Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Cureus ; 16(8): e65993, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39221334

RESUMEN

Sir Ronald Ross, a British medical doctor and researcher, is renowned for his pioneering work in malaria research. His discovery of the malaria parasite's lifecycle within mosquitoes revolutionized the understanding and control of malaria, transitioning the field from the miasma theory to vector-based strategies. This literature review aims to explore the comprehensive contributions of Ronald Ross to malaria research and their enduring impact on public health.

2.
Heliyon ; 10(4): e26488, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38420413

RESUMEN

Mosquito-borne disease (MBD) control depends largely on a range of public health measures aimed at reducing the spread of infected mosquitoes and human-mosquito contact. These public health measures are generally driven by voluntary, though in few occasions obligatory (e.g., indoor residual spraying), self-protective behaviors by individuals and communities. To develop effective interventions that promote public health measures, the underlying mechanisms that contribute to self-protective behaviors should be well understood. The present scoping review aims to provide a timely overview of how behavior change theories have been applied in the context of MBD control. In addition, the review proposes an integrated model that includes identified key determinants in MBD control behavior, and identifies knowledge gaps to inform future research. A comprehensive search was performed in several databases: MEDLINE, PsycINFO, Embase (Ovid), Web of Science Core Collection, CINAHL, ERIC, and Econ.Lit (EBSCO), as well as registered trials and reviews in CENTRAL and PROSPERO to identify ongoing or unpublished studies. References of included studies and literature reviews were screened, as well as citation tracking in Web of Science, Google Scholar and the malaria database of Behavior Change Impact. This scoping review identified a total of 28 studies. Most studies targeted personal-protective behavioral measures such as adopting, using, or maintaining insecticide-treated bed nets, and were most frequently informed by risk-related behavioral theories. Knowledge and perceived susceptibility of the risk, and related perceived efficacy were identified as key behavioral determinants in the conceptual, integrated human behavior model for MBD control. Numerous studies related to MBD control behavior, especially those focusing on knowledge-attitudes-practices (KAP), often lack a solid theoretical framework, which risks depicting an incomplete understanding of behaviors. In addition, by incorporating various behavioral disciplines into the domain of MBD control, a more comprehensive understanding of key behavioral determinants may be developed and applied in future research and MBD control efforts.

3.
J Med Entomol ; 61(1): 132-141, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-37948130

RESUMEN

Prey populations that encounter predators experience density-mediated effects through lethality and associated numerical changes in the population. Prey also exhibit trait-mediated effects through nonlethal alterations in phenotypic traits associated with exposure to predators. Immature stages of mosquitoes commonly co-occur in habitats along with predators, a natural source of mortality and potential biocontrol agent. Toxorhynchites rutilus Coquillett 1896 is a natural source of mortality with potential as a biological control agent. Previous studies have shown that predation and the mere presence of Tx. rutilus (predator cues) can alter the life-history traits of Aedes aegypti (L. 1762). In addition to observed reductions in recruitment of adults (lethality), exposure to Tx. rutilus without consumption resulted in adult Ae. aegypti females with altered growth and reduced lifespan. To determine the influence of predation on the reproductive biology of Ae. aegypti, we tested the hypothesis that predation, or exposure to predator cues, will compromise the reproduction of adult survivors through reductions in fecundity (egg batch size) and fertility (hatch rate). We observed that for both female and male Ae. aegypti, survival to adulthood was the lowest and development time the shortest in treatments containing prey removal effects, attributable to predation and treatment manipulations of density reduction. There were effects of Ae. aegypti weight, but not predation treatments, on fecundity and fertility. Results suggest that predator-mediated effects on Ae. aegypti derive from lethal effects due to consumption and alterations in other phenotypic traits of survivors, including development, weight, lifespan of adults, and population growth, but not reproductive parameters measured here.


Asunto(s)
Aedes , Culicidae , Masculino , Femenino , Animales , Conducta Predatoria , Larva , Ecosistema , Fertilidad
4.
Proc Natl Acad Sci U S A ; 120(44): e2304339120, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37883438

RESUMEN

Malaria remains a devastating disease and, with current measures failing to control its transmission, there is a need for novel interventions. A family of proteins that have long been pursued as potential intervention targets are aquaporins, which are channels facilitating the movement of water and other solutes across membranes. We identify an aquaporin in malaria parasites and demonstrate that it is important for completion of Plasmodium development in the mosquito vector. Disruption of AQP2 in the human parasite Plasmodium falciparum and the rodent parasite Plasmodium berghei blocks sporozoite production inside oocysts established on mosquito midguts, greatly limiting parasite infection of salivary glands and transmission to a new host. In vivo epitope tagging of AQP2 in P. berghei, combined with immunofluorescence assays, reveals that the protein is localized in vesicle-like organelles found in the cytoplasm of gametocytes, ookinetes, and sporozoites. The number of these organelles varies between individual parasites and lifecycle stages suggesting that they are likely part of a dynamic endomembrane system. Phylogenetic analysis confirms that AQP2 is unique to malaria and closely related parasites and most closely resembles intracellular aquaporins. Structure prediction analyses identify several unusual features, including a large accessory extracellular loop and an arginine-to-phenylalanine substitution in the selectivity filter principally determining pore function, a unique feature among known aquaporins. This in conjunction with the importance of AQP2 for malaria transmission suggests that AQP2 may be a fruitful target of antimalarial interventions.


Asunto(s)
Acuaporina 2 , Mosquitos Vectores , Proteínas Protozoarias , Animales , Malaria , Mosquitos Vectores/parasitología , Filogenia , Plasmodium berghei/metabolismo , Proteínas Protozoarias/metabolismo , Esporozoítos/metabolismo
5.
Cells ; 12(17)2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37681888

RESUMEN

Camillo Golgi was an esteemed Italian physician and biologist who made major advances in malaria research between the late 19th and early 20th centuries. His groundbreaking contributions in histology, especially through the development of the Golgi staining technique, revolutionized our understanding of cell structures-including Plasmodium parasites-through visualization. Golgi staining also allowed researchers to observe its complex life cycle while documenting it. His careful observations of malaria led to the identification and characterization of its various stages, both asexual forms within human red blood cells, as well as sexual forms carried by mosquito vectors. Golgi's research highlighted the key role mosquitoes play in malaria transmission. He demonstrated the presence of Plasmodium sporozoites within the salivary glands of infected mosquitoes, providing insight into its life cycle and the dynamics of parasite transmission. His comprehensive approach contributed significantly to our understanding of malaria as a systemic illness, leading to subsequent research efforts within this field. The Golgi Protein complex is often located within the cis-Golgi of blood parasite life cycles and mosquito stages, indicating its possible role in optimizing asexual development during blood stages. Furthermore, its expression can be conditionally repressed or its gene can be inactivated to optimize this potential role in improving its functionality for optimizing sexual development during blood stages. Camillo Golgi remains one of the leading lights of malaria research today. His innovative staining techniques, detailed observations, and insightful interpretations have laid the groundwork for subsequent discoveries and advancements in malaria studies. By deciphering intricate parasite life cycle interactions with hosts, his work has provided invaluable insights into malaria biology, pathogenesis, and epidemiology.


Asunto(s)
Culicidae , Malaria , Masculino , Humanos , Animales , Aparato de Golgi , Personal de Salud , Técnicas Histológicas
6.
Cureus ; 15(7): e41717, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37575782

RESUMEN

The recent emergence and re-emergence of viral infections transmitted by vectors, Zika, chikungunya, dengue, and others, is a cause for international concern. Here, we provide a summary of the current understanding of the transmission, clinical features, diagnosis, global burden, and the likelihood of future epidemics by these viruses. Arboviruses transmitted by mosquitoes are challenging to diagnose and can have surprising clinical complications. Dengue, chikungunya, and Zika are the most important diseases caused by arboviruses worldwide, especially in tropical and subtropical regions. These are transmitted to humans by day-biting Aedes aegypti and Aedes albopictus mosquitoes. In India, the increase in the incidence of dengue and chikungunya cases is primarily linked to the dissemination of Aedes aegypti. A rapid and accurate diagnosis is paramount for effectively controlling dengue outbreaks. As there is no vaccination or specific treatment available for these viruses, vector control is the only comprehensive solution available.

7.
Front Microbiol ; 14: 1195621, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293213

RESUMEN

Usutu virus (USUV) is a mosquito-borne flavivirus of African origin. Over the past decades, USUV has spread through Europe causing mass die-offs among multiple bird species. The natural transmission cycle of USUV involves Culex spp. mosquitoes as vectors and birds as amplifying hosts. Next to birds and mosquitoes, USUV has also been isolated from multiple mammalian species, including humans, which are considered dead-end hosts. USUV isolates are phylogenetically classified into an African and European branch, subdivided into eight genetic lineages (Africa 1, 2, and 3 and Europe 1, 2, 3, 4, and 5 lineages). Currently, multiple African and European lineages are co-circulating in Europe. Despite increased knowledge of the epidemiology and pathogenicity of the different lineages, the effects of co-infection and transmission efficacy of the co-circulating USUV strains remain unclear. In this study, we report a comparative study between two USUV isolates as follows: a Dutch isolate (USUV-NL, Africa lineage 3) and an Italian isolate (USUV-IT, Europe lineage 2). Upon co-infection, USUV-NL was consistently outcompeted by USUV-IT in mosquito, mammalian, and avian cell lines. In mosquito cells, the fitness advantage of USUV-IT was most prominently observed in comparison to the mammalian or avian cell lines. When Culex pipiens mosquitoes were orally infected with the different isolates, no overall differences in vector competence for USUV-IT and USUV-NL were observed. However, during the in vivo co-infection assay, it was observed that USUV-NL infectivity and transmission were negatively affected by USUV-IT but not vice versa.

8.
J Med Entomol ; 60(4): 718-724, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37167551

RESUMEN

We evaluated the behavioral responses of Aedes albopictus and Anopheles minimus to 3 isovaleric acid and lactic acid-based chemical lure blends and 2 individual alcohols, using Spatial Repellency Assay in a high-throughput screening system (HITSS). Five doses of 0.0002, 0.001, 0.0025, 0.005, and 0.01 g were tested per lure. A BG-lure was used as a reference standard. After 10-min exposure, the number of mosquitoes moving toward or away from the treated chamber was calculated. The results showed that all lures were repellent against Ae. albopictus except for Lure-4 (4% w/v isovaleric acid + 2% w/v lactic acid + 0.0025% w/v myristic acid + 2.5% w/v ammonium hydroxide) which showed a nonsignificant attractancy at the lowest dose. Significantly high spatial repellency was observed at the highest dose of all the tested lures including BG-lure. Lure-2 (isoamyl alcohol) was significantly repellent at all the tested doses. Against An. minimus, Lure-5 (0.02% w/v isovaleric acid + 2% w/v lactic acid) showed significant spatial repellency while Lure-4 was significantly attractant, at all the tested doses. All lures, except Lure-4, showed strong spatial repellency at high doses and attractancy or weak spatial repellency at the lowest dose of 0.0002 g. In summary, our study demonstrated that spatial repellency and attractancy of the tested lures were influenced by both the dose tested and the mosquito species. Lure-2 and Lure-4 are potential spatial repellents and attractants, respectively, for malaria and dengue vectors. However, further studies are necessary to confirm these results at a semifield and open field level.


Asunto(s)
Aedes , Anopheles , Culicidae , Repelentes de Insectos , Animales , Ensayos Analíticos de Alto Rendimiento , Mosquitos Vectores , Repelentes de Insectos/farmacología , Control de Mosquitos/métodos
9.
Viruses ; 15(3)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36992466

RESUMEN

In recent decades, waves of yellow fever virus (YFV) from the Amazon Rainforest have spread and caused outbreaks in other regions of Brazil, including the Cerrado, a savannah-like biome through which YFV usually moves before arriving at the Atlantic Forest. To identify the vectors involved in the maintenance of the virus in semiarid environments, an entomological survey was conducted after confirmation of yellow fever (YF) epizootics at the peak of the dry season in the Cerrado areas of the state of Minas Gerais. In total, 917 mosquitoes from 13 taxa were collected and tested for the presence of YFV. Interestingly, mosquitoes of the Sabethes genus represented 95% of the diurnal captured specimens, displaying a peak of biting activity never previously recorded, between 4:30 and 5:30 p.m. Molecular analysis identified three YFV-positive pools, two from Sabethes chloropterus-from which near-complete genomes were generated-and one from Sa. albiprivus, whose low viral load prevented sequencing. Sa. chloropterus was considered the primary vector due to the high number of copies of YFV RNA and the high relative abundance detected. Its bionomic characteristics allow its survival in dry places and dry time periods. For the first time in Brazil, Sa. albiprivus was found to be naturally infected with YFV and may have played a role as a secondary vector. Despite its high relative abundance, fewer copies of viral RNA were found, as well as a lower Minimum Infection Rate (MIR). Genomic and phylogeographic analysis showed that the virus clustered in the sub-lineage YFVPA-MG, which circulated in Pará in 2017 and then spread into other regions of the country. The results reported here contribute to the understanding of the epidemiology and mechanisms of YFV dispersion and maintenance, especially in adverse weather conditions. The intense viral circulation, even outside the seasonal period, increases the importance of surveillance and YFV vaccination to protect human populations in affected areas.


Asunto(s)
Culicidae , Virus de la Fiebre Amarilla , Humanos , Animales , Virus de la Fiebre Amarilla/genética , Estaciones del Año , Brasil/epidemiología , Mosquitos Vectores
10.
Insects ; 14(2)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36835753

RESUMEN

Bacterial content in mosquito larvae and adults is altered by dynamic interactions during life and varies substantially in variety and composition depending on mosquito biology and ecology. This study aimed to identify the microbiota in Aedes aegypti and Aedes albopictus and in water from their breeding sites in northeastern Thailand, a dengue-endemic area. Bacterial diversity in field-collected aquatic larvae and subsequently emerged adults of both species from several locations were examined. The microbiota was characterized based on analysis of DNA sequences from the V3-V4 region of the 16S rRNA gene and exhibited changes during development, from the mosquito larval stage to the adult stage. Aedes aegypti contained a significantly higher number of bacterial genera than did Ae. albopictus, except for the genus Wolbachia, which was present at significantly higher frequencies in male Ae. albopictus (p < 0.05). Our findings also indicate likely transstadial transmission from larva to adult and give better understanding of the microbial diversity in these mosquitoes, informing future control programs against mosquito-borne diseases.

11.
Sci Total Environ ; 858(Pt 1): 159512, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36265619

RESUMEN

The resistance to insecticides among insects, including mosquitoes and agricultural pests, and the impact of these compounds' environmental risks and health issues have motivated the proposition of eco-friendly alternatives. Thus, we aimed to explore the potential use of Desmostachya bipinnata for the biosynthesis of TiO2NPs and evaluate their larvicidal and pupicidal activity of target (Aedes aegypti and Spodoptera litura) and acute toxicity in non-target organisms (Toxorhynchites splendens and Eisenia fetida), at distinct concentrations, after 24 h of exposure. The characterization of the biosynthesized TiO2NPs was carried out by FT-IR, XRD, SEM, and EDX analysis. Under the UV-vis spectrum analysis, a sharp peak was recorded at 200 to 800 nm, which indicated the production of TiO2NPs by the plant extract. The SEM analysis revealed that the synthesized TiO2NPs were spherical with a diameter of 36.4 nm and were detected in the XRD spectrum analysis related to the TiO2NPs. The highest percentage of mortality recorded at 900 µg/mL was 96 % and 94 % in the 2nd instar of A. aegypti and S. litura larvae, respectively, and exhibited the LC50 and LC90 values 5 of 458.79 and 531.01 µg/mL, respectively. The biosynthesized TiO2NPs showed concentration-dependent increased pupal lethality for both A. aegypti and S. litura. We also observed increased detoxification enzyme activity (α esterase, ß esterase, and glutathione-S-transferase) of A. aegypti and S. litura exposed to different concentrations of biosynthesized TiO2NPs as histopathological changes in the midgut region of these animals. On the other hand, the mortality rate of non-target organisms (T. splendens and E. fetida) was lower when exposed to TiO2NPs, compared to the high lethality induced by synthetic pesticides (cypermethrin and monocrotophos for E. fetida; and cypermethrin and temphos for T. splendens). Thus, our study provides pioneering evidence on the potential use of D. bipinnata-mediated TiO2NPs for controlling mosquito vectors and agricultural pest management.


Asunto(s)
Aedes , Insecticidas , Nanopartículas del Metal , Animales , Spodoptera , Plata/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas del Metal/toxicidad , Hojas de la Planta , Insecticidas/toxicidad , Larva , Extractos Vegetales/farmacología , Esterasas
12.
China Tropical Medicine ; (12): 420-2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-979703

RESUMEN

@#Arthropods of medical importance such as mosquitoes, ticks and sandflies are one of the key drivers of arthropod-borne diseases outbreak, posing a great threat to global public health security. For further understanding the transmission mechanisms of arthropod-borne diseases and establishing the prevention and control measures, a series of experiments of arthropods infection need to be carried out under laboratory conditions. Besides the regular biosafety requirements, some specific considerations need to be taken into account when performing arthropod infection and the infected arthropod rearing. Except for the physical containment composed of biosafety facilities, a comprehensive assessment of the biosafety risks during operations and corresponding preventive measures are also critical to eliminate or mitigate the biosafety risks. In this paper, we introduce our practice in handling mosquito infection with Risk Group 2 pathogens in Arthropod Containment Level-2 (ACL-2) laboratory, with an aim to provide a reference for researchers in related fields.

13.
Trop Med Infect Dis ; 7(10)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36288027

RESUMEN

Contrary to expectation, dengue incidence decreased in many countries during the period when stringent population movement restrictions were imposed to combat COVID-19. Using a seasonal autoregressive integrated moving average model, we previously reported a 74% reduction in the predicted number of dengue cases from March 2020 to April 2021 in the whole of Sri Lanka, with reductions occurring in all 25 districts in the country. The reduction in dengue incidence was accompanied by an 87% reduction in larval collections of Aedes vectors in the northern city of Jaffna. It was proposed that movement restrictions led to reduced human contact and blood feeding by Aedes vectors, accompanied by decreased oviposition and vector densities, which were responsible for diminished dengue transmission. These findings are extended in the present study by investigating the relationship between dengue incidence, population movement restrictions, and vector larval collections between May 2021 and July 2022, when movement restrictions began to be lifted, with their complete removal in November 2021. The new findings further support our previous proposal that population movement restrictions imposed during the COVID-19 pandemic reduced dengue transmission primarily by influencing human-Aedes vector interaction dynamics.

14.
Parasitol Res ; 121(12): 3701-3704, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36178512

RESUMEN

Aedes koreicus is an invasive mosquito species originating from East Asia. It has recently been introduced into several countries in Southern, Central and Eastern Europe as well as Central Asia in many of which it has successfully established populations. The biology and ecological requirements of the species are largely unknown, but it is considered as a potential vector of pathogens that requires careful monitoring. We report here the first detection of Ae. koreicus in the Czech Republic, based on a citizen report.


Asunto(s)
Aedes , Culicidae , Animales , Especies Introducidas , Mosquitos Vectores , República Checa , Europa Oriental
15.
J Agric Food Chem ; 70(36): 11274-11280, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36040208

RESUMEN

Infected mosquitos from the genus Aedes have become one of the world's most influential contributors to human morbidity and death. To explore new biopesticides with activity against Aedes aegypti, Streptomyces distallicus, a species related to the subspecies group of Streptomyces netropsis, was investigated. Six metabolites, aureothin, allo-aureothin, deoxyaureothin, 4',7-dihydroxy isoflavone, 2-methyl-5-(3-indolyl)oxazole, and 2-ethyl-5-(3-indolyl)oxazole were isolated, and chemical structures, were elucidated based on one- and two-dimensional NMR spectroscopy analyses and HRMS. The A. aegypti larvicidal activity of these compounds was evaluated. Only two isomeric compounds, aureothin and allo-aureothin, showed larvicidal activity against A. aegypti with LC50 values of 1.5 and 3.1 ppm for 24 h post-treatment, respectively, and 3.8 and 7.4 ppm for 48 h post-treatment, respectively. The crude extract of S. distallicus also demonstrated potent larvicidal activity with LC50 values of 1.46 and 1.2 ppm for 24 and 48 h post-treatment, respectively. Deoxyaureothin, a furan ring reduced form of aureothin, showed no activity against A. aegypti. The hybrid imported fire ants activity of aureothin was also evaluated, but it did not show any activity at the highest dose of 62.5 µg/g. Described here is the first report on a bioassay-directed investigation of the secondary metabolites of S. distallicus and biological evaluation of isolated compounds aureothin and its isomer and intermediates as potential microbial larvicides. S. distallicus and crude extracts thereof are a promising source of potential microbial biolarvicides.


Asunto(s)
Aedes , Anopheles , Culex , Insecticidas , Animales , Humanos , Insecticidas/química , Larva , Extractos Vegetales/química , Hojas de la Planta/química , Streptomyces
16.
J Med Entomol ; 59(5): 1766-1777, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35820022

RESUMEN

The mosquito-borne yellow fever virus (YFV) is the cause of a zoonotic disease, with both sylvatic and urban cycles. Some mosquito species have been associated directly with transmission of the virus in South America, although the importance given to each species varies depending on the bibliography, geographical location, or year of publication. For Argentina, few publications have assessed the involvement of mosquito species, especially those included in the sylvatic cycle. Therefore, the goal of our paper was to gather all the information available in South America and categorize all mosquito species potentially involved in the YFV transmission cycle in Argentina according to incriminating vector criteria. Based on three main characteristics ('Hosts', 'Mosquito vector', and 'YF outbreak'), we generated scales of importance by species, one exclusively for Argentina and another for all of South America, Sabethes albiprivus Theobald, 1903 was the most important species in Argentina; whereas the most important species in South America were Haemagogus janthinomys Dyar 1921, Hg. leucocelaenus Dyar and Shannon, 1924, and Sa. chloropterus Von Humboldt, 1819. Our review highlights the lack of research that evaluates the importance of these species for YFV transmission in Argentina, while serving as a starting point to establish priorities for research on the bionomics and vector status of these species.


Asunto(s)
Culicidae , Fiebre Amarilla , Animales , Argentina , Brasil , Mosquitos Vectores , Virus de la Fiebre Amarilla
17.
J Vector Borne Dis ; 59(1): 52-56, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35708404

RESUMEN

BACKGROUND & OBJECTIVES: Attractive toxic sugar baits (ATSB) is a novel tool which employs mosquito sugar feeding behaviour to kill them. The potential of ATSB against mosquito vectors has been demonstrated in limited scope around the world including Israel, some of the African countries and USA. But their efficacy against mosquito vectors of India is yet to be ascertained. Therefore, current study was planned to evaluate the efficacy of TSB (without attractant) against two important malaria vectors Anopheles culicifacies and An. stephensi along with major dengue vector Aedes aegypti. METHODS: TSB solution was prepared by dissolving different concentrations of boric acid in glucose and tested against each of the mosquito species. Another experiment was done by spraying this boric acid sugar solution on to Calendula officinalis plant. It served as a sole source of mosquito feed and mortality of mosquitoes was counted after 24 hours. RESULTS: The TSB resulted in 100% mortality of Ae. aegypti and An. stephensi at 4% concentration of boric acid while in An. culicifacies 100% mortality was achieved at 3% concentration TSB solution. TSB solution with 2% boric acid, resulted in 99.1% mortality in An. culicifacies while ~95 % mortality of An. stephensi and Ae. aegypti. When TSB solution with 2% boric acid was sprayed on plant, ~89-94% mortality was observed in both An. stephensi and An. culicifacies. INTERPRETATION & CONCLUSION: Based on the results, boric acid based toxic sugar bait solution could be a promising tool for vector control. Further studies are needed to find out its toxicity of TSB against non-target organisms and residual efficacy in field trials in different ecotypes.


Asunto(s)
Aedes , Anopheles , Insecticidas , Animales , Ácidos Bóricos , Carbohidratos/farmacología , Insecticidas/farmacología , Control de Mosquitos/métodos , Azúcares
18.
BMC Microbiol ; 22(1): 161, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35733096

RESUMEN

INTRODUCTION: Mosquitoes (Diptera: Culicidae) are vectors that transmit numerous pathogens to humans and other vertebrates. Haemagogus leucocelaenus is a mosquito associated with transmission of yellow fever virus. The insect gut harbors a variety of microorganisms that can live and multiply within it, thus contributing to digestion, nutrition, and development of its host. The composition of bacterial communities in mosquitoes can be influenced by both biotic and abiotic factors. The goal of this study was to investigate the bacterial diversity of Hg. leucocelaenus and verify the differences between the bacterial communities in Hg. leucocelaenus from three different locations in the Atlantic tropical rain forest and southeastern state of São Paulo State, Brazil. RESULTS: The phylum Proteobacteria was found in mosquitoes collected from the three selected study sites. More than 50% of the contigs belong to Wolbachia, followed by 5% Swaminathania, and 3% Acinetobacter. The genus Serratia was found in samples from two locations. CONCLUSIONS: Wolbachia was reported for the first time in this species and may indicates that the vector competence of the populations of the species can vary along its geographical distribution area. The presence of Serratia might facilitate viral invasion caused by the disruption of the midgut barrier via action of the SmEnhancin protein, which digests the mucins present in the intestinal epithelium.


Asunto(s)
Culicidae , Mercurio , Fiebre Amarilla , Animales , Brasil , Humanos , Mosquitos Vectores
19.
Parasit Vectors ; 15(1): 171, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35590422

RESUMEN

BACKGROUND: In the eco-epidemiological context of Japanese encephalitis (JE), geo-environmental features influence the spatial spread of the vector (Culex tritaeniorhynchus, Giles 1901) density, vector infection, and JE cases. METHODS: In Liyi County, Shanxi Province, China, the spatial autocorrelation of mosquito vector density, vector infection indices, and JE cases were investigated at the pigsty and village scales. The map and Enhanced Thematic Mapper (ETM) remote sensing databases on township JE cases and geo-environmental features were combined in a Geographic Information System (GIS), and the connections among these variables were analyzed with regression and spatial analyses. RESULTS: At the pigsty level, the vector density but not the infection index of the vector was spatially autocorrelated. For the pigsty vector density, the cotton field area was positively related, whereas the road length and the distance between pigsties and gullies were negatively related. In addition, the vector infection index was correlated with the pigsty vector density (PVD) and the number of pigs. At the village level, the vector density, vector infection index, and number of JE cases were not spatially autocorrelated. In the study area, the geo-environmental features, vector density, vector infection index, and JE case number comprised the Geo-Environment-Vector-JE (GEVJ) intercorrelation net system. In this system, pig abundance and cotton area were positive factors influencing the vector density first. Second, the infection index was primarily influenced by the vector density. Lastly, the JE case number was determined by the vector infection index and the wheat area. CONCLUSIONS: This study provided quantitative associations among geo-environmental features, vectors, and the incidence of JE in study sties, one typical northern Chinese JE epidemiological area without rice cultivation. The results highlighted the importance of using a diverse range of environmental management methods to control mosquito disease vectors and provided useful information for improving the control of vector mosquitoes and reducing the incidence of JE in the northern Chinese agricultural context.


Asunto(s)
Culex , Culicidae , Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Animales , Encefalitis Japonesa/epidemiología , Encefalitis Japonesa/veterinaria , Mosquitos Vectores , Porcinos
20.
J Am Mosq Control Assoc ; 38(2): 83-91, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35588178

RESUMEN

Blood-engorged Culex quinquefasciatus and Cx. nigripalpus were collected from 140 locations throughout Sarasota County, FL, from 2017 to 2020 to determine local, habitat-specific, and seasonal variations in the host usage patterns of these 2 important arbovirus vectors. Mosquitoes were collected using light traps, gravid traps, and via aspiration of resting shelters. Host was determined from 920 samples using multiple polymerase chain reaction protocols that target mitochondrial sequences specific to mammals, birds, and reptiles. The data were analyzed to test for statistical associations between host class and season or with habitat categories (urban, suburban, and rural). Culex quinquefasciatus took significantly more blood meals from birds compared to mammals, though a seasonal shift to a higher ratio of mammalian host usage was observed in fall. There was a habitat-dependent pattern of host usage by Cx. nigripalpus, with significantly more mammalian hosts identified from mosquitoes captured in rural habitats and a similar ratio of mammalian and avian hosts in urban habitats. In general humans were used as hosts by Cx. nigripalpus less often compared to Cx. quinquefasciatus. In contrast to previous studies, Cx. nigripalpus utilized ectothermic hosts (mostly reptiles) at a much higher ratio and exhibited no apparent seasonal shift in host selection.


Asunto(s)
Arbovirus , Culex , Animales , Ecosistema , Florida , Humanos , Mamíferos , Mosquitos Vectores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA