Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 281: 116635, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944007

RESUMEN

Since we rely entirely on plastics or their products in our daily lives, plastics are the invention of the hour. Polyester plastics, such as Polyethylene Terephthalate (PET), are among the most often used types of plastics. PET plastics have a high ratio of aromatic components, which makes them very resistant to microbial attack and highly persistent. As a result, massive amounts of plastic trash accumulate in the environment, where they eventually transform into microplastic (<5 mm). Rather than macroplastics, microplastics are starting to pose a serious hazard to the environment. It is imperative that these polymer microplastics be broken down. Through the use of enrichment culture, the PET microplastic-degrading bacterium was isolated from solid waste management yards. Bacterial strain was identified as Gordonia sp. CN2K by 16 S rDNA sequence analysis and biochemical characterization. It is able to use polyethylene terephthalate as its only energy and carbon source. In 45 days, 40.43 % of the PET microplastic was degraded. By using mass spectral analysis and HPLC to characterize the metabolites produced during PET breakdown, the degradation of PET is verified. The metabolites identified in the spent medium included dimer compound, bis (2-hydroxyethyl) terephthalate (BHET), mono (2-hydroxyethyl) terephthalate (MHET), and terephthalate. Furthermore, the PET sheet exposed to the culture showed considerable surface alterations in the scanning electron microscope images. This illustrates how new the current work is.


Asunto(s)
Biodegradación Ambiental , Bacteria Gordonia , Tereftalatos Polietilenos , Tereftalatos Polietilenos/metabolismo , Tereftalatos Polietilenos/química , Bacteria Gordonia/metabolismo , Bacteria Gordonia/genética , Plásticos , Microplásticos , ARN Ribosómico 16S/genética
2.
J Biotechnol ; 358: 102-110, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36063976

RESUMEN

Poly(ethylene terephthalate) (PET) is one of the main synthetic plastics produced worldwide. The extensive use of this polymer causes several problems due to its low degradability. In this scenario, biocatalysts dawn as an alternative to enhance PET recycling. The enzymatic hydrolysis of PET results in a mixture of terephthalic acid (TPA), ethylene glycol (EG), mono-(2-hydroxyethyl) terephthalate (MHET) and bis-(2-hydroxyethyl) terephthalate (BHET) as main products. This work developed a new methodology to quantify the hydrolytic activity of biocatalysts, using BHET as a model substrate. The protocol can be used in screening enzymes for PET depolymerization reactions, amongst other applications. The very good fitting (R2 = 0.993) between experimental data and the mathematical model confirmed the feasibility of the Michaelis-Menten equation to analyze the effect of BHET concentration (8-200 mmol L-1) on initial hydrolysis rate catalyzed by Humicola insolens cutinase (HiC). In addition to evaluating the effects of enzyme and substrate concentration on the enzymatic hydrolysis of BHET, a novel and straightforward method for MHET synthesis was developed using an enzyme load of 0.025 gprotein gBHET-1 and BHET concentration of 60 mmol L-1 at 40 °C. MHET was synthesized with high selectivity (97 %) and yield (82 %). The synthesized MHET properties were studied using differential scanning calorimetry (DSC), thermogravimetry (TGA), and proton nuclear magnetic resonance (1H NMR), observing the high purity of the final product (86.7 %). As MHET is not available commercially, this synthesis using substrate and enzyme from open suppliers adds new perspectives to monitoring PET hydrolysis reactions.


Asunto(s)
Tereftalatos Polietilenos , Protones , Glicol de Etileno/química , Etilenos , Hidrólisis , Ácidos Ftálicos , Plásticos/química , Tereftalatos Polietilenos/química , Polímeros
3.
J Basic Microbiol ; 60(8): 699-711, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32510669

RESUMEN

Bis(2-hydroxyethyl) terephthalate (BHET) is an important compound produced from poly(ethylene terephthalate) (PET) cleavage. It was selected as the representative substance for the study of PET degradation. A bacterial strain HY1 that could degrade BHET was isolated and identified as Enterobacter sp. The optimal temperature and pH for BHET biodegradation were determined to be 30°C and 8.0, respectively. The half-life of degradation was 70.20 h at an initial BHET concentration of 1,000 mg/L. The results of metabolites' analysis by liquid chromatograph-mass spectrometer revealed that BHET was first converted to mono-(2-hydroxyethyl) terephthalate (MHET) and then to terephthalic acid. Furthermore, an esterase-encoding gene, estB, was cloned from strain HY1, and the expressed enzyme EstB was characterized. The esterase has a molecular mass of approximately 25.13 kDa, with an isoelectric point of 4.68. Its optimal pH and temperature were pH 8.0 and 40°C, respectively. The analysis of the enzymatic products showed that EstB could hydrolyze one ester bond of BHET to MHET. To the best of authors' knowledge, this is the first report on the biodegradation characteristics of BHET by a member of the Enterobacter genus.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enterobacter/metabolismo , Esterasas/metabolismo , Ácidos Ftálicos/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biodegradación Ambiental , Enterobacter/clasificación , Enterobacter/enzimología , Enterobacter/genética , Esterasas/química , Esterasas/genética , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Peso Molecular , Filogenia , Especificidad por Sustrato , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA