Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Hum Evol ; 194: 103567, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39068699

RESUMEN

Hominoids exhibit a strikingly diverse set of locomotor adaptations-including knuckle-walking, brachiation, quadrumanuous suspension, and striding bipedalism-while also possessing morphologies associated with forelimb suspension. It has been suggested that changes in limb element integration facilitated the evolution of diverse locomotor modes by reducing covariation between serial homologs and allowing the evolution of a greater diversity of limb lengths. Here, I compare limb element integration in hominoids with that of other primate taxa, including two that have converged with them in forelimb morphology, Ateles and Pygathrix. Ateles is part of a clade that, such as hominoids, exhibits diverse locomotor adaptations, whereas Pygathrix is an anomaly in a much more homogeneous (in terms of locomotor adaptations) clade. I find that all atelines (and possibly all atelids), not just Ateles, share reduced limb element integration with hominoids. Pygathrix does not, however, instead resembling other members of its own family. Indriids also seem to have higher limb integration than apes, despite using their forelimbs and hindlimbs in divergent ways, although there is more uncertainty in this group due to poor sample size. These results suggest that reduced limb integration is characteristic of certain taxonomic groups with high locomotor diversity rather than taxa with specific, specialized locomotor adaptations. This is consistent with the hypothesis that reduced integration serves to open new areas of morphospace to those clades while suggesting that derived locomotion with divergent demands on limbs is not necessarily associated with reduced limb integration.


Asunto(s)
Locomoción , Animales , Evolución Biológica , Adaptación Fisiológica , Fósiles/anatomía & histología , Primates/fisiología , Primates/anatomía & histología , Extremidades/anatomía & histología , Extremidades/fisiología , Miembro Anterior/anatomía & histología , Miembro Anterior/fisiología
2.
Orthod Craniofac Res ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39049695

RESUMEN

OBJECTIVES: The cranial base plays a significant role in facial growth, and closer analyses of the morphological relationship between these two regions are needed to understand the morphogenesis of the face. Here, we aimed to study morphological integration between the sella turcica (ST) and facial bones during the fetal period using geometric morphometrics. MATERIALS AND METHODS: Magnetic resonance images of 47 human fetuses in the Kyoto Collection, with crown-rump lengths of 29.8-225 mm, were included in this study. Anatomical homologous landmarks and semilandmarks were registered on the facial bones and the midsagittal contour of the ST, respectively. The shape variations in the craniofacial skeleton and the ST were statistically investigated by reducing dimensionality using principal component analysis (PCA). Subsequently, the morphological integration between the facial bones and ST was investigated using two-block partial least squares (2B-PLS) analysis. RESULTS: PCA showed that small specimens represented the concave facial profile, including the mandibular protrusion and maxillary retrusion. The 2B-PLS showed a strong integration (RV coefficient = 0.523, r = .79, p < .01) between the facial bones and ST. The curvature of the anterior wall of the ST was highly associated with immature facial morphology characterized by a concave profile. CONCLUSION: The strong integration between the two regions suggested that the anterior ST may be associated with facial morphology. This result quantitatively confirms previous studies reporting ST deformities in facial anomalies and induces further research using postnatal subjects.

3.
Evolution ; 78(8): 1382-1395, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38900629

RESUMEN

Sexually selected weapons used to monopolize mating opportunities are predicted to trade-off with traits used in competition for fertilization. Yet, the limited size range typically found among adults of a species often precludes clear comparisons between population-level and individual-level relative trait investment. The jousting weevil, Brentus anchorago (Coleoptera: Brentidae), varies more than 26-fold in body mass, which is among the most extreme adult body size ranges of any solitary terrestrial species. We reveal a trade-off at a population level: hypermetric scaling in male weapons (slope = 1.59) and a closely mirrored reversal in allocation to postcopulatory traits (slope = 0.54). Yet, at the individual level, we find the opposite pattern; males that invest relatively more in weapons for their size class also invest more in postcopulatory traits. Across 36 dung beetle and 41 brentine weevil species, we find the allometric slope explains more trait variation at larger body size ranges; in brentines, population-level scaling patterns become more detectable in species with a larger range in adult body size. Our findings reveal that population-level allometries and individual-level trade-offs can both be important in shaping relative trait allocation; we highlight that the adult body size range is rarely examined but may be integral to gaining a deeper understanding of trade-offs in reproductive allocation.


Asunto(s)
Tamaño Corporal , Gorgojos , Animales , Masculino , Gorgojos/fisiología , Gorgojos/anatomía & histología , Femenino , Preferencia en el Apareamiento Animal , Escarabajos/fisiología , Escarabajos/anatomía & histología , Selección Sexual
4.
3D Print Addit Manuf ; 11(2): e607-e618, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38689928

RESUMEN

Large bone defects caused by congenital deformities and acquired accidents are increasing day by day. A large number of patients mainly rely on artificial bone for repair. However, artificial bone cannot fully imitate the structure and composition of human bone, resulting in a large gap with autologous bone function. Therefore, this article proposes a continuous preparation method for inorganic/organic biphasic composite gradient biomimetic bulk bone scaffolds. First, a controllable gradient hybrid forming platform for inorganic/organic dual-phase biomaterials was constructed, and the feeding control strategy was studied to achieve precise control of the feeding of sodium alginate/gelatin composite organic materials and hydroxyapatite inorganic materials. The speed is, respectively, sent from the corresponding feeding nozzle to the mixing chamber to realize the uniform mixing of the biphasic material and the extrusion of the composite material, and the inorganic/organic biphasic composite gradient biomimetic bone scaffold with gradual structure and composition is prepared. Second, to prove the superiority of the preparation method, the physicochemical and biological properties of the prepared scaffolds were evaluated. The test results showed that the morphological characteristics of the biphasic composite gradient bone scaffold showed good microscopic porosity and the structure and composition showed gradients. The mechanical properties are close to that of human bone tissue and in vitro cell experiments show that the scaffold has good biocompatibility and bioactivity. In conclusion, this article provides a new type of bone scaffold preparation technology and equipment for the field of tissue engineering, which has research value and application prospects.

5.
Parasitology ; 151(4): 390-399, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38389483

RESUMEN

Exploring the phylogenetic signal of morphological traits using geometric morphometry represents a powerful approach to assess the relative weights of convergence and shared evolutionary history in shaping species' forms. We evaluated the phylogenetic signal in shape and size of ventral and dorsal haptoral anchors of 10 species of monogenoids (Hamatopeduncularia, Chauhanellus and Susanlimocotyle) occurring in marine catfish (Siluriformes: Ariidae) from the Atlantic coast of South America. The phylogenetic relationships among these species were mapped onto the morphospaces of shape and size of dorsal and ventral anchors. Two different tests (squared change-parsimony and Kmult) were applied to establish whether the spatial positions in the phylomorphospace were influenced by phylogenetic relationships. A significant phylogenetic signal was found between anchor form and parasite phylogeny. Allometric effects on anchor shape were non-significant. Phylogenetically distant species on the same host differed markedly in anchor morphology, suggesting little influence of host species on anchor form. A significantly higher level of shape variation among ventral anchors was also found, suggesting that the evolutionary forces shaping ventral anchor morphology may operate with differing intensities or exhibit distinct mechanisms compared to their dorsal counterparts. Our results suggest that phylogenetic relationships were a key driver of changes in shape (but not size) of anchors of monogenoids of South American ariids. However, it seems that the emergence of the digitiform haptor in Hamatopenducularia and in some species of Chauhanellus played an important role in the reduction in anchor size and may cause secondary losses of anchors in other groups of monogenoids.


Asunto(s)
Evolución Biológica , Bagres , Enfermedades de los Peces , Filogenia , Animales , Bagres/parasitología , Enfermedades de los Peces/parasitología , América del Sur , Océano Atlántico , Trematodos/anatomía & histología , Trematodos/clasificación , Trematodos/genética , Infecciones por Trematodos/parasitología , Infecciones por Trematodos/veterinaria
6.
Anat Rec (Hoboken) ; 307(2): 345-355, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37615332

RESUMEN

Humans possess morphologically complex brains, which are spatially constrained by their many intrinsic and extrinsic physical interactions. Anatomical network analysis can be used to study these constraints and their implications. Modularity is a key issue in this framework, namely, the presence of groups of elements that undergo morphological evolution in a concerted way. An array of community detection algorithms was tested on a previously designed anatomical network model of the human brain in order to provide a detailed assessment of modularity in this context. The algorithms that provide the highest quality partitions also reveal general phenotypic patterns underlying the topology of human brain morphology. Taken together, the community detection algorithms highlight the simultaneous presence of a longitudinal and a vertical modular partition of the brain's topology, the combination of which matches the organization of the enveloping braincase. Specifically, the longitudinal organization is in line with the different morphogenetic environments of the three endocranial fossae, while the vertical arrangement corresponds to the distinct developmental processes associated with the cranial base and vault, respectively. The results are robust and have the potential to be compared with equivalent network models of other species. Furthermore, they suggest a degree of concerted topological reciprocity in the spatial organization of brain and skull elements, and posit questions about the extent to which geometrical constraints of the cranial base and the modular partition of the corresponding brain regions may channel both evolutionary and developmental trajectories.


Asunto(s)
Evolución Biológica , Hominidae , Animales , Humanos , Cráneo/anatomía & histología , Base del Cráneo/anatomía & histología , Encéfalo/anatomía & histología , Modelos Anatómicos
7.
Am J Biol Anthropol ; 183(3): e24800, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37377134

RESUMEN

OBJECTIVES: The shape of the trapezium and first metacarpal (Mc1) markedly influence thumb mobility, strength, and the manual abilities of extant hominids. Previous research has typically focused solely on trapezium-Mc1 joint shape. Here we investigate how morphological integration and shape covariation between the entire trapezium (articular and non-articular surfaces) and the entire Mc1 reflect known differences in thumb use in extant hominids. MATERIALS AND METHODS: We analyzed shape covariation in associated trapezia and Mc1s across a large, diverse sample of Homo sapiens (n = 40 individuals) and other extant hominids (Pan troglodytes, n = 16; Pan paniscus, n = 13; Gorilla gorilla gorilla, n = 27; Gorilla beringei, n = 6; Pongo pygmaeus, n = 14; Pongo abelii, n = 9) using a 3D geometric morphometric approach. We tested for interspecific significant differences in degree of morphological integration and patterns of shape covariation between the entire trapezium and Mc1, as well as within the trapezium-Mc1 joint specifically. RESULTS: Significant morphological integration was only found in the trapezium-Mc1 joint of H. sapiens and G. g. gorilla. Each genus showed a specific pattern of shape covariation between the entire trapezium and Mc1 that was consistent with different intercarpal and carpometacarpal joint postures. DISCUSSION: Our results are consistent with known differences in habitual thumb use, including a more abducted thumb during forceful precision grips in H. sapiens and a more adducted thumb in other hominids used for diverse grips. These results will help to infer thumb use in fossil hominins.


Asunto(s)
Hominidae , Huesos del Metacarpo , Pongo abelii , Animales , Humanos , Hominidae/anatomía & histología , Pulgar , Huesos del Metacarpo/anatomía & histología , Gorilla gorilla/anatomía & histología , Pan troglodytes/anatomía & histología , Pan paniscus , Pongo pygmaeus/anatomía & histología
8.
Orthod Craniofac Res ; 26 Suppl 1: 48-54, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37528681

RESUMEN

OBJECTIVE: During embryogenesis of mandible, the initial ossification centre begins at the bifurcation of the inferior alveolar (IA) and the mental nerves. Additionally, in congenital anomalies like craniofacial microsomia (CFM), the IA canal is completely absent on the microsomic side. These observations led us to hypothesise that there may be a morphological integration between these structures - the IA nerve and the mandibular shapes. Therefore, the primary objective of this study was to test for morphological integration between these structures and the secondary objective was to determine if there were shape variations in these structures among skeletal Classes I, II and III subjects. SETTING AND SAMPLE POPULATION: The sample size of the study is 80 full-head cone-beam computed tomography (CBCT) scans (age 16-56 years). METHODS: We retrieved CBCT scans from our archived database using specific inclusion/exclusion criteria. In the de-identified CBCT scans, traditional coordinate landmarks and sliding semi-landmarks were placed on the mandible and the IA canal (proxy for IA nerve). Using geometric morphometric analyses, we tested integration between the IA canal and the mandibular shapes. We used Procrustes ANOVA to test for overall shape variations among the three skeletal classes (Classes I, II and III). RESULTS: The IA canal and posterior/inferior border of mandible showed strong integration (r-PLS = .845, P = .001). Similar strong integration was also observed between the IA canal and the overall shape of the mandible (r-PLS = .866, P = .001). Additionally, there was a statistically significant variation in overall shape between skeletal Class I and Class II (P = .008) and Class II and Class III (P = .001). CONCLUSIONS: The strong integration between two structures suggests that the IA nerve may play a role in establishing mandibular shape early in development. We posit this may be important in driving mandibular defects seen in CFM, which warrants further investigation.


Asunto(s)
Síndrome de Goldenhar , Canal Mandibular , Humanos , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Mandíbula/anomalías , Tomografía Computarizada de Haz Cónico , Nervio Mandibular/diagnóstico por imagen , Nervio Mandibular/anatomía & histología
9.
Am J Biol Anthropol ; 181 Suppl 76: 180-211, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37060292

RESUMEN

Since Washburn's New Physical Anthropology, researchers have sought to understand the complexities of morphological evolution among anatomical regions in human and non-human primates. Researchers continue, however, to preferentially use comparative and functional approaches to examine complex traits, but these methods cannot address questions about evolutionary process and often conflate function with fitness. Moreover, researchers also tend to examine anatomical elements in isolation, which implicitly assumes independent evolution among different body regions. In this paper, we argue that questions asked in primate evolution are best examined using multiple anatomical regions subjected to model-bound methods built from an understanding of evolutionary quantitative genetics. A nascent but expanding number of studies over the last two decades use this approach, examining morphological integration, evolvability, and selection modeling. To help readers learn how to use these methods, we review fundamentals of evolutionary processes within a quantitative genetic framework, explore the importance of neutral evolutionary theory, and explain the basics of evolutionary quantitative genetics, namely the calculation of evolutionary potential for multiple traits in response to selection. Leveraging these methods, we demonstrate their use to understand non-independence in possible evolutionary responses across the limbs, limb girdles, and basicranium of humans. Our results show that model-bound quantitative genetic methods can reveal unexpected genetic covariances among traits that create a novel but measurable understanding of evolutionary complexity among multiple traits. We advocate for evolutionary quantitative genetic methods to be a standard whenever appropriate to keep studies of primate morphological evolution relevant for the next seventy years and beyond.


Asunto(s)
Evolución Biológica , Hominidae , Animales , Flujo Genético , Fenotipo , Primates/genética
10.
Evolution ; 77(4): 1006-1018, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36775928

RESUMEN

Biological variation is often considered in a scalable hierarchy, e.g., within the individual, within the populations, above the species level. Morphological integration, the concept of covariation among constituent parts of an organism, is also hierarchical; the degree to which these "modules" covary is a matter of the scale of the study as well as underlying processes driving the covariation. Multilevel analyses of trait covariation are a valuable tool to infer the origins and historical persistence of morphological diversity. Here, we investigate concordance in patterns of integration and modularity across three biological levels of variation: within a species, within two genera-level radiations, and among species at the family level. We demonstrate this approach using the skull of mammalian family Leporidae (rabbits and hares), which is morphologically diverse and has a rare-among-mammals functional signal of locomotion adaptation. We tested three alternative hypotheses of modularity; from the most supported we investigated disparity and integration of each module to infer which is most responsible for patterns of cranial variation across these levels, and whether variation is partitioned consistently across levels. We found a common pattern of modularity underlies leporid cranial diversity, though there is inconsistency across levels in each module's disparity and integration. The face module contributes the most to disparity at all levels, which we propose is facilitating evolutionary diversity in this clade. Therefore, the distinctive facial tilt of leporids is an adaptation to locomotory behavior facilitated by a modular system that allows lineages to respond differently to selection pressures.


Asunto(s)
Cabeza , Cráneo , Animales , Conejos , Análisis Multinivel , Cráneo/anatomía & histología , Evolución Biológica , Mamíferos/genética
11.
J Anat ; 242(6): 973-985, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36691774

RESUMEN

A network approach to the macroscopic anatomy of the human brain can be used to model physical interactions among regions in order to study their topological properties, as well as the topological properties of the overall system. Here, a comprehensive model of human brain topology is presented, based on traditional macroanatomical divisions of the whole brain, which includes its subcortical regions. The aim was to localise anatomical elements that are essential for the geometric balance of the brain, as to identify underlying phenotypic patterns of spatial arrangement and understand how these patterns may influence brain morphology in ontogeny and phylogeny. The model revealed that the parahippocampal gyrus, the anterior lobe of the cerebellum and the ventral portion of the midbrain are subjected to major topological constraints that are likely to limit or channel their morphological evolution. The present model suggests that the brain can be divided into a superior and an inferior morphological block, linked with extrinsic topological constraints imposed by the surrounding braincase. This information should be considered duly both in ontogenetic and phylogenetic studies of primate neuroanatomy.


Asunto(s)
Encéfalo , Cráneo , Animales , Humanos , Filogenia , Encéfalo/anatomía & histología , Primates , Neuroanatomía , Imagen por Resonancia Magnética
12.
J Hum Evol ; 170: 103231, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35940157

RESUMEN

The calculation of morphological integration across living apes and humans may provide important insights into the potential influence of integration on evolutionary trajectories in the hominid lineage. Here, we quantify magnitudes of morphological integration among and within elements of the midfoot in great apes and humans to examine the link between locomotor differences and trait covariance. We test the hypothesis that the medial elements of the great ape foot are less morphologically integrated with one another compared to humans based on their abducted halluces, and aim to determine how adaptations for midfoot mobility/stiffness and locomotor specialization influence magnitudes of morphological integration. The study sample is composed of all cuneiforms, the navicular, the cuboid, and metatarsals 1-5 of Homo sapiens (n = 80), Pan troglodytes (n = 63), Gorilla gorilla (n = 39), and Pongo sp. (n = 41). Morphological integration was quantified using the integration coefficient of variation of interlandmark distances organized into sets of a priori-defined modules. Magnitudes of integration across these modules were then compared against sets of random traits from the whole midfoot. Results show that all nonhuman apes have less integrated medial elements, whereas humans have highly integrated medial elements, suggesting a link between hallucal abduction and reduced levels of morphological integration. However, we find considerable variation in magnitudes of morphological integration across metatarsals 2-5, the intermediate and lateral cuneiform, the cuboid, and navicular, emphasizing the influence of functional and nonfunctional factors in magnitudes of integration. Lastly, we find that humans and orangutans show the lowest overall magnitudes of integration in the midfoot, which may be related to their highly specialized functions, and suggest a link between strong diversifying selection and reduced magnitudes of morphological integration.


Asunto(s)
Hominidae , Animales , Pie/anatomía & histología , Gorilla gorilla/anatomía & histología , Hominidae/anatomía & histología , Humanos , Pan troglodytes/anatomía & histología , Pongo , Pongo pygmaeus
13.
Dev Dyn ; 251(10): 1684-1697, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35582939

RESUMEN

BACKGROUND: Major cell-to-cell signaling pathways, such as the fibroblast growth factors and their four receptors (FGF/FGFR), are conserved across a variety of animal forms. FGF/FGFRs are necessary to produce several "vertebrate-specific" structures, including the vertebrate head. Here, we examine the effects of the FGFR2 S252W mutation associated with Apert syndrome on patterns of cranial integration. Our data comprise micro-computed tomography images of newborn mouse skulls, bred to express the Fgfr2 S252W mutation exclusively in either neural crest or mesoderm-derived tissues, and mice that express the Fgfr2 S252W mutation ubiquitously. RESULTS: Procrustes-based methods and partial least squares analysis were used to analyze craniofacial integration patterns. We found that deviations in the direction and degree of integrated shape change across the mouse models used in our study were potentially driven by the modular variation generated by differing expression of the Fgfr2 mutation in cranial tissues. CONCLUSIONS: Our overall results demonstrate that covariation patterns can be biased by the spatial distribution and magnitude of variation produced by underlying developmental-genetic mechanisms that often impact the phenotype in disproportionate ways.


Asunto(s)
Acrocefalosindactilia , Acrocefalosindactilia/genética , Animales , Modelos Animales de Enfermedad , Factores de Crecimiento de Fibroblastos/metabolismo , Ratones , Mutación , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Cráneo/diagnóstico por imagen , Cráneo/metabolismo , Microtomografía por Rayos X
14.
Anat Rec (Hoboken) ; 305(12): 3504-3515, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35485307

RESUMEN

Brain morphology is the result of functional factors associated with cortical areas, but it is also influenced by structural aspects due to physical and spatial constraints. Despite the noticeable advances in brain mapping, Brodmann's map is still used in many research fields that rely on macroscopic cortical features for practical or theoretical issues. Here, the topological relationships among the Brodmann areas were modeled according to the principles of network analysis, in order to provide a synthetic view of their spatial properties following a criterion of contiguity. The model evidences the importance of the parieto-temporal region in terms of biological burden and topological complexity. The retrosplenial region is particularly influenced by spatial constraints, and the cingulate cortex occupies a position that bridges the anterior and posterior topological blocks. Such spatial framework should be taken into account when dealing with brain morphology in both ontogeny and phylogeny.


Asunto(s)
Mapeo Encefálico , Corteza Cerebral , Corteza Cerebral/anatomía & histología , Lóbulo Temporal , Giro del Cíngulo , Imagen por Resonancia Magnética
15.
J Anat ; 241(1): 1-12, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35132617

RESUMEN

The morphological changes of the brain and the skull are highly integrated as a result of shared developmental pathways and different types of interactions between them. Shared developmental trajectories between these two structures might be influenced by genetic and environmental factors. Although the effect of environmental factors on neural and craniofacial traits has been extensively studied, less is known about the specific impact of stressful conditions on the coordinated variation between these structures. Here, we test the effect of early nutrient restriction on morphological correspondence between the brain and the endocast. For this purpose, mice exposed to protein or calorie-protein restriction during gestation and lactation were compared with a control group in which dams were fed standard food ad libitum. High-resolution images were obtained after weaning to describe brain and endocranial morphology. By magnetic resonance imaging (MRI), brain volumes were obtained and endocasts were segmented from skull reconstructions derived from micro-computed tomography (microCT). Brain and endocranial volumes were compared to assess the correspondence in size. Shape changes were analyzed using a set of landmarks and semilandmarks on 3D surfaces. Results indicated that brain volume is relatively less affected by undernutrition during development than endocast volume. Shape covariation between the brain and the endocast was found to be quite singular for protein-restricted animals. Procrustes distances were larger between the brain and the endocast of the same specimens than between brains or endocasts of different animals, which means that the greatest similarity is by type of structure and suggests that the use of the endocast as a direct proxy of the brain at this intraspecific scale could have some limitations. In the same line, patterns of brain shape asymmetry were not directly estimated from endocranial surfaces. In sum, our findings indicate that morphological variation and association between the brain and the endocast is modulated by environmental factors and support the idea that head morphogenesis results from complex processes that are sensitive to the pervasive influence of nutrient intake.


Asunto(s)
Evolución Biológica , Desnutrición , Animales , Encéfalo/anatomía & histología , Femenino , Fósiles , Ratones , Cráneo/anatomía & histología , Cráneo/diagnóstico por imagen , Microtomografía por Rayos X
16.
J Anat ; 240(2): 330-338, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34498271

RESUMEN

In adult humans, the orbits vary mostly in their orientation in relation to the frontal bone profile, while the orientation of the cranial base and face are associated with the anteroposterior dimensions of the parietal bone. Here we investigate the effect of parietal bone length on the orientation of the orbits, addressing craniofacial integration and head orientation. We applied shape analysis to a sample of computed tomography scans from 30 adult modern humans, capturing the outlines of the parietal and frontal bones, the orbits, and the lateral and midline cranial base, to investigate shape variation, covariation, and modularity. Results show that the orientation of the orbits varies in accordance with the anterior cranial base, and in association with changes in parietal bone longitudinal extension. Flatter, elongated parietal bones are associated with downwardly oriented orbits and cranial bases. Modularity analysis points to a significant integration among the orbits, anterior cranial base, and the frontal profile. While the orbits are morphologically integrated with the adjacent structures in terms of shape, the association with parietal bone size depends on the spatial relationship between the two blocks. Complementary changes in orbit and parietal bone might play a role in accommodating craniofacial variability and may contribute to maintain the functional axis of the head. To better understand how skull morphology and head posture relate, future studies should account for the spatial relationship between the head and the neck.


Asunto(s)
Hueso Parietal , Cráneo , Adulto , Cara/anatomía & histología , Hueso Frontal , Cabeza , Humanos , Hueso Parietal/diagnóstico por imagen , Cráneo/anatomía & histología , Cráneo/diagnóstico por imagen , Base del Cráneo/anatomía & histología
17.
Evol Lett ; 5(6): 625-635, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34917401

RESUMEN

Evolutionary innovations can facilitate diversification if the novel trait enables a lineage to exploit new niches or by expanding character space. The elaborate pharyngeal jaw apparatus of cichlid fishes is often referred to as an evolutionary "key innovation" that has promoted the spectacular adaptive radiations in these fishes. This goes back to the idea that the structural and functional independence of the oral and pharyngeal jaws for food capturing and food processing, respectively, permitted each jaw type to follow independent evolutionary trajectories. This "evolutionary decoupling" is thought to have facilitated novel trait combinations and, hence, ecological specialization, ultimately allowing more species to coexist in sympatry. Here, we test the hypotheses of evolutionary decoupling of the oral and pharyngeal jaws in the massive adaptive radiation of cichlid fishes in African Lake Tanganyika. Based on phylogenetic comparative analyses of oral jaw morphology and lower pharyngeal jaw shape across most of the ∼240 cichlid species occurring in that lake, we show that the two jaws evolved coupled along the main axes of morphological variation, yet most other components of these trait complexes evolved largely independently over the course of the radiation. Further, we find limited correlations between the two jaws in both overall divergence and evolutionary rates. Moreover, we show that the two jaws were evolutionary decoupled at a late stage of the radiation, suggesting that decoupling contributed to micro-niche partitioning and the associated rapidly increasing trophic diversity during this phase.

18.
BMC Ecol Evol ; 21(1): 178, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34548035

RESUMEN

The potential of artificial selection to dramatically impact phenotypic diversity is well known. Large-scale morphological changes in domestic species, emerging over short timescales, offer an accelerated perspective on evolutionary processes. The domestic horse (Equus caballus) provides a striking example of rapid evolution, with major changes in morphology and size likely stemming from artificial selection. However, the microevolutionary mechanisms allowing to generate this variation in a short time interval remain little known. Here, we use 3D geometric morphometrics to quantify skull morphological diversity in the horse, and investigate modularity and integration patterns to understand how morphological associations contribute to cranial evolvability in this taxon. We find that changes in the magnitude of cranial integration contribute to the diversification of the skull morphology in horse breeds. Our results demonstrate that a conserved pattern of modularity does not constrain large-scale morphological variations in horses and that artificial selection has impacted mechanisms underlying phenotypic diversity to facilitate rapid shape changes. More broadly, this study demonstrates that studying microevolutionary processes in domestic species produces important insights into extant phenotypic diversity.


Asunto(s)
Evolución Biológica , Cráneo , Animales , Caballos/genética
19.
Zoology (Jena) ; 148: 125946, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34388442

RESUMEN

Pioneering fieldwork identified the existence of three feeding groups in vultures: gulpers, rippers and scrappers. Gulpers engulf soft tissue from carcasses and rippers tear off pieces of tough tissue (skin, tendons, muscle), whereas scrappers peck on small pieces of meat they find on and around carcasses. It has been shown that these feeding preferences are reflected in the anatomy of the skull and neck. Here, we demonstrate that these three feeding groups also emerge when body core and limb bones are added to the analysis. However, the resulting classification differs from that which is based on skull morphology for three species, namely Gypaetus barbatus (Linnaeus, 1758), Gypohierax angolensis (Gmelin, 1788) and Gyps indicus (Scopoli, 1786). The proposed classification would improve the interrelationship between form and feeding habits in vultures. Moreover, the results of this study reinforce the value of the categorisation system introduced by Kruuk (1967), and expanded by König (1974, 1983), Houston (1988) and Hertel (1994), as it would affect not only the skull morphology but the whole-body architecture.


Asunto(s)
Falconiformes/anatomía & histología , Falconiformes/fisiología , Conducta Alimentaria/fisiología , Cráneo/anatomía & histología , Animales , Falconiformes/clasificación
20.
Anat Histol Embryol ; 50(5): 849-852, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34379828

RESUMEN

Morphological integration and modularity are concepts that refer to the covariation level between the components of a structure. Morphological modules are independent subsets of highly correlated traits. The horse skull has been studied as a whole functional structure for decades, but the integrative approach towards quantitative examination of modules is scarce. We report here the first evaluation of cranial modularity in the horse at basal level. For this, we studied the modularity hypothesis for splanchnocranium and basicranium modules in the horse, two phenotipic regions under local influence by soft-tissue-hard-tissue interfaces. Using geometric morphometrics to capture the shape and location, we examined both modules in a sample of 23 dry skulls belonging to Pyrenean Horse Breed using 57 two-dimensional cranial landmarks. Modules were compared through partial least squares analyses and Escoufier (RV) coefficient. We tested whether the integration (measured by Escoufier RV coefficient) of splanchnocranium and basicranium strength modules and their covariation pattern (as analysed by partial least squares analysis) subordinate and express similar integration results. A clear modularity was observed. The lack of disproportions in the skulls of domestic horse breeds (compared to dog and cat breeds, for instance) might be an expression of the lack of single modules to evolve. On the other side, integration might have a positive impact on survival as long as the selection pressure is along the trajectory of integrated variation.


Asunto(s)
Caballos , Cráneo , Animales , Evolución Biológica , Caballos/anatomía & histología , Fenotipo , Cráneo/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA