Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Food Chem ; 463(Pt 2): 141212, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39303468

RESUMEN

This study focuses on the extraction of bioactive compounds from Quercus sideroxyla Bonpl., leaves which have been shown to possess health benefits. The extraction process was done using pressurized liquid extraction (PLE), which is efficient and preserves heat-sensitive compounds. Key factors in the process included the choice of solvents, pressure, temperature, and extraction duration. The Hansen solubility parameters analysis aided in selecting effective solvents, such as ethanol and benzyl alcohol. The extracts were found to contain phenolic compounds, flavonoids, and polyphenols with antioxidant properties. The UPLC-PDA-ESI-QqQ was employed for the precise identification and quantification of these compounds, demonstrating superior extraction of quinic acid and gallic acid at elevated temperatures. Notably, the extracts obtained through PLE exhibited significant inhibitory activity of the MAO-A enzyme, linked to neuronal and cognitive health, suggesting potential benefits in these areas.

2.
Front Psychiatry ; 15: 1375363, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104880

RESUMEN

Introduction: Risk-allele carriers of a Monoamine oxidase A (MAOA) gene, short-allele (MAOA-S) in males and long-allele (MAOA-L) in females, in the presence of a negative environment, are associated with alcohol misuse. Whether MAOA-S/L alleles also present susceptibility to a positive environment to mitigate the risk of alcohol misuse is unknown. Thus, we assessed the association of the three-way interaction of MAOA, maltreatment, and positive parent-child relationship with alcohol consumption among adolescents. Methods: This prospective study included 1416 adolescents (females: 59.88%) aged 16 - 19 years from Sweden, enrolled in the "Survey of Adolescent Life in Västmanland" in 2012. Adolescents self-reported alcohol consumption, maltreatment by a family (FM) or non-family member (NFM), parent-child relationship, and left saliva for MAOA genotyping. Results and discussion: We observed sex-dependent results. Females carrying MAOA-L with FM or NFM and a good parent-child relationship reported lower alcohol consumption than those with an average or poor parent-child relationship. In males, the interactions were not significant. Results suggest MAOA-L in females, conventionally regarded as a "risk", is a "plasticity" allele as it is differentially susceptible to negative and positive environments. Results highlight the importance of a good parent-child relationship in mitigating the risk of alcohol misuse in maltreated individuals carrying genetic risk. However, the interactions were not significant after adjusting to several environmental and behavioural covariates, especially parent's alcohol use, negative parent-child relationship, and nicotine use (smoking and/or snus), suggesting predictor and outcome intersection. Future studies and frameworks for preventive strategies should consider these covariates together with alcohol consumption. More studies with larger sample sizes are needed to replicate the findings.

3.
Biochemistry (Mosc) ; 89(6): 1109-1121, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38981704

RESUMEN

At the Institute of Cytology and Genetics (Novosibirsk, Russia) for over 85 generations, gray rats have been selected for high aggression toward humans (aggressive rats) or its complete absence (tame rats). Aggressive rats are an interesting model for studying fear-induced aggression. Benzopentathiepin TC-2153 exerts an antiaggressive effect on aggressive rats and affects the serotonergic system: an important regulator of aggression. The aim of this study was to investigate effects of TC-2153 on key serotonergic-system enzymes - tryptophan hydroxylase 2 (TPH2) and monoamine oxidase A (MAOA) - in the brain of aggressive and tame rats. Either TC-2153 (10 or 20 mg/kg) or vehicle was administered once intraperitoneally to aggressive and tame male rats. TPH2 and MAOA enzymatic activities and mRNA and protein levels were assessed. The selection for high aggression resulted in upregulation of Tph2 mRNA in the midbrain, of the TPH2 protein in the hippocampus, and of proteins TPH2 and MAOA in the hypothalamus, as compared to tame rats. MAO enzymatic activity was higher in the midbrain and hippocampus of aggressive rats while TPH2 activity did not differ between the strains. The single TC-2153 administration decreased TPH2 and MAO activity in the hypothalamus and midbrain, respectively. The drug affected MAOA protein levels in the hypothalamus: upregulated them in aggressive rats and downregulated them in tame ones. Thus, this study shows profound differences in the expression and activity of key serotonergic system enzymes in the brain of rats selectively bred for either highly aggressive behavior toward humans or its absence, and the effects of benzopentathiepin TC-2153 on these enzymes may point to mechanisms of its antiaggressive action.


Asunto(s)
Agresión , Encéfalo , Monoaminooxidasa , Triptófano Hidroxilasa , Animales , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/genética , Monoaminooxidasa/metabolismo , Monoaminooxidasa/genética , Ratas , Masculino , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Agresión/efectos de los fármacos , Humanos , Serotonina/metabolismo
4.
Leg Med (Tokyo) ; 70: 102469, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38870841

RESUMEN

Monoamine oxidase A (MAOA) catalyzes oxidative deamination of catecholamines. A functional variable number tandem repeat (VNTR) polymorphism in the promoter region of the MAOA gene has been previously reported. In the present study, we measured serum adrenaline (Adr), noradrenaline (Nad), and dopamine (DA) levels in 90 male and 34 female Japanese autopsy cases in which amphetamines or psychotropic drugs were not detected.We examined the frequencies of MAOA-uVNTR alleles in these cases and investigated the effects of the MAOA-uVNTR polymorphism on serum Adr, Nad, and DA levels. Evaluation indicated no significant association between MAOA-uVNTR polymorphism and serum Adr, Nad, or DA levels in males, although a significant association between MAOA-uVNTR polymorphism and serum Adr and DA levels were observed in females. Females with the 3/3 genotype had higher serum Adr and DA levels than those with a 4-repeat allele (3/4 and 4/4 genotypes) (p = 0.048 and 0.020, respectively). There was no significant association between MAOA-uVNTR polymorphism and serum Nad levels in females. The present study indicates that MAOA-uVNTR polymorphism influences serum Adr and DA levels only in females.


Asunto(s)
Repeticiones de Minisatélite , Monoaminooxidasa , Polimorfismo Genético , Regiones Promotoras Genéticas , Humanos , Monoaminooxidasa/genética , Monoaminooxidasa/sangre , Masculino , Femenino , Repeticiones de Minisatélite/genética , Regiones Promotoras Genéticas/genética , Adulto , Persona de Mediana Edad , Catecolaminas/sangre , Autopsia , Anciano , Genotipo , Adulto Joven , Dopamina/sangre , Anciano de 80 o más Años , Epinefrina/sangre
5.
J Clin Sleep Med ; 20(9): 1557-1560, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38881510

RESUMEN

Brunner syndrome is a recessive X-linked disorder characterized by intellectual disability and impulsive aggressiveness associated with monoamine oxidase A (MAOA) deficiency leading to increased monoaminergic activity. We report the presence of rapid eye movement (REM) sleep behavior disorder in a 46-year-old patient with Brunner syndrome due to a c.1438A > G/iVS14-2 A > G mutation of the MAOA gene. He has mild intellectual disability and psychotic disturbances. He presented a 15-year history of nightmares (chase, attacks, and fights), sleep-related vocalizations, and motor behaviors characterized by talking, screaming, crying, gesturing, punching, and kicking. Video polysomnography showed REM sleep behavior disorder characterized by excessive tonic and phasic muscle activity in the mentalis and limb muscles with dream-enacting behaviors during REM sleep. Clonazepam achieved a significant reduction of REM sleep behavior disorder symptomatology. We conclude that REM sleep behavior disorder can be a manifestation of Brunner syndrome, probably due to an increased monoaminergic neurotransmission occurring in this rare genetic disorder. CITATION: Cesari E, Muñoz-Lopetegi A, Santamaria J, Iranzo A, Gaig C. REM sleep behavior disorder in Brunner syndrome. J Clin Sleep Med. 2024;20(9):1557-1560.


Asunto(s)
Polisomnografía , Trastorno de la Conducta del Sueño REM , Humanos , Masculino , Persona de Mediana Edad , Trastorno de la Conducta del Sueño REM/fisiopatología , Trastorno de la Conducta del Sueño REM/complicaciones , Enfermedades Genéticas Ligadas al Cromosoma X/fisiopatología , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/complicaciones , Discapacidad Intelectual/fisiopatología , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/genética
6.
Eur J Med Chem ; 272: 116474, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38735149

RESUMEN

Small molecule photosensitizers for combined in vivo tailored cancer diagnostics and photodynamic/photothermal therapy are desperately needed. Monoamine oxidase A (MAO-A)-activated therapeutic and diagnostic compounds provide great selectivity because MAO-A can be employed as a biomarker for associated Tumors. In order to screen photosensitizers with photodynamic therapeutic potential, we have created a range of near-infrared fluorescent molecules in this work by combining dihydroxanthene parent with various heterocyclic fluorescent dyes. The NIR fluorescent diagnostic probe, DHMQ, was created by combining the screened fluorescent dye matrices with the propylamino group, which is the recognition moiety of MAO-A, based on the oxidative deamination mechanism of the enzyme. This probe has a low toxicity level and can identify MAO-A precisely. It has the ability to use fluorescence imaging on mice and cells to track MAO-A activity in real-time. It has strong phototoxicity and can produce singlet oxygen when exposed to laser light. The temperature used in photothermal imaging can get up to 50 °C, which can harm tumor cells permanently and have a positive phototherapeutic impact on tumors grown from SH-SY5Y xenograft mice. The concept of using MAO-A effectively in diseases is expanded by the MAO-A-activated diagnostic-integrated photosensitizers, which offer a new platform for in vivo cancer diagnostics and targeted anticancer treatment.


Asunto(s)
Monoaminooxidasa , Fotoquimioterapia , Fármacos Fotosensibilizantes , Terapia Fototérmica , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/síntesis química , Animales , Humanos , Monoaminooxidasa/metabolismo , Ratones , Xantenos/química , Xantenos/farmacología , Xantenos/síntesis química , Estructura Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Estructura-Actividad , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/farmacología , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Ratones Desnudos
7.
J Chromatogr A ; 1722: 464896, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38631224

RESUMEN

In this study, a novel magnetic bead-based ligand fishing method was developed for rapid discovery of monoterpene indoles as monoamine oxidase A inhibitors from natural products. In order to improve the screening efficiency, two different magnetic beads, i.e. amine and carboxyl terminated magnetic beads, were comprehensively compared in terms of their ability to immobilize monoamine oxidase A (MAOA), biocatalytic activity and specific adsorption rates for affinity ligands. Carboxyl terminated magnetic beads performed better for MAOA immobilization and demonstrated superior performance in ligand fishing. The MAOA immobilized magnetic beads were applied to screen novel monoamine oxidase inhibitors in an alkaloid-rich plant, Hunteria zeylanica. Twelve MAOA affinity ligands were screened out, and ten of them were identified as monoterpene indole alkaloids by HPLC-Obitrap-MS/MS. Among them, six ligands, namely geissoschizol, vobasinol, yohimbol, dihydrocorynanthenol, eburnamine and (+)-isoeburnamine which exhibited inhibitory activity against MAOA with low IC50 values. To further explore their inhibitory mechanism, enzyme kinetic analysis and molecular docking studies were conducted.


Asunto(s)
Simulación del Acoplamiento Molecular , Inhibidores de la Monoaminooxidasa , Monoaminooxidasa , Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/aislamiento & purificación , Monoaminooxidasa/metabolismo , Monoaminooxidasa/química , Ligandos , Indoles/química , Monoterpenos/química , Monoterpenos/aislamiento & purificación , Cinética , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Enzimas Inmovilizadas/antagonistas & inhibidores , Humanos , Extractos Vegetales/química
9.
Mol Biol Rep ; 51(1): 400, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457024

RESUMEN

BACKGROUND: The health and social consequences of substance/alcohol use disorders are harmful. Most of the individuals cannot stop using them due to more likely their genetic background. The current study aimed both to develop a novel PCR-RFLP method for genotyping of MAOA rs1465108 and to analyze the effect of MAOA rs1465108 on the risk of alcohol (AUD), opioid (OUD) or methamphetamine (MUD) use disorders and on the depressive and anxiety symptoms in a Turkish population. METHODS AND RESULTS: A total of 353 individual with AUD (n = 154), OUD (n = 160) or MUD (n = 39) and 109 healthy subjects were included. The intensity of anxiety and depressive symptoms and craving and opioid withdrawal were measured by appropriate scales. Logistic regression analysis revealed no association between MAOA rs1465108 polymorphism and substance/alcohol use disorder (p > 0.05). Healthy subjects (3.0) had significantly lower levels of depressive symptoms than individuals with OUD (27.0), AUD (21.0) and MUD (25.5) groups. The severity of depressive symptoms was significantly higher in OUD as compared to AUD. There was a statistically significant difference between individuals with AUD, OUD and MUD in view of the average ages of first use (17, 19 and 20 years, respectively) (p < 0.05). CONCLUSIONS: The results presented here do not support the hypothesis that MAOA rs1465108 is associated with substance/alcohol use disorders. The intensity of depressive symptoms could be changed according to the abused substance type. A novel PCR-RFLP was developed for genotyping of MAOA rs1465108 polymorphism, which could be a better option for laboratories without high technology equipment.


Asunto(s)
Alcoholismo , Trastornos Relacionados con Sustancias , Humanos , Alcoholismo/genética , Alcoholismo/epidemiología , Polimorfismo de Longitud del Fragmento de Restricción , Analgésicos Opioides , Genotipo , Etanol , Reacción en Cadena de la Polimerasa , Monoaminooxidasa
10.
Front Mol Biosci ; 11: 1359177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38545418

RESUMEN

Background: Melissa officinalis L. (MO), commonly known as lemon balm, a member of the mint family, is considered a calming herb. In various traditional medicines, it has been utilized to reduce stress and anxiety and promote sleep. A growing body of clinical evidence suggests that MO leaf extract supplementation possesses considerable neuropharmacological properties. However, its possible mechanism of action largely remains unknown. Objective: In the present in vitro studies, we comparatively investigated the central nervous system (CNS)-calming and antioxidative stress properties of an innovative standardized phospholipid carrier-based (Phytosome™) MO extract (Relissa™) vs. an unformulated dry MO extract. Methods: The neuropharmacological effect of the extract was studied in the anti-depressant enzymes γ-aminobutyrate transaminase (GABA-T) and monoamine oxidase A (MAO-A) assays and SH-SY5Y cells brain-derived neurotrophic factor (BDNF) expression assay. The neuroprotective effect of the extract against oxidative stress was assessed in SH-SY5Y cell-based (H2O2-exposed) Total Antioxidant Status (TAS) and Total Reactive Oxygen Species (ROS) assays. The cytotoxic effect of the extract was evaluated using MTT and LDH assays. The extract antioxidant effect was also evaluated in cell-free chemical tests, including TEAC-ABTS, DPPH, Ferric Reducing Antioxidant Power (FRAP), Oxygen Radical Antioxidant Capacity (ORAC), and Hydroxyl Radical Antioxidant Capacity (HORAC) assays. Results: Relissa™ exhibited high GABA-T inhibitory activity, IC50 (mg/mL) = 0.064 vs. unformulated dry MO extract, IC50 (mg/mL) = 0.27. Similar inhibitory effects were also observed for MAO-A. Relissa™ demonstrated an improved neuroprotective antioxidant effect on SH-SY5Y cells against H2O2-induced oxidative stress. Compared to unformulated dry MO extract, Relissa™ exerted high protective effect on H2O2-exposed SH-SY5Y cells, leading to higher cells BDNF expression levels. Moreover, cell-free chemical tests, including TEAC-ABTS, DPPH radical scavenging, FRAP, ORAC, and HORAC assays, validated the improved antioxidant effect of Relissa™ vs. unformulated dry MO extract. Conclusion: The results of the present study support the neuromodulating and neuroprotective properties of Relissa™, and its supplementation may help in the amelioration of emotional distress and related conditions.

11.
Cancer Immunol Immunother ; 73(3): 48, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349393

RESUMEN

Monoamine oxidase A (MAOA) is a membrane-bound mitochondrial enzyme present in almost all vertebrate tissues that catalyzes the degradation of biogenic and dietary-derived monoamines. MAOA is known for regulating neurotransmitter metabolism and has been implicated in antitumor immune responses. In this review, we retrospect that MAOA inhibits the activities of various types of tumor-associated immune cells (such as CD8+ T cells and tumor-associated macrophages) by regulating their intracellular monoamines and metabolites. Developing novel MAOA inhibitor drugs and exploring multidrug combination strategies may enhance the efficacy of immune governance. Thus, MAOA may act as a novel immune checkpoint or immunomodulator by influencing the efficacy and effectiveness of immunotherapy. In conclusion, MAOA is a promising immune target that merits further in-depth exploration in preclinical and clinical settings.


Asunto(s)
Monoaminooxidasa , Neoplasias , Humanos , Adyuvantes Inmunológicos , Aminas , Linfocitos T CD8-positivos , Inhibidores de Puntos de Control Inmunológico , Factores Inmunológicos , Neoplasias/tratamiento farmacológico
12.
Biosci Biotechnol Biochem ; 88(3): 322-332, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38066695

RESUMEN

This study was to investigate the inhibitory activity of small hairtail-related peptides (VFEVFW, LPNSLYQQ, LPNSLYQK, and FADAME) on intracellular monoamine oxidase-A (MAO-A) and their protective effects in a cell model. Specifically, the inhibition activity in SH-SY5Y cells indicated that VFEVFW and LPNSLYQK reduced ∼50% of MAO-A activity in cells, at 0.5 m m. The survival experiment demonstrated that the toxic effect of dexamethasone (DEX) on cells can be significantly alleviated in the presence of peptides, and these peptides can restore (>20%) the mitochondrial membrane potential of SH-SY5Y cells reduced by DEX. Circular dichroism displayed that peptides affected the secondary structure of MAO-A in a concentration-dependent manner. Finally, the real-time quantitative polymerase chain reaction assay revealed that the MAO-A inhibitory activity of the peptides was associated with the upregulation of brain derived neurotrophic factor/cAMP (Cyclic adenosine monophosphate) response element binding protein)/B-cell lymphoma-2 mRNA levels.


Asunto(s)
Monoaminooxidasa , Neuroblastoma , Humanos , Monoaminooxidasa/genética , Monoaminooxidasa/metabolismo , Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/metabolismo , Línea Celular Tumoral , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuronas , Péptidos/farmacología
13.
J Biomol Struct Dyn ; : 1-22, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38095566

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder with a complex pathogenesis. One promising approach to treating AD is simultaneously targeting multiple aspects of the disease using a multi-target drug (MTD). In this study, multi-target drug (MTD) potential of the nutraceutical molecule Queuine was explored using molecular docking and molecular dynamics (MD) simulations with five different protein targets engaged in AD: AChE, beta-site amyloid precursor protein cleaving enzyme-1 (BACE-1), N-methyl-D-aspartate receptor (NMDAR), monoamine oxidase A (MAO-A), and Synapsin III. Queuine revealed significant binding affinities, the docking scores being -10.1, -5.97, -5.63, -8.40, and -10.56 kcal/mol for AChE, BACE-1, NMDAR, MAO-A, and Synapsin III, respectively. MD simulations showed that Queuine formed stable complexes and preserved its stability throughout the simulation, the backbone fluctuations remaining within 2.5 Å specifically in the case of the BACE-1. Elastic network model simulations and principal component analysis were carried out to illustrate the dynamics of the protein systems. Significant hinge-bending and twisting-type motions that may be relevant to function were observed around the dimerization interfaces or binding sites. Structural clustering based on PCA analysis and cross-correlation maps demonstrated that Queuine binding altered the protein dynamics more drastically in the case of highly mobile proteins NMDAR and MAO-A. We propose that the neuroprotective effect of Queuine may stem from its prominent inhibitory action on enzymes BACE-1 and AChE. Our results suggest that Queuine may serve as a promising MTD candidate for the treatment of AD.Communicated by Ramaswamy H. Sarma.

14.
Mol Biol Rep ; 51(1): 29, 2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38142252

RESUMEN

Obesity has become a global health concern with an increasing prevalence as years pass by but the researchers have not come to a consensus on the exact pathophysiological mechanism underlying this disease. In the past three decades, Monoamine Oxidases (MAO), has come into limelight for a possible involvement in orchestrating the genesis of obesity but the exact mechanism is not well elucidated. MAO is essentially an enzyme involved in the catabolism of neurotransmitters and other biogenic amines to form a corresponding aldehyde, hydrogen peroxide (H2O2) and ammonia. This review aims to highlight the repercussions of MAO's catabolic activity on the redox balance, carbohydrate metabolism and lipid metabolism of adipocytes which ultimately leads to obesity. The H2O2 produced by these enzymes seems to be the culprit causing oxidative stress in pre-adipocytes and goes on to mimic insulin's activity independent of its presence via the Protein Kinase B Pathway facilitating glucose influx. The H2O2 activates Sterol regulatory-element binding protein-1c and peroxisome proliferator activated receptor gamma crucial for encoding enzymes like fatty acid synthase, acetyl CoA carboxylase 1, Adenosine triphosphate-citrate lyase, phosphoenol pyruvate carboxykinase etc., which helps promoting lipogenesis at the same time inhibits lipolysis. More reactive oxygen species production occurs via NADPH Oxidases enzymes and is also able activate Nuclear Factor kappa B leading to inflammation in the adipocyte microenvironment. This chronic inflammation is the seed for insulin resistance.


Asunto(s)
Peróxido de Hidrógeno , Monoaminooxidasa , Humanos , Monoaminooxidasa/metabolismo , Obesidad/metabolismo , Estrés Oxidativo , Inflamación
15.
J Biomol Struct Dyn ; : 1-14, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37921699

RESUMEN

The slumping level of estrogen and serotonin in menopausal women is directly associated with the occurrence of menopausal symptoms where, estrogen receptor-ß (ERß) and monoamine oxidase-A (MAO-A) are directly involved. The present investigation aimed for validation of promising plants traditionally used to alleviate menopausal symptoms with ERß mediated MAO-A inhibition potential through in silico disease-target network construction using Cytoscape plugins followed by molecular docking of phytomolecules through AutoDock vina. ADMET parameters of identified bioactive phytomolecules were analysed through swissADME and ProTox II. The efficacy of promising plant leads was further established through in vitro ERß competitive binding, MAO-A inhibition, enzyme kinetics and free radical quenching assays. In silico analysis suggested glabrene (ΔG = -9.7 Kcal/mol) as most promising against ERß in comparison to 17ß-estradiol (ΔG = -11.4 Kcal/mol) whereas liquiritigenin (ΔG = -9.4 Kcal/mol) showed potential binding with MAO-A in comparison to standard harmine (ΔG = -8.8 Kcal/mol). In vitro analysis of promising plants segregated Glycyrrhiza glabra (IC50 = 0.052 ± 0.007 µg/ml) as most promising, followed by Hypericum perforatum (IC50 = 0.084 ± 0.01 µg/ml), Trifolium pratense (IC50 = 0.514 ± 0.01 µg/ml) and Rumex nepalensis (IC50 = 2.568 ± 0.11 µg/ml). The enzyme kinetics of promising plant leads showed reversible and competitive nature of inhibition against MAO-A. The potency of plant extracts in quenching free radicals was at par with ascorbic acid. The identified four potent medicinal plants with ERß selective, MAO-A inhibitory and free radical quenching abilities could be used against menopausal symptoms however, finding needs to be validated further for menopausal symptoms in in vivo conditions for drug development.Communicated by Ramaswamy H. Sarma.

16.
Front Physiol ; 14: 1222826, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37942228

RESUMEN

Post-traumatic stress disorder (PTSD) is a neuropsychiatric disorder that occurs in approximately 15% of people as a result of some traumatic events. The main symptoms are re-experiencing and avoidance of everything related to this event and hyperarousal. The main component of the pathophysiology of PTSD is an imbalance in the functioning of the hypothalamic-pituitary-adrenal axis (HPA) and development of neuroinflammation. In parallel with this, mitochondrial dysfunction is observed, as in many other diseases. In this review, we focus on the question how mitochondria may be involved in the development of neuroinflammation and its maintaining at PTSD. First, we describe the differences in the operation of the neuro-endocrine system during stress versus PTSD. We then show changes in the activity/expression of mitochondrial proteins in PTSD and how they can affect the levels of hormones involved in PTSD development, as well as how mitochondrial damage/pathogen-associated molecule patterns (DAMPs/PAMPs) trigger development of inflammation. In addition, we examine the possibility of treating PTSD-related inflammation using mitochondria as a target.

17.
Angew Chem Int Ed Engl ; 62(42): e202310134, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37585321

RESUMEN

Abnormal expression of monoamine oxidase A (MAO-A) has been implicated in the development of human glioma, making MAO-A a promising target for therapy. Therefore, a rapid determination of MAO-A is critical for diagnosis. Through in silico screening of two-photon fluorophores, we discovered that a derivative of N,N-dimethyl-naphthalenamine (pre-mito) can effectively fit into the entrance of the MAO-A cavity. Substitutions on the N-pyridine not only further explore the MAO-A cavity, but also enable mitochondrial targeting ability. The aminopropyl substituted molecule, CD1, showed the fastest MAO-A detection (within 20 s), high MAO-A affinity and selectivity. It was also used for in situ imaging of MAO-A in living cells, enabling a comparison of the MAO-A content in human glioma and paracancerous tissues. Our results demonstrate that optimizing the affinity binding-based fluorogenic probes significantly improves their detection rate, providing a general approach for rapid detection probe design and optimization.

18.
Artículo en Inglés | MEDLINE | ID: mdl-37501771

RESUMEN

Chronic stress is a risk factor for depression and is characterized by elevated levels of brain monoamine oxidase A (MAOA). Mounting evidence has shown that MAOA is a biochemical link between stress and depression. Apigenin (API), a natural flavonoid, as demonstrated in vitro inhibitory effect on MAOA, is suggestive of antidepressant-like activity. However, the in vivo inhibitory effect of API on MAOA and how it affects depression still remain unclear. Here, we report the probable mechanisms of action of API in chronic unpredictable mild stress (CUMS)-induced depression in mice. Treatment with API reversed anhedonia, and reduced anxiety and immobility time in behavioral studies. API reduced brain corticosterone and malondialdehyde (MDA) levels but increased brain levels of glutathione and superoxide dismutase. Furthermore, interleukin-6 and tumor necrosis factor-α were attenuated by API. It also restored cell loss and inhibited the activity of MAOA in the hippocampal brain regions and prefrontal cortex. Comparative binding affinity of API for MAOA (-7.7 kcal/mol) through molecular docking studies was greater than that of reference compound, clorgyline (-6.8 kcal/mol). Favorable hydrophobic interactions important to API binding at MAOA binding cavity was revealed to include conventional hydrogen bond (Cys323 and Tyr444), π-Sulfur (Cys323), π-π Stacked (Tyr407), π-π T-shaped (Phe208), π-lone pair and π-alkyl (Ile335, Ile180) interactions. These results suggest that API is a potent, selective, reversible inhibitor of MAOA with capability of attenuating CUMS-induced depression via inhibiting MAOA enzyme activity and altering other pathomechanisms.

19.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37445985

RESUMEN

Increased monoamine oxidase-A (MAO-A) activity in Alzheimer's disease (AD) may be detrimental to the point of neurodegeneration. To assess MAO-A activity in AD, we compared four biomarkers, Aß plaques, tau, translocator protein (TSPO), and MAO-A in postmortem AD. Radiotracers were [18F]FAZIN3 for MAO-A, [18F]flotaza and [125I]IBETA for Aß plaques, [124/125I]IPPI for tau, and [18F]FEPPA for TSPO imaging. Brain sections of the anterior cingulate (AC; gray matter GM) and corpus callosum (CC; white matter WM) from cognitively normal control (CN, n = 6) and AD (n = 6) subjects were imaged using autoradiography and immunostaining. Using competition with clorgyline and (R)-deprenyl, the binding of [18F]FAZIN3 was confirmed to be selective to MAO-A levels in the AD brain sections. Increases in MAO-A, Aß plaque, tau, and TSPO activity were found in the AD brains compared to the control brains. The [18F]FAZIN3 ratio in AD GM versus CN GM was 2.80, suggesting a 180% increase in MAO-A activity. Using GM-to-WM ratios of AD versus CN, a >50% increase in MAO-A activity was observed (AD/CN = 1.58). Linear positive correlations of [18F]FAZIN3 with [18F]flotaza, [125I]IBETA, and [125I]IPPI were measured and suggested an increase in MAO-A activity with increases in Aß plaques and tau activity. Our results support the finding that MAO-A activity is elevated in the anterior cingulate cortex in AD and thus may provide a new biomarker for AD in this brain region.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Monoaminooxidasa/metabolismo , Radioisótopos de Yodo/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Tomografía de Emisión de Positrones/métodos , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Receptores de GABA/metabolismo
20.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37445788

RESUMEN

Novel compounds with antidepressant activity via monoamine oxidase inhibition are being sought. Among these, derivatives of 3-n-butylphthalide, a neuroprotective lactone from Apiaceae plants, may be prominent candidates. This study aimed to obtain the oxidation products of 3-n-butylphthalide and screen them regarding their activity against the monoamine oxidase A (MAO-A) isoform. Such activity of these compounds has not been previously tested. To obtain the metabolites, we used fungi as biocatalysts because of their high oxidative capacity. Overall, 37 strains were used, among which Penicillium and Botrytis spp. were the most efficient, leading to the obtaining of three main products: 3-n-butyl-10-hydroxyphthalide, 3-n-butylphthalide-11-oic acid, and 3-n-butyl-11-hydroxyphthalide, with a total yield of 0.38-0.82 g per g of the substrate, depending on the biocatalyst used. The precursor-3-n-butylphthalide and abovementioned metabolites inhibited the MAO-A enzyme; the most active was the carboxylic acid derivative of the lactone with inhibitory constant (Ki) < 0.001 µmol/L. The in silico prediction of the drug-likeness of the metabolites matches the assumptions of Lipinski, Ghose, Veber, Egan, and Muegge. All the compounds are within the optimal range for the lipophilicity value, which is connected to adequate permeability and solubility.


Asunto(s)
Inhibidores de la Monoaminooxidasa , Monoaminooxidasa , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/química , Monoaminooxidasa/metabolismo , Antidepresivos , Lactonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA