yield in the females. Depletion of MuRF3 led to decrease in the cortical properties in the females and increase in the trabecular properties in the males. Atrogin depletion was found to reduce cortical properties in both males and females, whereas some trabecular properties were found to be reduced in the females. Each muscle-specific ligase was found to alter the bone structure and mechanical properties in a distinct a sex-dependent manner.


Asunto(s)
Proteínas Musculares , Ubiquitina-Proteína Ligasas , Animales , Femenino , Masculino , Ratones , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/metabolismo , Músculos/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
3.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672385

RESUMEN

The muscle-specific ubiquitin ligase MuRF1 regulates muscle catabolism during chronic wasting states, although its roles in general metabolism are less-studied. Here, we metabolically profiled MuRF1-deficient knockout mice. We also included knockout mice for MuRF2 as its closely related gene homolog. MuRF1 and MuRF2-KO (knockout) mice have elevated serum glucose, elevated triglycerides, and reduced glucose tolerance. In addition, MuRF2-KO mice have a reduced tolerance to a fat-rich diet. Western blot and enzymatic studies on MuRF1-KO skeletal muscle showed perturbed FoxO-Akt signaling, elevated Akt-Ser-473 activation, and downregulated oxidative mitochondrial metabolism, indicating potential mechanisms for MuRF1,2-dependent glucose and fat metabolism regulation. Consistent with this, the adenoviral re-expression of MuRF1 in KO mice normalized Akt-Ser-473, serum glucose, and triglycerides. Finally, we tested the MuRF1/2 inhibitors MyoMed-205 and MyoMed-946 in a mouse model for type 2 diabetes mellitus (T2DM). After 28 days of treatment, T2DM mice developed progressive muscle weakness detected by wire hang tests, but this was attenuated by the MyoMed-205 treatment. While MyoMed-205 and MyoMed-946 had no significant effects on serum glucose, they did normalize the lymphocyte-granulocyte counts in diabetic sera as indicators of the immune response. Thus, small molecules directed to MuRF1 may be useful in attenuating skeletal muscle strength loss in T2DM conditions.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Experimental/complicaciones , Proteínas Musculares/metabolismo , Enfermedades Musculares/tratamiento farmacológico , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Recuento de Células Sanguíneas , Metabolismo de los Hidratos de Carbono/genética , Diabetes Mellitus Experimental/metabolismo , Proteína Forkhead Box O3/metabolismo , Hiperglucemia/genética , Hiperglucemia/terapia , Metabolismo de los Lípidos/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Terapia Molecular Dirigida , Proteínas Musculares/genética , Enfermedades Musculares/etiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética
4.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32630118

RESUMEN

Skeletal muscle wasting represents a common trait in many conditions, including aging, cancer, heart failure, immobilization, and critical illness. Loss of muscle mass leads to impaired functional mobility and severely impedes the quality of life. At present, exercise training remains the only proven treatment for muscle atrophy, yet many patients are too ill, frail, bedridden, or neurologically impaired to perform physical exertion. The development of novel therapeutic strategies that can be applied to an in vivo context and attenuate secondary myopathies represents an unmet medical need. This review discusses recent progress in understanding the molecular pathways involved in regulating skeletal muscle wasting with a focus on pro-catabolic factors, in particular, the ubiquitin-proteasome system and its activating muscle-specific E3 ligase RING-finger protein 1 (MuRF1). Mechanistic progress has provided the opportunity to design experimental therapeutic concepts that may affect the ubiquitin-proteasome system and prevent subsequent muscle wasting, with novel advances made in regards to nutritional supplements, nuclear factor kappa-light-chain-enhancer of activated B cells (NFB) inhibitors, myostatin antibodies, ß2 adrenergic agonists, and small-molecules interfering with MuRF1, which all emerge as a novel in vivo treatment strategies for muscle wasting.


Asunto(s)
Terapia Molecular Dirigida , Atrofia Muscular/tratamiento farmacológico , Animales , Humanos , Proteínas Musculares/antagonistas & inhibidores , Proteínas Musculares/metabolismo , Atrofia Muscular/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Motivos Tripartitos/antagonistas & inhibidores , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo
5.
Skelet Muscle ; 10(1): 12, 2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32340625

RESUMEN

BACKGROUND: Pulmonary hypertension leads to right ventricular heart failure and ultimately to cardiac cachexia. Cardiac cachexia induces skeletal muscles atrophy and contractile dysfunction. MAFbx and MuRF1 are two key proteins that have been implicated in chronic muscle atrophy of several wasting states. METHODS: Monocrotaline (MCT) was injected over eight weeks into mice to establish pulmonary hypertension as a murine model for cardiac cachexia. The effects on skeletal muscle atrophy, myofiber force, and selected muscle proteins were evaluated in wild-type (WT), MuRF1, and MuRF2-KO mice by determining muscle weights, in vitro muscle force and enzyme activities in soleus and tibialis anterior (TA) muscle. RESULTS: In WT, MCT treatment induced wasting of soleus and TA mass, loss of myofiber force, and depletion of citrate synthase (CS), creatine kinase (CK), and malate dehydrogenase (MDH) (all key metabolic enzymes). This suggests that the murine MCT model is useful to mimic peripheral myopathies as found in human cardiac cachexia. In MuRF1 and MuRF2-KO mice, soleus and TA muscles were protected from atrophy, contractile dysfunction, while metabolic enzymes were not lowered in MuRF1 or MuRF2-KO mice. Furthermore, MuRF2 expression was lower in MuRF1KO mice when compared to C57BL/6 mice. CONCLUSIONS: In addition to MuRF1, inactivation of MuRF2 also provides a potent protection from peripheral myopathy in cardiac cachexia. The protection of metabolic enzymes in both MuRF1KO and MuRF2KO mice as well as the dependence of MuRF2 expression on MuRF1 suggests intimate relationships between MuRF1 and MuRF2 during muscle atrophy signaling.


Asunto(s)
Hipertensión Pulmonar/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Citrato (si)-Sintasa/sangre , Creatina Quinasa/sangre , Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/patología , Malato Deshidrogenasa/sangre , Ratones , Ratones Endogámicos C57BL , Contracción Muscular , Proteínas Musculares/metabolismo , Fuerza Muscular , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Atrofia Muscular/etiología , Atrofia Muscular/patología , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
6.
Braz. j. med. biol. res ; 52(9): e8551, 2019. graf
Artículo en Inglés | LILACS | ID: biblio-1019565

RESUMEN

Fibroblasts are a highly heterogeneous population of cells, being found in a large number of different tissues. These cells produce the extracellular matrix, which is essential to preserve structural integrity of connective tissues. Fibroblasts are frequently engaged in migration and remodeling, exerting traction forces in the extracellular matrix, which is crucial for matrix deposition and wound healing. In addition, previous studies performed on primary myoblasts suggest that the E3 ligase MuRF2 might function as a cytoskeleton adaptor. Here, we hypothesized that MuRF2 also plays a functional role in skeletal muscle fibroblasts. We found that skeletal muscle fibroblasts express MuRF2 and its siRNA knock-down promoted decreased fibroblast migration, cell border accumulation of polymerized actin, and down-regulation of the phospho-Akt expression. Our results indicated that MuRF2 was necessary to maintain the actin cytoskeleton functionality in skeletal muscle fibroblasts via Akt activity and exerted an important role in extracellular matrix remodeling in the skeletal muscle tissue.


Asunto(s)
Animales , Ratas , Diferenciación Celular/fisiología , Músculo Esquelético/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Proliferación Celular/fisiología , Fibroblastos/fisiología , Proteínas Musculares/fisiología , Western Blotting , Técnica del Anticuerpo Fluorescente , Músculo Esquelético/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Fibroblastos/metabolismo , Proteínas Musculares/metabolismo
7.
J Cachexia Sarcopenia Muscle ; 7(2): 165-80, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27493870

RESUMEN

BACKGROUND: The Muscle-specific RING-finger (MuRF) protein family of E3 ubiquitin ligases is important for maintenance of muscular structure and function. MuRF proteins mediate adaptation of striated muscles to stress. MuRF2 and MuRF3 bind to microtubules and are implicated in sarcomere formation with noticeable functional redundancy. However, if this redundancy is important for muscle function in vivo is unknown. Our objective was to investigate cooperative function of MuRF2 and MuRF3 in the skeletal muscle and the heart in vivo. METHODS: MuRF2 and MuRF3 double knockout mice (DKO) were generated and phenotypically characterized. Skeletal muscle and the heart were investigated by morphological measurements, histological analyses, electron microscopy, immunoblotting, and real-time PCR. Isolated muscles were subjected to in vitro force measurements. Cardiac function was determined by echocardiography and working heart preparations. Function of cardiomyocytes was measured in vitro. Cell culture experiments and mass-spectrometry were used for mechanistic analyses. RESULTS: DKO mice showed a protein aggregate myopathy in skeletal muscle. Maximal force development was reduced in DKO soleus and extensor digitorum longus. Additionally, a fibre type shift towards slow/type I fibres occurred in DKO soleus and extensor digitorum longus. MuRF2 and MuRF3-deficient hearts showed decreased systolic and diastolic function. Further analyses revealed an increased expression of the myosin heavy chain isoform beta/slow and disturbed calcium handling as potential causes for the phenotype in DKO hearts. CONCLUSIONS: The redundant function of MuRF2 and MuRF3 is important for maintenance of skeletal muscle and cardiac structure and function in vivo.

8.
Metabolomics ; 11(2): 312-322, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28325996

RESUMEN

The muscle-specific ubiquitin ligases MuRF1, MuRF2, MuRF3 have been reported to have overlapping substrate specificities, interacting with each other as well as proteins involved in metabolism and cardiac function. In the heart, all three MuRF family proteins have proven critical to cardiac responses to ischemia and heart failure. The non-targeted metabolomics analysis of MuRF1-/-, MuRF2-/-, and MuRF3-/- hearts was initiated to investigate the hypothesis that MuRF1, MuRF2, and MuRF3 have a similarly altered metabolome, representing alterations in overlapping metabolic processes. Ventricular tissue was flash frozen and quantitatively analyzed by GC/MS using a library built upon the Fiehn GC/MS Metabolomics RTL Library. Non-targeted metabolomic analysis identified significant differences (via VIP statistical analysis) in taurine, myoinositol, and stearic acid for the three MuRF-/- phenotypes relative to their matched controls. Moreover, pathway enrichment analysis demonstrated that MuRF1-/- had significant changes in metabolite(s) involved in taurine metabolism and primary acid biosynthesis while MuRF2-/- had changes associated with ascorbic acid/aldarate metabolism (via VIP and t-test analysis vs. sibling-matched wildtype controls). By identifying the functional metabolic consequences of MuRF1, MuRF2, and MuRF3 in the intact heart, non-targeted metabolomics analysis discovered common pathways functionally affected by cardiac MuRF family proteins in vivo. These novel metabolomics findings will aid in guiding the molecular studies delineating the mechanisms that MuRF family proteins regulate metabolic pathways. Understanding these mechanism is an important key to understanding MuRF family proteins' protective effects on the heart during cardiac disease.

9.
Cell Biochem Funct ; 32(1): 39-50, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23512667

RESUMEN

AIMS: Muscle ring finger (MuRF) proteins have been implicated in the transmission of mechanical forces to nuclear cell signaling pathways through their association with the sarcomere. We recently reported that MuRF1, but not MuRF2, regulates pathologic cardiac hypertrophy in vivo. This was surprising given that MuRF1 and MuRF2 interact with each other and many of the same sarcomeric proteins experimentally. METHODS AND RESULTS: Mice missing all four MuRF1 and MuRF2 alleles [MuRF1/MuRF2 double null (DN)] were born with a massive spontaneous hypertrophic cardiomyopathy and heart failure; mice that were null for one of the genes but heterozygous for the other (i.e. MuRF1(-/-) //MuRF2(+/-) or MuRF1(+/-) //MuRF2(-/-) ) were phenotypically identical to wild-type mice. Microarray analysis of genes differentially-expressed between MuRF1/MuRF2 DN, mice missing three of the four alleles and wild-type mice revealed a significant enrichment of genes regulated by the E2F transcription factor family. More than 85% of the differentially-expressed genes had E2F promoter regions (E2f:DP; P<0.001). Western analysis of E2F revealed no differences between MuRF1/MuRF2 DN hearts and wild-type hearts; however, chromatin immunoprecipitation studies revealed that MuRF1/MuRF2 DN hearts had significantly less binding of E2F1 in the promoter regions of genes previously defined to be regulated by E2F1 (p21, Brip1 and PDK4, P<0.01). CONCLUSIONS: These studies suggest that MuRF1 and MuRF2 play a redundant role in regulating developmental physiologic hypertrophy, by regulating E2F transcription factors essential for normal cardiac development by supporting E2F localization to the nucleus, but not through a process that degrades the transcription factor.


Asunto(s)
Cardiomegalia/metabolismo , Corazón/fisiología , Proteínas Musculares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Animales Recién Nacidos , Cardiomegalia/genética , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Expresión Génica , Corazón/crecimiento & desarrollo , Ratones , Ratones Noqueados , Proteínas Musculares/genética , Regiones Promotoras Genéticas , Sarcómeros/metabolismo , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/genética
10.
Metabolism ; 62(10): 1495-502, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23866982

RESUMEN

OBJECTIVE: The mechanistic role of the ubiquitin ligases atrogin-1 and MuRF1 in glucocorticoid-induced muscle wasting is not fully understood. Here, we tested the hypothesis that glucocorticoid-induced muscle atrophy is at least in part linked to atrogin-1 and MuRF1 expression and that the ubiquitin ligases are regulated by compensatory mechanisms. METHODS: The expression of atrogin-1 and MuRF1 was suppressed individually or in combination in cultured L6 myotubes by using siRNA technique. Myotubes were treated with dexamethasone followed by determination of mRNA and protein levels for atrogin-1 and MuRF1, protein synthesis and degradation rates, and myotube morphology. RESULTS: Suppression of atrogin-1 resulted in increased expression of MuRF1 and vice versa, suggesting that the ubiquitin ligases are regulated by compensatory mechanisms. Simultaneous suppression of atrogin-1 and MuRF1 resulted in myotube hypertrophy, mainly reflecting stimulated protein synthesis, and prevented dexamethasone-induced myotube atrophy, mainly reflecting inhibited protein degradation. CONCLUSIONS: The results provide evidence for a link between upregulated atrogin-1 and MuRF1 expression and glucocorticoid-induced muscle atrophy. The study also suggests that atrogin-1 and MuRF1 levels are regulated by compensatory mechanisms and that inhibition of both ubiquitin ligases may be needed to prevent glucocorticoid-induced muscle proteolysis and atrophy.


Asunto(s)
Dexametasona/farmacología , Fibras Musculares Esqueléticas/patología , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Atrofia Muscular/patología , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Células Cultivadas , Glucocorticoides/farmacología , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Células Musculares/patología , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/inducido químicamente , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/genética , Proteolisis/efectos de los fármacos , ARN Mensajero/genética , Ratas , Proteínas de Motivos Tripartitos , Ubiquitina/genética , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA