Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 368
Filtrar
1.
Foods ; 13(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39272509

RESUMEN

Antioxidant films were prepared using poly(vinyl chloride) (PVC) incorporated with 0.5% or 1.0% zinc oxide (ZnO)-flavonoid (quercetin or morin) nanoparticles (NPZnO-Q% or NPZnO-M%) via the casting method. NP incorporation within the polymer matrix influenced the structural, morphological, optical, and thermal properties of the PVC-based films, as well as their antioxidant activity as assessed using the DPPH radical scavenging method. Our results indicated that increasing ZnO-flavonoid NP concentration increased films thickness, while reducing ultraviolet light (UV) transmittance but conserving transparency. The presence of NPZnO-Q% or NPZnO-M% improved the surface uniformity and thermal stability of the active films. In terms of antioxidant activity, there was an enhancement in the DPPH radical scavenging capacity (PVC/ZnO-Q1.0% > PVC/ZnO-Q0.5% > PVC/ZnO-M0.5% > PVC/ZnO-M1.0% > PVC), suggesting that the packaging can help protect food from oxidative processes. Therefore, these antioxidant films represent an innovative strategy for using as active food packaging material, especially intended for aiding in quality preservation and extending the shelf life of fatty foods.

2.
Urolithiasis ; 52(1): 127, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39237821

RESUMEN

Calcium oxalate (CaOx) urolithiasis is a prevalent urinary disorder with significant clinical impact. This study investigates the therapeutic potential of Morin Hydrate (MH), a natural bioflavonoid, in preventing CaOx stone formation. Molecular docking studies revealed that MH binds strongly to glycolate oxidase (GO), suggesting its inhibitory effect on oxalate synthesis. In vitro assays demonstrated that MH effectively inhibits CaOx crystal nucleation, aggregation, and growth, altering crystal morphology to less stable forms. Diuretic activity studies in Wistar rats showed that MH substantially increased urine volume and ion excretion, indicating its moderate diuretic effect. In vivo experiments further supported these findings, with MH treatment improving urinary and serum markers, reducing oxidative stress, and protecting renal tissue, as evidenced by histopathological analysis. Notably, MH administration significantly decreased GO and lactate dehydrogenase activities in urolithiatic rats, indicating a reduction in oxalate production. These results suggest that MH is a promising candidate for the prevention and treatment of CaOx urolithiasis, with the potential for clinical application in reducing the risk and recurrence of kidney stones.


Asunto(s)
Oxalato de Calcio , Flavonoides , Ratas Wistar , Animales , Flavonoides/farmacología , Flavonoides/uso terapéutico , Oxalato de Calcio/metabolismo , Oxalato de Calcio/química , Ratas , Masculino , Simulación del Acoplamiento Molecular , Cristalización , Urolitiasis/prevención & control , Urolitiasis/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Modelos Animales de Enfermedad , Flavonas
3.
Tissue Cell ; 91: 102557, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39265522

RESUMEN

AMP-activated protein kinase (AMPK) suppresses tumorigenesis by modulating autophagy and apoptosis. This study evaluated the impact of Morin on PC3 prostate cancerous cells by examining the AMPK/ mechanistic target of rapamycin (mTOR)/ ULK1 (UNC-51-like kinase 1) pathway and autophagy process. The PC3 cells were treated with Morin (50 µg/ml) and AICAR (an AMPK activator). Cell viability, apoptosis, autophagy, and level of phosphorylated and non-phosphorylated ULK1, AMPK, and mTOR, as well as LC3B/LC3A, have been investigated. Through DAPI staining, measurement of Bax/Bcl-2 ratio, Caspase activity, and Annexin V/PI method, it has been revealed that Morin induces apoptosis and reduces the growth of PC3 cells. Morin enhanced the protein level of phosphorylated AMPK (p-AMPK) and ULK1 (p-ULK1) and decreased the expression of phosphorylated mTOR (p-mTOR) in the PC3 cells. Morin could also increase the LC3B/LC3A ratio, Acridine Orange-positive cells, expression of Beclin-1 and ATG5 genes, and decrease the p62 protein level indicating autophagy-inducing. AICAR (an AMPK activator) enhanced the impact of Morin on apoptosis, cell growth, and expression of LC3B, p-AMPK, p-ULK1, and p-mTOR proteins in the PC3 cells. These findings suggest that Morin induces apoptotic and autophagic cell death by activating AMPK and ULK1 and suppressing mTOR pathways.

4.
Int Immunopharmacol ; 140: 112846, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39121607

RESUMEN

Ulcerative colitis (UC) is a chronic inflammatory condition with recurrent and challenging symptoms. Effective treatments are lacking, making UC management a critical research area. Morin (MO), a flavonoid from the Moraceae family, shows potential as an anti-UC agent, but its mechanisms are not fully understood. Using a dextran sulfate sodium (DSS)-induced UC mouse model, we employed network pharmacology to predict MO's therapeutic effects. Assessments included changes in body weight, disease activity index (DAI), and colon length. Immunofluorescence, hematoxylin and eosin (H&E), and PAS staining evaluated colon damage. ELISA and western blot analyzed inflammatory factors, tight junction (TJ)-associated proteins (Claudin-3, Occludin, ZO-1), and Mitogen-Activated Protein Kinase (MAPK)/ Nuclear Factor kappa B (NF-κB) pathways. 16S rRNA sequencing assessed gut microbiota diversity, confirmed by MO's modulation via Fecal Microbial Transplantation (FMT). Early MO intervention reduced UC severity by improving weight, DAI scores, and colon length, increasing goblet cells, enhancing barrier function, and inhibiting MAPK/NF-κB pathways. MO enriched gut microbiota, favoring beneficial bacteria like Muribaculaceae and Erysipelotrichaceae while reducing harmful Erysipelotrichaceae and Muribaculaceae. This study highlights MO's potential in UC management through inflammation control, mucosal integrity maintenance, and gut flora modulation.


Asunto(s)
Colitis Ulcerosa , Sulfato de Dextran , Flavonoides , Microbioma Gastrointestinal , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/patología , Microbioma Gastrointestinal/efectos de los fármacos , Flavonoides/farmacología , Flavonoides/uso terapéutico , Ratones , Masculino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Colon/patología , Colon/efectos de los fármacos , Colon/microbiología , Colon/inmunología , FN-kappa B/metabolismo , Trasplante de Microbiota Fecal , Humanos , Flavonas
5.
Biofactors ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39114963

RESUMEN

Breast cancer chemoresistance hampers chemotherapy efficacy; researchers investigate the pharmacological activities of natural products for potential solutions. This study aimed to determine the effect of morin, a bioflavonoid isolated from Maclura pomifera, on two Dox-resistant human breast cancer cell lines MDA-MB-231 (MDA-DR) and MCF-7 (MCF-DR). Sulforhodamine B and colony-forming assays demonstrated the cytotoxic effect of morin on both cell lines. Morin induced DNA damage and reduced the DNA repair mechanism, a feature of chemoresistance. In addition, morin reduced the protein expressions of cell cycle regulators, such as cyclin D1, CDK4, cyclin E1, cyclin B1, and p-Rb, thereby halting cell cycle progression. Moreover, morin slightly reduced PARP and Bcl-xL expressions but left LC3-II and RIPK3 expressions unchanged. Annexin-V/7-AAD analysis showed morin increased 7-AAD positive cells and annexin-V positive cells among MDA-DR and MCF-DR cells, respectively. In addition, morin increased p-AMPK and p-LKB1 levels; and, thus, inhibited phosphorylation of the mTOR pathway, but decreased t-AMPK levels by inducing lysosomal degradation, and AICAR, an AMPK activator, reduced Raptor, cyclin D1, CDK4, cyclin E1 and phosphorylated, and total mTOR levels, indicating AMPK is a key player in inducing cell death. Also, morin modulated MAPK phosphorylation and attenuated p-Akt and p-GSK3αß levels; and thus, inhibited cell survival. In addition, morin suppressed tumor growth in our MDA-DR xenografted mouse model. These findings indicate that morin is a potential treatment for Dox-resistant breast cancer and that it does so by inducing DNA damage and modulating the LKB1/AMPK/mTORC1 pathway, along with regulating the MAPK, and Akt/GSK3αß signaling pathways.

6.
Alcohol ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094850

RESUMEN

Posttraumatic stress disorder (PTSD) and alcohol use disorder (AUD) are very prevalent and co-occurring. It is unclear how alcohol exacerbates PTSD predicaments owing to less characterized pathophysiological mechanisms. Also, studies on pharmacological agents that can effectively reverse PTSD-AUD comorbidity have, to date, been scarce. Hence, we designed a methodological approach to investigate the pathophysiological mechanisms and pharmacological outcomes of morin, a neuroprotective flavonoid in mice. After 7 days of PTSD following single-prolonged stress (SPS) induction in mice, the PTSD mice were exposed to intermittent binge ethanol administration using ethanol (2g/kg, oral gavage) every other day, alongside daily morin (50 and 100mg/kg) or fluoxetine (10mg/kg) from days 8-21. The consequences of PTSD-AUD behavior, hypothalamic-pituitary-adrenal-axis (HPA-axis) dysfunction, neurochemistry, oxidative/nitrergic stress, and inflammation were evaluated in the prefrontal-cortex (PFC), striatum, and hippocampus of mice. The exacerbated anxiety-like behavior, and spatial/non-spatial memory deficits, with general depressive phenotypes and social stress susceptibility by SPS-ethanol interaction, were alleviated by morin and fluoxetine, evidenced by reduced corticosterone release and adrenal hypertrophy. SPS-ethanol exacerbates dopamine, serotonin, and glutamic acid decarboxylase alterations, and monoamine oxidase-B and acetylcholinesterase hyperactivities in the striatum, PFC, and hippocampus, respectively, which were prevented by morin. Compared to SPS-ethanol aggravation, morin prevented TNF-α, and IL-6 release, malondialdehyde and nitrite levels, with improved antioxidant (glutathione, superoxide-dismutase, catalase) levels in the hippocampus, PFC, and striatum. Overall, these findings suggest that AUD exacerbated PTSD might be primarily connected, among other mechanisms, with aggravated HPA-axis dysfunction, upregulated neurochemical degradative enzymes, enhancement of oxidative/nitrergic stress and neuroinflammation, stereo-selectively in the mice brains, which morin abated via the preventive mechanisms.

7.
Metab Brain Dis ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136806

RESUMEN

Global cerebral ischemia is one of the major causes of memory and cognitive impairment. Hyperactivation of acetylcholine esterase (AChE), oxidative stress, and inflammation are reported to cause memory and cognitive impairment in global cerebral ischemia. Morin, a flavonoid, is reported to have neuroprotective properties through its antioxidant and anti-inflammatory in multiple neurological diseases. However, its neuroprotective effects and memory and cognition enhancement have not yet been investigated. In the present study, we have determined the memory and cognition, and neuroprotective activity of Morin in bilateral common carotid artery occlusion and reperfusion (BCCAO/R) in Wistar rats. We found that Morin treatment significantly improved motor performance like grip strength and rotarod. Further, Morin improved memory and cognition in BCCAO rats by decreasing the AchE enzyme activity and enhancing the acetylcholine (Ach) levels. Additionally, Morin exhibited neuroprotection by ameliorating oxidative stress, neuroinflammation, and apoptosis in BCCAO rats. These findings confirm that Morin could enhance memory and cognition by ameliorating AchE activity, oxidative stress, neuroinflammation, and apoptosis in global cerebral ischemia. Therefore, Morin could be a promising neuroprotective and memory enhancer against global cerebral ischemic injury.

8.
Environ Toxicol Pharmacol ; 111: 104543, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39179193

RESUMEN

Sepsis-associated acute kidney injury (AKI) is a health complication, encompassing excessive inflammatory response, oxidative stress, and tubular necrosis; leading to kidney failure and death. Sepsis treatments are nonspecific and palliative. In this study, we evaluated the effect of morin, a flavonoid with known nephroprotective capabilities, on sepsis-induced AKI by dividing eighty male mice into: normal, morin-treated, septic, and septic mice treated with morin. Half of the groups were sacrified 3 days post sepsis induction, while the rest was sacrified on the 7th day. Treating septic mice with morin resulted in the amelioration of sepsis-associated pathophysiological renal alterations and the increase of the survival and recovery rates compared with those of septic control group. These findings indicate that morin has a therapeutic effect against sepsis-associated AKI via its anti-inflammatory, antioxidant and regenerative effects. Thus, it could be used as potential pharmacological intervention for preventing renal complications of sepsis.

9.
Toxicol Res (Camb) ; 13(4): tfae113, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39036522

RESUMEN

This study aims to investigate the curative effects of Morin, a flavonoid, against arsenic toxicity in 3T3 embryonic fibroblast cells and its effect on the molecular mechanisms of cells. The cytotoxicity and viability of the cells were measured by MTT and LDH tests. Arsenic (0.74 µM) was used to trigger toxicity and Morin (50 µM) was used for treatment. The levels of oxidative stress biomarkers and the activities of antioxidant enzymes were measured by spectrophotometric method, and inflammatory markers were measured by ELISA method. While mRNA expression levels of Bax, Bcl-2 levels, and Caspase-3 activity were measured by qRT-PCR technique, TUNEL staining was performed to detect DNA breaks and DAPI staining to visualize nuclear changes. Protein structures were retrieved from the protein data bank. OpenBabel and Autodock programs were used for the molecular docking study. Morin rescued the 3T3 embryonic fibroblast cells exposed to arsenic. However, Arsenic decreased the activities of antioxidant enzymes in cells and significantly increased oxidative stress, inflammation, and apoptosis. Morin treatment reduced oxidative damage and TNF-α and IL-1ß levels. Arsenic-induced Caspase-3 mRNA expression level and Bax protein mRNA expression level were significantly increased, while Bcl-2 mRNA expression level was significantly decreased. While Caspase-3 mRNA expression level and Bax protein mRNA expression level decreased with morin treatment, Bcl-2 mRNA expression level increased significantly. Molecular docking study results showed good binding affinity of morin in SOD, GSH-Px, Bax, Bcl-2, Caspase-3, TNF-α, and IL-1ß structures. Morin showed antioxidant, anti-inflammatory, and anti-apoptotic effects against Arsenic-induced cellular toxicity.

10.
Drug Des Devel Ther ; 18: 3143-3156, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39071815

RESUMEN

Background: Morin can alleviate vincristine-induced neuropathic pain via inhibiting neuroinflammation. Microglial cells play an important role in initiating and maintenance of pain and neuroinflammation. It remains unclear whether morin exerts antinociceptive properties through the regulation of microglial cells. This study aimed to elucidate the mechanisms of morin against neuropathic pain focusing on microglial cells. Methods: The thermal withdrawal latency and mechanical withdrawal threshold were used as measures of pain behaviours. Histological abnormalities of the sciatic nerve were observed with transmission electron microscopy. The sciatic functional index and the sciatic nerve conduction velocity were used as measures of the functional deficits of the sciatic nerve. Inflammatory factors were detected using ELISA. The expression of M1/M2 polarization markers of microglia and nuclear factor κB (NF-κB) p65 were measured by immunofluorescence, real-time quantitative PCR and Western blotting. Results: Morin alleviated vincristine-induced abnormal pain, sciatic nerve injury, and neuroinflammatory response in rats. Furthermore, morin decreased the expression of NF-κB P65 and M1 activation markers, increased the expression of M2 activation markers. Additionally, phorbol 12-myristate 13-acetate reversed the effects of morin on microglial polarization, the production of inflammatory factors and neuropathic pain, while ammonium pyrrolidine dithiocarbamate showed the opposite effects. Conclusion: Our results demonstrate that morin inhibits neuroinflammation to alleviate vincristine-induced neuropathic pain via inhibiting the NF-κB signalling pathway to regulate M1/M2 microglial polarization.


Asunto(s)
Flavonoides , Microglía , Neuralgia , Factor de Transcripción ReIA , Vincristina , Animales , Masculino , Ratas , Relación Dosis-Respuesta a Droga , Flavonas , Flavonoides/farmacología , Flavonoides/administración & dosificación , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Neuralgia/patología , Ratas Sprague-Dawley , Factor de Transcripción ReIA/metabolismo , Vincristina/farmacología
11.
Vet Q ; 44(1): 1-14, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38943615

RESUMEN

Background: Mistletoe is an herb that grows on duku plants (Lancium demosticum) and is known as benalu duku (BD) in Indonesia. It is predicted to have benefits such as anticancer or antiviral properties, and it is also thought to have anti-diabetic pharmacological activity. Quercetin-like compounds (QLCs) are secondary metabolites with antidiabetic activity that are expected to lower blood sugar levels in animals after oral administration.Objective: This study aimed to analyze the ability of QLCs to reduce random blood sugar levels using experimental animals as clinical models.Material and methods: The research method used was exploratory, which used a before-after test model, and observations were made on the random blood sugar levels after treatment. Secondary metabolites were extracted from BD leaves, which were then screened. Diabetes was induced in 30 rats (Rattus norvegicus) by the administration of streptozotocin at 0.045 mg/g body weight daily for 2 days. The antidiabetic effects of the secondary metabolite at doses of 0.5 mg/kg body weight (twice a day) when administered orally for up to 5 days were tested in diabetic rats. The random sugar levels (mg/dL) were measured using a One Touch Ultra Plus medical device for observation of randomized blood sugar levels. Results and novelty: The results revealed that the secondary metabolite, as an analyte from the BD leaf extract, can significantly reduce random blood sugar levels.Conclusion: The secondary metabolite extracted from BD, could be used to treat diabetes in rats.


Asunto(s)
Glucemia , Diabetes Mellitus Experimental , Hipoglucemiantes , Extractos Vegetales , Quercetina , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/sangre , Ratas , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/administración & dosificación , Quercetina/farmacología , Quercetina/análogos & derivados , Quercetina/uso terapéutico , Glucemia/análisis , Glucemia/efectos de los fármacos , Masculino , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Muérdago/química , Administración Oral , Hojas de la Planta/química
12.
J Inorg Biochem ; 258: 112635, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38852294

RESUMEN

Morin (MRN), an intriguing bioflavonol, has received increasing interest for its antioxidant properties, as have its metal complexes (Mz+-MRN). Understanding their antioxidant behavior is critical to assess their pharmaceutical, nutraceutical potential, and therapeutic impact in the design of advanced antioxidant drugs. To this end, knowing the speciation of different H+-MRN and Mz+-MRN is pivotal to understand and compare their antioxidant ability. In this work, the protonation constant values of MRN under physiological ionic strength and temperature conditions (I = 0.15 mol L-1 and t = 37 °C), determined by UV-vis spectrophotometric titrations, are introduced. Thus, a reliable speciation model on H+-MRN species in aqueous solution is presented, which exhibits five stable forms depending on pH, supplemented by quantum-mechanical calculations useful to determine the proton affinities of each functional group and corresponding deprotonation order. Furthermore, potentiometry and UV-vis spectrophotometry have been exploited to determine the thermodynamic interaction parameters of MRN with different metal cations (Mg2+, Mn2+, Zn2+, Al3+). The antioxidant ability of H+-MRN and Mz+-MRN has been evaluated by the 2,2'-diphenyl-1-benzopyran-4-one (DPPH) method, and the Zn2+-MRN system has proven to afford the most potent antioxidant effect. Ab initio molecular dynamics simulations of Mz+-MRN species at all possible chelation sites and under explicit water solvation allowed for the fine characterization not only of the metal chelation modalities of MRN in explicit water, but also of the role played by the local water environment around the metal cations. Those microscopic patterns reveal to be informative on the different antioxidant capabilities recorded experimentally.


Asunto(s)
Antioxidantes , Complejos de Coordinación , Flavonoides , Zinc , Flavonoides/química , Antioxidantes/química , Complejos de Coordinación/química , Zinc/química , Magnesio/química , Aluminio/química , Manganeso/química , Termodinámica , Flavonas
13.
Eur J Pharmacol ; 977: 176705, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38830457

RESUMEN

Obesity is a major health issue that contributes significantly to increased mortality and morbidity worldwide. Obesity is caused by uncontrolled adipogenesis and lipogenesis, leading to several metabolism-associated problems. Pancreatic lipase, an enzyme that breaks down dietary lipids, is a prominent target for obesity. Orlistat, a known inhibitor of pancreatic lipase, is commonly employed for the management of obesity. However, its side effects, such as diarrhoea, nausea and bladder pain, urge to look out for safer alternatives. Morin is a pentahydroxyflavone, exerts a broad spectrum of pharmacological effects including antioxidant, anti-inflammatory, lipid lowering, anti-diabetic, anti-fibrotic, anti-cancer, etc. This study investigated the effect of morin on pancreatic lipase activity, in vitro and in vivo adipogenesis. Molecular docking and simulation studies showed morin to have a higher binding affinity towards pancreatic lipase compared with orlistat, which also inhibited its activity in vitro. Morin also reduced lipid droplet accretion and downregulated the expression of adipogenic and lipogenic genes. The acute oral toxicity of morin was determined in C57BL/6 mice, where morin did not show toxicity up to 2000 mg/kg body weight dose. Oral administration of morin to high fat diet fed mice reduced body weight, glucose and insulin levels. Also, the histopathological examination revealed reduction in adipocyte size and decreased mRNA expression of adipogenesis markers in white adipose tissue of morin administered group compared to high fat diet group. Overall, the results suggested morin inhibited pancreatic lipase activity, adipogenesis and further studies are warranted to explore its therapeutic potential for obesity.


Asunto(s)
Adipogénesis , Flavonoides , Lipasa , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Animales , Adipogénesis/efectos de los fármacos , Flavonoides/farmacología , Ratones , Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Masculino , Células 3T3-L1 , Dieta Alta en Grasa/efectos adversos , Páncreas/efectos de los fármacos , Páncreas/patología , Fármacos Antiobesidad/farmacología , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Humanos , Orlistat/farmacología , Flavonas
14.
Artículo en Inglés | MEDLINE | ID: mdl-38917653

RESUMEN

Cortex Morin Radicis (CMR) is the dried root bark of Morus alba. L. It has a variety of effects such as antibacterial, anti-tumour, treatment of cardiovascular diseases or upper respiratory tract disease and so on. The pursuit for drugs selected from Cortex Mori Radicis having improved therapeutic efficacy necessitates increasing research on new assays for screening bioactive compounds with multi-targets. In this work, we applied immobilized ß1-AR and ß2-AR as the stationary phase in chromatographic column to screen bioactive compounds from Cortex Morin Radicis. Specific ligands of the two receptors (e.g. esmolol, metoprolol, atenolol, salbutamol, methoxyphenamine, tulobuterol and clorprenaline) were utilized to characterize the specificity and bioactivity of the columns. We used high performance affinity chromatography coupled with ESI-MS to screen targeted compounds of Cortex Morin Radicis. By zonal elution, we identified morin as a bioactive compound simultaneously binding to ß1-AR and ß2-AR. The compound exhibited the association constants of 3.10 × 104 and 2.60 × 104 M-1 on the ß1-AR and ß2-AR column. On these sites, the dissociation rate constants were calculated to be 0.131 and 0.097 s-1. Molecular docking indicated that the binding of morin to the two receptors occurred on Asp200, Asp121, and Val122 of ß1-AR, Asn312, Thr110, Asp113, Tyr316, Gly90, Phe193, Ile309, and Trp109 of ß2-AR. Likewise, mulberroside C was identified as the bioactive compound binding to ß2-AR. The association constants and dissociation rate constants were calculated to be 1.08 × 104 M-1 and 0.900 s-1. Molecular docking also indicated that mulberroside C could bind to ß2-AR receptor on its agonist site. Taking together, we demonstrated that the chromatographic strategy to identify bioactive natural products based on the ß1-AR and ß2-AR immobilization, has potential for screening bioactive compounds with multi-targets from complex matrices including traditional Chinese medicines.


Asunto(s)
Morus , Receptores Adrenérgicos beta 1 , Receptores Adrenérgicos beta 2 , Morus/química , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 1/química , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Cromatografía de Afinidad/métodos , Humanos , Cromatografía Líquida de Alta Presión/métodos , Flavonoides/análisis , Flavonoides/química
15.
Sports Biomech ; : 1-28, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739038

RESUMEN

Power, and recently force-velocity (F-V) profiling, are well-researched and oft cited critical components for sports performance but both are still debated; some would say misused. A neat, applied formulation of power and linear F-V in the literature is practically useful but there is a dearth of fundamental explanations of how power and F-V interact with human and environmental constraints. To systematically explore the interactions of a linear F-V profile, peak power, gravity, mass, range of motion (ROM), and initial activation conditions, a forward dynamics point mass model of vertical jumping was parameterised from an athlete. With no constraints and for a given peak power, F-V favouring higher velocity performed better, but were impacted more under real-world conditions of gravity and finite ROM meaning the better F-V was dependent on constraints. Increasing peak power invariably increased jump height but improvement was dependent on the initial F-V and if it was altered by changing maximal force or velocity. When mass was changed along with power and F-V there was a non-linear interaction and jump improvement could be almost as large for a F-V change as an increase in power. An ideal F-V profile cannot be identified without knowledge of mass and ROM.

16.
Indian J Clin Biochem ; 39(2): 197-206, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38577136

RESUMEN

Tuberculosis (TB) is a challenging public health issue, particularly in poor and developing countries. Rifampicin (RIF) is one of the most common first-line anti-TB drugs but it is known for its adverse effects on the hepato-renal system. The present study investigated the efficacy of morin hydrate (MH) in protecting hepato-renal damage inflicted by RIF in rats. RIF (50 mg/kg), and a combination of RIF (50 mg/kg) and MH (50 mg/kg) were administered orally for 4 weeks in rats. Silymarin (50 mg/kg) was used as a positive control. Increased levels of serological parameters such as AST, ALT, ALP, LDH, GGT, bilirubin, triglyceride, total cholesterol, urea, uric acid, creatinine, TNF-α, IFN-γ, IL-6 along with the decreased level of IL-10, total protein and albumin were used as markers of hepatic and renal injury. Oxidative damage in the tissues was measured by the increase in lipid peroxidation and decline in GSH, SOD and catalase activities. Histopathology of liver slices was used to study hepatic architecture. Four-week RIF treatment produced altered serological parameters with an increase in pro-inflammatory cytokines in serum suggesting hepatotoxicity and nephrotoxicity. The antioxidant status of the liver and kidney (increased lipid peroxidation and decline in GSH, SOD and catalase) was compromised. Cellular damage and necrosis were observed in liver slices. MH supplementation with RIF improved hepato-renal functions by restoring the serum and tissue markers towards normal values. Histological observations authenticated the results. MH supplementation also reduced the production of pro-inflammatory cytokines. Thus, the results revealed that MH provides protection against RIF-induced hepato-renal injury.

17.
Talanta ; 274: 126053, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599121

RESUMEN

Borax is strictly regulated in the food processing and pharmaceutical industry due to its physiological toxicity, and the development of a direct analytical method is essential for effectively monitoring the borax abuse. In this work, the fluorescence properties of flavonoids, including flavones, isoflavones and flavonols, were systematically investigated from aqueous to borax solutions, and it was found that the weak intrinsic fluorescence of flavonols could be pervasively sensitized by borax. A natural flavonol, morin, was subsequently chosen as a representative probe to develop a turn-on fluorescence sensing method for borax analysis, which achieved a linear response spanning four orders of magnitude with a detection limit of 1.07 µM (0.22 µg mL-1 in terms of Na2B4O7 content). Furthermore, a smartphone-assisted paper-based test device was designed and constructed by 3D printing technology. Using morin-impregnated test strips as the carrier, the borax could be visually detected by the RGB signals of the captured images, with a detection limit of 0.13 mM (27.05 µg mL-1 for Na2B4O7). Combining ion exchange treatment for food samples and sodium periodate oxidation for drug samples, the developed methods were successfully applied for the direct analysis of borax in various products with the recoveries of 86.9-106.3% for traditional fluorescence analysis and 82.7-108.8% for smartphone-assisted fluorescence sensing. The fluorescence property of the morin-borax system was studied using time-dependent density functional theory, and the sensing mechanism was discussed in conjunction with experimental research.


Asunto(s)
Flavonas , Flavonoides , Flavonoles , Papel , Teléfono Inteligente , Espectrometría de Fluorescencia , Flavonoles/análisis , Espectrometría de Fluorescencia/métodos , Flavonoides/análisis , Boratos/química , Límite de Detección , Colorantes Fluorescentes/química , Fluorescencia
18.
ACS Appl Mater Interfaces ; 16(17): 21400-21414, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640094

RESUMEN

Morin, a naturally occurring bioactive compound shows great potential as an antioxidant, anti-inflammatory agent, and regulator of blood glucose levels. However, its low water solubility, poor lipid solubility, limited bioavailability, and rapid clearance in vivo hinder its application in blood glucose regulation. To address these limitations, we report an enzymatically synthesized nanosized morin particle (MNs) encapsulated in sodium alginate microgels (M@SA). This approach significantly enhances morin's delivery efficiency and therapeutic efficacy in blood glucose regulation. Utilizing horseradish peroxidase, we synthesized MNs averaging 305.7 ± 88.7 nm in size. These MNs were then encapsulated via electrohydrodynamic microdroplet spraying to form M@SA microgels. In vivo studies revealed that M@SA microgels demonstrated prolonged intestinal retention and superior efficacy compared with unmodified morin and MNs alone. Moreover, MNs notably improved glucose uptake in HepG2 cells. Furthermore, M@SA microgels effectively regulated blood glucose, lipid profiles, and oxidative stress in diabetic mice while mitigating liver, kidney, and pancreatic damage and enhancing anti-inflammatory responses. Our findings propose a promising strategy for the oral administration of natural compounds for blood glucose regulation, with implications for broader therapeutic applications.


Asunto(s)
Glucemia , Diabetes Mellitus Experimental , Flavonas , Flavonoides , Nanopartículas , Animales , Humanos , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Ratones , Flavonoides/química , Flavonoides/farmacología , Células Hep G2 , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/sangre , Nanopartículas/química , Nanopartículas/uso terapéutico , Alginatos/química , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/química , Antioxidantes/farmacología , Masculino , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacocinética , Antiinflamatorios/química , Antiinflamatorios/farmacología
19.
J Agric Food Chem ; 72(18): 10366-10375, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38651967

RESUMEN

Intestinal stem cells (ISCs) sustain epithelial renewal by dynamically altering behaviors of proliferation and differentiation in response to various nutrition and stress inputs. However, how ISCs integrate bioactive substance morin cues to protect against heat-stable enterotoxin b (STb) produced by Escherichia coli remains an uncertain question with implications for treating bacterial diarrhea. Our recent work showed that oral mulberry leaf-derived morin improved the growth performance in STb-challenged mice. Furthermore, morin supplementation reinstated the impaired small-intestinal epithelial structure and barrier function by stimulating ISC proliferation and differentiation as well as supporting intestinal organoid expansion ex vivo. Importantly, the Wnt/ß-catenin pathway, an ISC fate commitment signal, was reactivated by morin to restore the jejunal crypt-villus architecture in response to STb stimulation. Mechanically, the extracellular morin-initiated ß-catenin axis is dependent or partially dependent on the Wnt membrane receptor Frizzled7 (FZD7). Our data reveal an unexpected role of leaf-derived morin, which represents molecular signaling targeting the FZD7 platform instrumental for controlling ISC regeneration upon STb injury.


Asunto(s)
Antioxidantes , Toxinas Bacterianas , Enterotoxinas , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Yeyuno , Morus , Extractos Vegetales , Ratones , Morus/química , Hojas de la Planta/química , Vía de Señalización Wnt , Células Madre/efectos de los fármacos , Células Madre/microbiología , Células Madre/patología , Proteínas de Escherichia coli/metabolismo , Técnicas In Vitro , Extractos Vegetales/farmacología , Yeyuno/efectos de los fármacos , Yeyuno/metabolismo , Yeyuno/microbiología , Yeyuno/patología , Regeneración , Toxinas Bacterianas/aislamiento & purificación , Enterotoxinas/aislamiento & purificación , Infecciones por Escherichia coli/tratamiento farmacológico , Antioxidantes/farmacología
20.
Sensors (Basel) ; 24(8)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38676137

RESUMEN

Human action recognition (HAR) is growing in machine learning with a wide range of applications. One challenging aspect of HAR is recognizing human actions while playing music, further complicated by the need to recognize the musical notes being played. This paper proposes a deep learning-based method for simultaneous HAR and musical note recognition in music performances. We conducted experiments on Morin khuur performances, a traditional Mongolian instrument. The proposed method consists of two stages. First, we created a new dataset of Morin khuur performances. We used motion capture systems and depth sensors to collect data that includes hand keypoints, instrument segmentation information, and detailed movement information. We then analyzed RGB images, depth images, and motion data to determine which type of data provides the most valuable features for recognizing actions and notes in music performances. The second stage utilizes a Spatial Temporal Attention Graph Convolutional Network (STA-GCN) to recognize musical notes as continuous gestures. The STA-GCN model is designed to learn the relationships between hand keypoints and instrument segmentation information, which are crucial for accurate recognition. Evaluation on our dataset demonstrates that our model outperforms the traditional ST-GCN model, achieving an accuracy of 81.4%.


Asunto(s)
Aprendizaje Profundo , Música , Humanos , Redes Neurales de la Computación , Actividades Humanas , Reconocimiento de Normas Patrones Automatizadas/métodos , Gestos , Algoritmos , Movimiento/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA