Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2408285, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246151

RESUMEN

A breakthrough in manufacturing procedures often enables people to obtain the desired functional materials. For the field of energy conversion, designing and constructing catalysts with high cost-effectiveness is urgently needed for commercial requirements. Herein, the molten salt-assisted synthesis (MSAS) strategy is emphasized, which combines the advantages of traditional solid and liquid phase synthesis of catalysts. It not only provides sufficient kinetic accessibility, but effectively controls the size, morphology, and crystal plane features of the product, thus possessing promising application prospects. Specifically, the selection and role of the molten salt system, as well as the mechanism of molten salt assistance are analyzed in depth. Then, the creation of the catalyst by the MSAS and the electrochemical energy conversion related application are introduced in detail. Finally, the key problems and countermeasures faced in breakthroughs are discussed and look forward to the future. Undoubtedly, this systematical review and insights here will promote the comprehensive understanding of the MSAS and further stimulate the generation of new and high efficiency catalysts.

2.
Small Methods ; : e2401221, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291906

RESUMEN

Regulating the distribution of surface elements in lithium-rich cathode materials can effectively change the electrochemical performance of cathode materials. Considering that the enrichment of Mn element on the surface is the main reason for the irreversible phase transition and dissolution of its surface structure, which in turn is the main reason for performance degradation. Based on the molten salt-assisted sintering method, a lithium rich cathode material with surface rich Ni and Co is designed and prepared. The surface enrichment of Ni and Co effectively reduces the dissolution of Mn, promotes the occurrence of irreversible collapse of surface structure from layered phase to rock salt phase on the material surface, improves the stability of surface crystal phase structure, and improves the cycling stability of positive electrode materials. Notably, after 500 cycles at 1 C current density, the discharge-specific capacity attained 189.8 mAh g -1, with a capacity retention rate of 88.9%, indicating a 42.1% improvement in capacity retention. Molten salt treatment is widely used in the modification of positive electrode materials. The research work will provide new ideas for improving the stability of lithium rich materials and promoting their commercial applications.

3.
ACS Nano ; 18(34): 23477-23488, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39133538

RESUMEN

MXenes have garnered significant attention due to their atomically thin two-dimensional structure with metallic electronic properties. However, it has not yet been fully achieved to discover semiconducting MXenes to implement them into gate-tunable electronics such as field-effect transistors and phototransistors. Here, a semiconducting Ti4N3Tx MXene synthesized by using a modified oxygen-assisted molten salt etching method under ambient conditions, is reported. The oxygen-rich synthesis environment significantly enhances the etching reaction rate and selectivity of Al from a Ti4AlN3 MAX phase, resulting in well-delaminated and highly crystalline Ti4N3Tx MXene with minimal defects and high content of F and O, which led to its improved hydrophobicity and thermal stability. Notably, the synthesized Ti4N3Tx MXene exhibited p-type semiconducting characteristics, including gate-tunable electrical conductivity, with a current on-off ratio of 5 × 103 and a hole mobility of ∼0.008 cm2 V-1 s-1 at 243 K. The semiconducting property crucial for thin-film transistor applications is evidently associated with the surface terminations and the partial substitution of oxygen in the nitrogen lattice, as corroborated by density functional theory (DFT) calculations. Furthermore, the synthesized Ti4N3Tx exhibits strong light absorption characteristics and photocurrent generation. These findings highlight the delaminated Ti4N3Tx as an emerging two-dimensional semiconducting material for potential electronic and optoelectronic applications.

4.
ChemSusChem ; : e202401091, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115021

RESUMEN

Developing energy- and time-efficient strategies to derive high-performance non-precious electrocatalysts for anodic oxygen evolution reaction (OER), especially stably working at industrial-demanding current density, is still a big challenge. In this work, a concise molten salt erosion scenario was devised to rapidly modulate the smooth surface of the commercial NiMo foam substrate into the rough, electronically coupled, and hierarchically porous Ni/Fe/Mo(oxy)hydroxide catalyst layer assembled by the nanosphere array. This self-supported catalyst is super-hydrophilic for the alkaline electrolyte and distinguished by a balanced Mo leaching/surface-readsorption process to tune the metal d band center and electronic perturbation. The altered electronic environment with the favored OER intermediate adsorption behavior attains the outstanding OER activity in terms of a very small overpotential of 230.21 mV at 10 mA cm-2 and an ultra-long stability for 1179.45 h to sustain the initial commercial-level current density of ca. 1000 mA cm-2. This superb performance transcends most of the edge-cutting transition metal peers reported recently and can satisfy the standards of industrial applications. This industrial-compatible synthesis technology holds profound implications for hydrogen production via water splitting and other electrochemical applications.

5.
J Colloid Interface Sci ; 677(Pt B): 729-739, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39167964

RESUMEN

Photocatalytic oxygen reduction is considered an economical and green way to produce H2O2. Graphitic carbon nitride is a common photocatalyst, but its activity is limited by the low specific surface area and the high recombination rate of photogenerated electron-hole pairs. Herein, nanoflowers-like phosphorus (P) and potassium (K) co-doped graphitic carbon nitride (PKCN) is synthesized by co-polymerization of ammonium dihydrogen phosphate and melamine in the mixed molten salt (KCl/LiCl) medium. Within 90 min, the synthesized PKCN-0.05 can produce 4.97 mmol L-1 of H2O2, which is 7.8 times higher than that of pure bulk g-C3N4. The enhanced photocatalytic performance of PKCN-0.05 is mainly attributed to the following: 1) KCl/LiCl molten salt induces melamine to form a three-dimensional flower-like morphology, which expands the specific surface area, exposes more active sites, and improves the light utilization efficiency; 2) high crystallinity of PKCN-0.05 and the K ions inserted between the interlayers are beneficial for accelerating electron transfer; 3) the formation of PN bonds and the existence of N vacancies promotes the separation of photoproduced carriers; 4) the negatively shifted conduction band of PKCN-0.05 favors oxygen reduction.

6.
J Mol Model ; 30(8): 283, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060545

RESUMEN

CONTEXT: One of the crucial issues related to machine learning potentials is the formation of representative dataset. For multicomponent systems, it is a general methodology to scan the composition range with a certain step. However, there is a lack of information on the compositional transferability of machine learning potentials. In this paper, we extend the knowledge in this area by studying the transferability of deep learning potential over the range of compositions of LiCl-KCl molten mixtures. The training dataset was formed using only the near-eutectic composition of 60% LiCl-40% KCl. Then, we tested the ability of the model to predict physicochemical properties of the melts far from the reference composition. It was found that for the composition range from 0 to 100% of LiCl, the calculated properties concur closely with those of other studies and ab initio calculations. Therefore, the model shows prominent non-intuitive compositional transferability. Moreover, the solid states and solid-liquid coexistence were reproduced. The calculated melting temperatures of LiCl and KCl show the errors of 6.6% and 0.4%, respectively. We argue that such good transferability stems from the local structure configurations that are typical both for pure LiCl and for pure KCl which are implicitly presented in the training dataset because of local fluctuations in composition. METHODS: To collect the data for the initial dataset, density functional theory was employed. Then, the DeePMD package was used to train a neural network potential. To calculate the properties of the melts, standard equilibrium and non-equilibrium molecular dynamic approaches were utilized.

7.
Nanotechnology ; 35(39)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38955176

RESUMEN

Low-temperature KSCN molten salt is a promising technique to synthesize defect-rich MoS2catalysts for hydrogen evolution reaction (HER). However, owing to the fast ion diffusion rate for rapid crystal growth, the resultant catalysts show a morphology of microsphere, which aggregates from MoS2nanosheets, to suppress the catalytic performance. In this work, large-sized few-layer MoS2nanosheets are synthesized via a spatial confinement strategy by adding inert NaCl into the KSCN molten salt. With the NaCl spacer to physically block the long-distance ion diffusion and isolate the chemical reaction, the MoS2nucleation and subsequent crystal growth could be controlled, guiding the nanosheets to grow along the narrow gap between the NaCl crystals to avoid aggregation. As a result, ultrathin MoS2nanosheets with a large geometry size are constructed. Profiting from the architecture to expose active sites and boost charge transfer kinetics, the large-sized few-layer MoS2nanosheets exhibit an impressive HER performance, showing a smallη10of 160 mV and a low Tafel slope of 53 mV dec-1with excellent stability. This work provides not only an efficient HER catalyst but also a facile spatial confinement technique to design and synthesize a large spectrum of transition metal sulfides for broad uses.

8.
Angew Chem Int Ed Engl ; : e202406030, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020457

RESUMEN

Single Fe sites have been explored as promising catalysts for the CO2 reduction reaction to value-added CO. Herein, we introduce a novel molten salt synthesis strategy for developing axial nitrogen-coordinated Fe-N5 sites on ultrathin defect-rich carbon nanosheets, aiming to modulate the reaction pathway precisely. This distinctive architecture weakens the spin polarization at the Fe sites, promoting a dynamic equilibrium of activated intermediates and facilitating the balance between *COOH formation and *CO desorption at the active Fe site. Notably, the synthesized FeN5, supported on defect-rich in nitrogen-doped carbon (FeN5@DNC), exhibits superior performance in CO2RR, achieving a Faraday efficiency of 99% for CO production (-0.4 V vs. RHE) in an H-cell, and maintaining a Faraday efficiency of 98% at a current density of 270 mA cm-2 (-1.0 V vs. RHE) in the flow cell. Furthermore, the FeN5@DNC catalyst is assembled as a reversible Zn-CO2 battery with a cycle durability of 24 hours. In-situ IR spectroscopy and density functional theory (DFT) calculations reveal that the axial N coordination traction induces a transformation in the crystal field and local symmetry, therefore weakening the spin polarization of the central Fe atom and lowering the energy barrier for *CO desorption.

9.
Adv Sci (Weinh) ; : e2307106, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39021320

RESUMEN

About one decade after the first report on MXenes, these 2D early transition metal carbides or nitrides have become among the best-performing materials in electrode applications related to electrical energy storage devices and power-to-fuels conversion. MXenes are obtained by a top-down approach starting from the appropriate 3D MAX phase that undergoes etching of the A-site metal. Initial etching procedures are based on the use of concentrated HF or the in situ generation of this highly corrosive and poisonous reagent. Etching of the MAX phase is one of the major hurdles limiting the progress of the field. The present review summarizes an alternative, universal, and easily scalable etching procedure based on treating the MAX precursor with a Lewis acid molten salt. The review starts with presenting the current state of the art of the molten salt etching procedure to obtain or modify MXene, followed by a summary of the applications of these MXene samples. The aim of the review is to show the versatility and advantages of molten salt etching in terms of general applicability, control of the surface terminal groups, and uniform deposition of metal nanoparticles, among other features of the procedure.

10.
ChemSusChem ; : e202400993, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042568

RESUMEN

Laboratory-prepared GnP using molten salt, commercial Gnp and reduced graphene oxide (rGO) have been characterized and utilized as support for CO2 hydrogenation catalysts. Ni- and Ru- catalysts supported over Gnp, commercial Gnp and rGO have been deeply characterized at different stages using Raman, IR, XRD, FE-SEM-EDXS, SEM-EDXS, XPS, and TEM, also addressing carbon loss before reaction and evolved species, thus allowing a better comprehension of the produced materials. Ni and Ru/rGO were inactive while Gnp-supported ones were active. Ru has been found almost completely selective toward reverse Water Gas Shift to CO, approaching the forecasted thermodynamic equilibrium at 723 K, in the tested conditions (YCO~55%), with an apparent activation energy in the range of 70-90 kJ/mol. Exhaust catalysts pointed out the presence of sulfur partially linked to the carbon matrix and partially producing the corresponding metal sulfide with the detection of surface oxidized species in the cationic form and adsorbed species as well. The metal-based nanoparticles displayed a quite narrow size distribution, confirming the promising behavior of these catalytic systems for CO2 utilization.

11.
Sensors (Basel) ; 24(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39001099

RESUMEN

High temperature represents a critical constraint in the development of gas sensors. Therefore, investigating gas sensors operating at room temperature holds significant practical importance. In this study, coal-based porous carbon (C-700) and coal-based C/MoO2 nanohybrid materials were synthesized using a simple one-step vapor deposition and sintering method, and their gas-sensing performance was investigated. The gas-sensing performance for several VOC gases (phenol, ethyl acetate, ethanol, acetone, triethylamine, and toluene) and a 95% RH high-humidity environment were tested. The results indicated that the C/MoO2-450 sample sintered at 450 °C exhibited excellent specific selectivity towards acetone at room temperature, with a response value of 4153.09% and response/recovery times of 10.8 s and 2.9 s, respectively. Furthermore, the C/MoO2-450 sample also demonstrated good repeatability and long-term stability. The sensing mechanism of the synthesized materials was also explored. The superior gas-sensing performance can be attributed to the synergistic effect between the porous carbon and MoO2 nanoparticles. Given the importance of enhancing the high-tech and high-value-added utilization of coal, this study provides a viable approach for utilizing coal-based carbon materials in detecting volatile organic compounds at room temperature.

12.
Environ Sci Pollut Res Int ; 31(30): 43249-43261, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38898350

RESUMEN

Carbon materials have been receiving considerable attention as effective green catalysts for peroxydisulfate (PDS) activation to degrade organic pollutants. Herein, the porous graphene-like carbons (PGCs) were synthesized by pyrolyzing a nitrogen-rich biomass (peanut shell, PS) in the eutectic mixture of FeCl3 and ZnCl2. The results suggested that involvement of molten salts attributed the biochar the amazing properties such as high specific surface area (SBET = 2529.4 m2 g-1), abundant structural defects, high nitrogen content (6.5%), and oxygen-containing functional groups on its surface. Especially when pyrolyzed at activation temperature of 800 °C, mass ratio of 1:3:15 (PS:ZnCl2:FeCl3), and activation time of 2 h, the optimized PGCs-op exhibited outstanding performance in the catalytic degradation of rhodamine B (RhB). Almost all of RhB (99.02%) was removed in 40 min and basically not influenced by initial pH in the range of 3.00 to 9.98. Although the RhB degradation was influenced by anions (Cl-, HCO3-, HPO42-), the inhibition would be significantly alleviated within 120 min unless these substances were high in concentration. Furthermore, the quenching tests revealed that the reactive species were involved in RhB degradation in the sequence of 1O2 > O2∙- > SO4∙- > ∙OH, among which singlet oxygen played a crucial role. Combined with characterization analysis, a possible mechanism of RhB degradation in PGCs-op/PDS system was proposed. Overall, this study provided a promising metal-free catalyst for the removal of organic pollutants while achieving reutilization of the waste biomass.


Asunto(s)
Grafito , Rodaminas , Rodaminas/química , Grafito/química , Catálisis , Porosidad , Contaminantes Químicos del Agua/química , Carbono/química , Sulfatos/química
13.
ChemSusChem ; : e202400396, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38872421

RESUMEN

Developing a process that performs the lignocellulosic biomass fractionation under milder conditions simultaneously with the depolymerization and/or the upgrading of all fractions is fundamental for the economic viability of future lignin-first biorefineries. The molten salt hydrates (MSH) with homogeneous or heterogeneous catalysts are a potential alternative to biomass pretreatment that promotes cellulose's dissolution and its conversion to different platform molecules while keeping the lignin reactivity. This review investigates the fractionation of lignocellulosic biomass using MSH to produce chemicals and fuels. First, the MSH properties and applications are discussed. In particular, the use of MSH in cellulose dissolution and hydrolysis for producing high-value chemicals and fuels is presented. Then, the biomass treatment with MSH is discussed. Different strategies for preventing sugar degradation, such as biphasic media, adsorbents, and precipitation, are contrasted. The potential for valorizing isolated lignin from the pretreatment with MSH is debated. Finally, challenges and limitations in utilizing MSH for biomass valorization are discussed, and future developments are presented. Cellulose Avicel®PH-101 ZnCl2 ⋅ 4H2O, ZnBr2 ⋅ 4H2O, LiCl ⋅ 8H2O, LiBr ⋅ 4H2O H2SO4, (0.2 M); H3PW12O40 (0.067 M); H4SiW12O40 (0.05 M) T (145-175 °C); Time (30-120 min) Organic solvent (MIBK) LA (94 %) and HMF (3.4 %) Dissolution time: ZnBr2 ⋅ 4H2O<>2O<>2 ⋅ 4H2O<>2O; The highest conversion of pretreated cellulose and yield of glucose were obtained with ZnBr2 ⋅ 4H2O (88 % and 80 %, respectively).

14.
Angew Chem Int Ed Engl ; 63(36): e202408996, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38873975

RESUMEN

Two-dimensional Ti3C2Tx MXene materials, with metal-like conductivities and versatile terminals, have been considered to be promising surface modification materials for Zn-metal-based aqueous batteries (ZABs). However, the oxygen-rich and hybridized terminations caused by conventional methods limit their advantages in inhibiting zinc dendrite growth and reducing corrosion-related side reactions. Herein, -O-depleted, -Cl-terminated Ti3C2Tx was precisely fabricated by the molten salt electrochemical etching of Ti3AlC2, and controlled in situ terminal replacement from -Cl to unitary -S or -Se was achieved. The as-prepared -O-depleted and unitary-terminal Ti3C2Tx as Zn anode coatings provided excellent hydrophobicity and enriched zinc-ionophilic sites, facilitating Zn2+ horizontal transport for homogeneous deposition and effectively suppressing water-induced side reactions. The as-assembled Ti3C2Sx@Zn symmetric cell achieved a cycle life of up to 4200 h at a current density and areal capacity of 2 mA cm-2 and 1 mAh cm-2, respectively, with an impressive cumulative capacity of up to 7.25 Ah cm-2 at 5 mA cm-2//2 mAh cm-2. These findings provide an effective electrochemical strategy for tailoring -O-depleted and unitary Ti3C2Tx surface terminals and advancing the understanding of the role of specific Ti3C2Tx surface chemistry in regulating the plating/stripping behaviors of metal ions.

15.
Heliyon ; 10(11): e31995, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38868009

RESUMEN

The corrosion behavior of alloy Ni 201 in molten sodium hydroxide (NaOH) at 600 °C was investigated at varying basicity levels of the molten NaOH. The ability for Ni 201 to form passivating oxides was investigated after immersion tests varying from 70 to 340 h under atmospheres of argon and argon with different partial pressure of water. Morphology and thicknesses of the corrosion products were characterized by Scanning Electron Microscopy (SEM) and crystallography of the corrosion products by X-ray Diffraction (XRD). Dynamic polarizations were made to investigate the effects of basicity and electrochemical potential. The results showed that Ni 201 corroded at a reduced rate in molten acidic NaOH compared to neutral NaOH due to the formation of NiO. The oxide scales formed on Ni 201 in acidic NaOH were shown to grow non-parabolically and did not result in full corrosion protection as the oxide scales showed crack development over time.

16.
ACS Appl Mater Interfaces ; 16(23): 30545-30555, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38828906

RESUMEN

The Fe/FeCl2-Graphite molten salt battery is a promising technology for large-scale energy storage, offering a long lifespan, a low operating temperature (<200 °C), and cost efficiency. However, its practical applications are hindered by the lack of a scalable preparation approach and insufficient redox stability in the Fe/FeCl2 electrode. Our study introduces an electrochemical anodic electrolysis (EAE) strategy, employing the anodic process (Fe → Fe2+) in an Al|AlCl3/NaCl/LiCl|Fe electrolysis system for the Fe/Fe2+ negative electrode in the Fe/FeCl2-Graphite battery. The EAE strategy forms an oxidized film, preventing incipient dissolution in the electrolyte and addressing redox stability issues with FeCl2 as the active substance. The Fe/Fe2+ negative electrode prepared by the EAE strategy exhibits a stabilized capacity of 0.72 mAh/cm2 after 7000 cycles at 5 mA/cm2, with a lower polarization level (∼29 mV) compared to FeCl2 as the active component. The flexibility of the EAE strategy is validated in both galvanostatic and potentiostatic processes, with a discharge capacity of 14 mAh after 1000 cycles, a capacity retention rate of 85%, and a Coulombic efficiency of 98% in the potentiostatic anodic electrolysis Fe/Fe2+ electrode. The scalability and reliability of the EAE strategy are further demonstrated in capacity-expanded Fe/FeCl2-Graphite batteries, reaching a discharge capacity of 155.1 mAh after 1000 cycles at 130 mA, with a capacity retention rate of 94%. For the first time, we showcased an EAE approach capable of producing Fe/Fe2+ electrodes at a rate of about 68.6 m2 per day. Additionally, we successfully assembled an Fe/FeCl2-Graphite battery at about a 0.42 ampere-hour level, paving the way for the scalable application of Fe/FeCl2-Graphite batteries.

17.
Materials (Basel) ; 17(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38894038

RESUMEN

General interest in the deployment of molten salt reactors (MSRs) is growing, while the available data on uranium-containing fuel salt candidates remains scarce. Thermophysical data are one of the key parameters for reactor design and understanding reactor operability. Hence, filling in the gap of the missing data is crucial to allow for the advancement of MSRs. This study provides novel data for two eutectic compositions within the NaF-KF-UF4 ternary system which serve as potential fuel candidates for MSRs. Experimental measurements include their melting point, density, fusion enthalpy, and vapor pressure. Additionally, their boiling point was extrapolated from the vapor pressure data, which were, at the same time, used to determine the enthalpy of vaporization. The obtained thermodynamic values were compared with available data from the literature but also with results from thermochemical equilibrium calculations using the JRCMSD database, finding a good correlation, which thus contributed to database validation. Preliminary thoughts on fluoride salt reactor operability based on the obtained results are discussed in this study.

18.
Water Res ; 259: 121869, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38851113

RESUMEN

This work aims to explore the ability of molten salt to solve salt deposition in supercritical water (SCW) related technologies including supercritical water oxidation and supercritical water gasification, with KNO3 and Na2SO4 as examples. In the pure KNO3 solution, the two-phase layering of high-density KNO3 molten salt (settling at the reactor bottom) and low-density saturated KNO3-SCW salt solution (flowing out at the top outlet of the reactor) was formed in a kettle-reactor with about 6.5 ratio of depth to inner diameter, thereby improving the accuracy of measured solubilities. The precipitation macro-characteristics of mixed KNO3 and Na2SO4 in SCW were investigated under different feed concentration conditions. The results showed that Na2SO4 deposition on the reactor sidewall could be reduced by more than 90 % when the mass ratio of KNO3 to Na2SO4 in the feed was only 0.167. No visible salt deposition was observed on the sidewall when the ratio was 0.374. All solid deposited salts were converted into the liquid molten salt as the ratio reached 3.341, and thus could easily flow out of the reactor, without plugging. 'Molten salt dissolution' mechanism may provide a more plausible explanation for mixed KNO3 and Na2SO4 in SCW. In addition, the precipitation micro-mechanisms of mixed KNO3 and Na2SO4, and the critical conditions of avoiding sidewall deposition and reactor plugging were proposed. This work is valuable for overcoming the salt deposition problem in SCW-related technologies.


Asunto(s)
Precipitación Química , Compuestos de Potasio , Sulfatos , Agua , Sulfatos/química , Agua/química , Compuestos de Potasio/química , Nitratos/química , Solubilidad
19.
Sci Total Environ ; 944: 173945, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38876346

RESUMEN

Rare earth elements are crucial for the development of cutting-edge technologies in various sectors, such as energy, transportation, and health care. Traditional extraction of rare earth elements from soil and ore deposits primarily involves chemical leaching and solvent extraction. Environmental-based biological rare earth element extraction, such as bioleaching, can be a promising alternative to mitigate pollution and hazardous wastes. We investigated the sustainability aspects (techno-economic and environmental impact) of mixed rare earth metals production from soil in Idaho, USA. We focused on the bioleaching of surface soil using techno-economic analysis and "cradle-to-gate" life cycle assessment. The system boundary included collection, transportation, bioleaching, and molten salt electrolysis. Our results revealed that the mixed rare earth metals (including Nd, Ce, and La) production costs approximately $10,851 per metric ton and generates 1.9 × 106 kg CO2 eq./ton. Our results showed that most emissions are due to energy consumption during bioleaching. Over a 100-year time horizon ultrasound-assisted bioleaching can reduce greenhouse gas emissions by approximately 91 % compared to the traditional bioleaching process by decreasing the organic acid leaching process time and energy consumption. Our work demonstrates that higher solids loading in leaching with biological reactions can promote economic feasibility and reduce chemical wastes.

20.
Small ; : e2400762, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38794872

RESUMEN

Single-crystal lithium-nickel-manganese-cobalt-oxide (SC-NMC) is attracting increasing attention due to its excellent structural stability. However, its practical production faces challenges associated with complex precursor preparation processes and severe lithium-nickel cation mixing at high temperatures, which restricts its widespread application. Here, a molten-salt-assisted method is proposed using low-melting-point carbonates. This method obviates the necessity for precursor processes and simplified the synthetic procedure for SC-NMC down to a single isothermal sintering step. Multiple characterizations indicate that the acquired SC-LiNi0.6Mn0.2Co0.2O2 (SC-622) exhibits favorable structural capability against intra-granular fracture and suppressive Li+/Ni2+ cation mixing. Consequently, the SC-622 exhibits superior electrochemical performance with a high initial specific capacity (174 mAh g-1 at 0.1 C, 3.0-4.3 V) and excellent capacity retention (87.5% after 300 cycles at 1C). Moreover, this molten-salt-assisted method exhibits its effectiveness in directly regenerating SC-622 from spent NMC materials. The recovered material delivered a capacity of 125.4 mAh g-1 and retained 99.4% of the initial capacity after 250 cycles at 1 C. This work highlights the importance of understanding the process-structure-property relationships and can broadly guide the synthesis of other SC Ni-rich cathode materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA