Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Sci Rep ; 14(1): 19267, 2024 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164335

RESUMEN

Miyoshi myopathy/dysferlinopathy (MMD) is a rare muscle disease caused by DYSF gene mutations. Apart from skeletal muscles, DYSF is also expressed in the brain. However, the impact of MMD-causing DYSF variants on brain structure and function remains unexplored. To investigate this, we utilized magnetic resonance (MR) modalities (MR volumetry and 31P MR spectroscopy) in a family with seven children, four of whom have the illness. The MMD siblings showed distinct differences from healthy controls: (1) a significant (p < 0.001) right-sided volume asymmetry (+ 232 mm3) of the inferior lateral ventricles; and (2) a significant (p < 0.001) decrease in [Mg2+], along with a modified energy metabolism profile and altered membrane turnover in the hippocampus and motor and premotor cortices. The patients' [Mg2+], energy metabolism, and membrane turnover measures returned to those of healthy relatives after a month of 400 mg/day magnesium supplementation. This work is the first to describe anatomical and functional abnormalities characteristic of neurodegeneration in the MMD brain. Therefore, we call for further examination of brain functions in larger cohorts of MMD patients and testing of magnesium supplementation, which has proven to be an effective corrective approach in our study.


Asunto(s)
Encéfalo , Magnesio , Humanos , Masculino , Femenino , Niño , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Magnesio/metabolismo , Disferlina/metabolismo , Disferlina/genética , Imagen por Resonancia Magnética , Metabolismo Energético , Adolescente , Distrofia Muscular de Cinturas/metabolismo , Distrofia Muscular de Cinturas/patología , Distrofia Muscular de Cinturas/genética , Mutación , Espectroscopía de Resonancia Magnética , Adulto , Atrofia Muscular , Miopatías Distales
2.
Neuromuscul Disord ; 43: 20-28, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39178649

RESUMEN

Dysferlin-deficient limb girdle muscular dystrophy (LGMD R2), also referred to as dysferlinopathy, can be associated with respiratory muscle weakness as the disease progresses. Clinical practice guidelines recommend biennial lung function assessments in patients with dysferlinopathy to screen for respiratory impairment. However, lack of universal access to spirometry equipment and trained specialists makes regular monitoring challenging. This study investigated the use of the Performance of Upper Limb (PUL) clinical scale entry item as a low-cost screening tool to identify patients with dysferlinopathy at risk of respiratory impairment. Using data from 193 patients from the Jain Foundation's International Clinical Outcomes Study, modelling identified a significant positive relationship between the PUL entry item and forced vital capacity (FVC). Eighty-eight percent of patients with the lowest PUL entry item score of 1 presented with FVC % predicted values of <60 %, suggestive of respiratory impairment. By contrast, only 10 % of the remainder of the cohort (PUL entry item of 2 or more) had an FVC of <60 %. This relationship also held true when accounting for ambulatory status, age, and sex as possible confounding factors. In summary, our results suggest that the PUL entry item could be implemented in clinical practice to screen for respiratory impairment where spirometry is not readily available.


Asunto(s)
Distrofia Muscular de Cinturas , Extremidad Superior , Humanos , Distrofia Muscular de Cinturas/fisiopatología , Distrofia Muscular de Cinturas/diagnóstico , Distrofia Muscular de Cinturas/genética , Masculino , Capacidad Vital , Femenino , Adulto , Persona de Mediana Edad , Extremidad Superior/fisiopatología , Adulto Joven , Espirometría , Disferlina/genética , Pruebas de Función Respiratoria , Anciano , Adolescente
3.
Biomolecules ; 14(3)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38540676

RESUMEN

Dysferlinopathies refer to a spectrum of muscular dystrophies that cause progressive muscle weakness and degeneration. They are caused by mutations in the DYSF gene, which encodes the dysferlin protein that is crucial for repairing muscle membranes. This review delves into the clinical spectra of dysferlinopathies, their molecular mechanisms, and the spectrum of emerging therapeutic strategies. We examine the phenotypic heterogeneity of dysferlinopathies, highlighting the incomplete understanding of genotype-phenotype correlations and discussing the implications of various DYSF mutations. In addition, we explore the potential of symptomatic, pharmacological, molecular, and genetic therapies in mitigating the disease's progression. We also consider the roles of diet and metabolism in managing dysferlinopathies, as well as the impact of clinical trials on treatment paradigms. Furthermore, we examine the utility of animal models in elucidating disease mechanisms. By culminating the complexities inherent in dysferlinopathies, this write up emphasizes the need for multidisciplinary approaches, precision medicine, and extensive collaboration in research and clinical trial design to advance our understanding and treatment of these challenging disorders.


Asunto(s)
Distrofia Muscular de Cinturas , Distrofias Musculares , Animales , Proteínas Musculares/genética , Proteínas de la Membrana/genética , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/terapia , Distrofia Muscular de Cinturas/metabolismo , Distrofias Musculares/genética , Mutación
4.
Gene ; 893: 147929, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38381504

RESUMEN

Dysferlin protein deficiency can cause neuromuscular dysfunction, resulting in autosomal recessive dysferlinopathy, which is caused by DYSF gene mutation. Dysferlin proteins belongs to the Ferlin1-like protein family and are associated with muscle membrane repair and regeneration. In China, pathogenic mutations of the protein often result in two clinical phenotypes of Miyoshi muscular or limb band muscular dystrophy type 2B. It is clinically characterized by progressive muscle weakness and elevated serum creatine kinase. The data of the child were collected, blood samples of the child and his family members were collected, and whole exome sequencing (WES) was performed. The recombinant expression vector was constructed, the function of the mutation was verified by minigene, and the pathogenicity of the mutation was further analyzed by combining with biological information analysis. The patient initially presented with asymptomatic elevation of serum creatine kinase(CK). Then progressive lower limb weakness, mainly distal limb weakness. Large amounts of scattered necrosis, myogenic lesions, and complete deletion of dysferlin protein were observed under muscle biopsy, which further improved genetic detection. Whole exome sequencing showed compound mutations (c.1397 + 1_1397 + 3del and c.1375dup p.M459Nfs*15) in DYSF gene. c.1375dup p.M459Nfs*15 have been reported. The other mutation is the deletion of c.1397 + 1_1397 + 3 in Intron15, which is an intron mutation that may affect splicing and the pathogenesis is still unknown. Minigene splicing assay verified that c.1397 + 1_1397 + 3del resulted in exon15 skipping and produced a premature termination codon. We report a novel pathogenic mutation in DYSF gene with Miyoshi myopathy and demonstrate this variant causes skipping of exon15 by minigene splicing assay. We point out the need of conducting functional analysis to verify the pathogenicity of intronic mutation. The finding enriches the mutation spectrum of DYSF gene and laid a foundation for future studies on the correlation between genotype and phenotype.


Asunto(s)
Creatina Quinasa , Miopatías Distales , Atrofia Muscular , Niño , Humanos , Disferlina/genética , Fenotipo , Genotipo , Creatina Quinasa/genética
5.
J Clin Med ; 12(18)2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37762951

RESUMEN

Dysferlinopathy is a disease caused by a dysferlin deficiency due to mutations in the DYSF gene. Dysferlin is a membrane protein in the sarcolemma and is involved in different functions, such as membrane repair and vesicle fusion, T-tubule development and maintenance, Ca2+ signalling, and the regulation of various molecules. Miyoshi Myopathy type 1 (MMD1) and Limb-Girdle Muscular Dystrophy 2B/R2 (LGMD2B/LGMDR2) are two possible clinical presentations, yet the same mutations can cause both presentations in the same family. They are therefore grouped under the name dysferlinopathy. Onset is typically during the teenage years or young adulthood and is characterized by a loss of Achilles tendon reflexes and difficulty in standing on tiptoes or climbing stairs, followed by a slow progressive loss of strength in limb muscles. The MRI pattern of patient muscles and their biopsies show various fibre sizes, necrotic and regenerative fibres, and fat and connective tissue accumulation. Recent tools were developed for diagnosis and research, especially to evaluate the evolution of the patient condition and to prevent misdiagnosis caused by similarities with polymyositis and Charcot-Marie-Tooth disease. The specific characteristic of dysferlinopathy is dysferlin deficiency. Recently, mouse models with patient mutations were developed to study genetic approaches to treat dysferlinopathy. The research fields for dysferlinopathy therapy include symptomatic treatments, as well as antisense-mediated exon skipping, myoblast transplantation, and gene editing.

6.
Neuromuscul Disord ; 33(10): 718-727, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37716854

RESUMEN

Dysferlinopathy is a rare group of hereditary muscular dystrophy with an autosomal recessive mode of inheritance caused by a mutation in the DYSF gene. It encodes for the dysferlin protein, which has a crucial role in multiple cellular processes, including muscle fiber membrane repair. This deficit has heterogeneous clinical presentations. In this study, we collected 20 Tunisian patients with a sex ratio of 1 and a median age of 50.5 years old (Interquartile range (IQR) = [36,5-54,75]). They were followed for periods ranging from 5 to 48 years. The median age at onset was 17 years old (IQR = [16,8-28,4]). Five major phenotypes were identified: Limb-girdle muscular dystrophy (LGMDR2) (35%), a proximodistal phenotype (35%), Miyoshi myopathy (10%),  Distal myopathy with anterior tibial onset (DMAT) (10%), and asymptomatic HyperCKemia (10%). At the last evaluation, more than half of patients (55%) were on wheelchair. Loss of ambulation occurred generally during the fourth decade. After 20 years of disease progression, two patients with a proximodistal phenotype (10%) developed dilated cardiomyopathy and mitral valve regurgitation. Restrictive respiratory syndrome was observed in three patients (DMAT: 1 patient, proximodistal phenotype: 1 patient, LGMDR2: 1 patient). Genetic study disclosed five mutations. We observed clinical heterogeneity between families and even within the same family. Disease progression was mainly slow to intermediate regardless of the phenotype.


Asunto(s)
Miopatías Distales , Distrofia Muscular de Cinturas , Humanos , Persona de Mediana Edad , Pronóstico , Túnez/epidemiología , Proteínas de la Membrana/genética , Proteínas Musculares/genética , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/metabolismo , Disferlina/genética , Miopatías Distales/genética , Progresión de la Enfermedad , Mutación , Antecedentes Genéticos
7.
Adv Biol (Weinh) ; 7(12): e2300157, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37434585

RESUMEN

Tetraspanins organize protein complexes at the cell membrane and are responsible for assembling diverse binding partners in changing cellular states. Tetraspanin CD82 is a useful cell surface marker for prospective isolation of human myogenic progenitors and its expression is decreased in Duchenne muscular dystrophy (DMD) cell lines. The function of CD82 in skeletal muscle remains elusive, partly because the binding partners of this tetraspanin in muscle cells have not been identified. CD82-associated proteins are sought to be identified in human myotubes via mass spectrometry proteomics, which identifies dysferlin and myoferlin as CD82-binding partners. In human dysferlinopathy (Limb girdle muscular dystrophy R2, LGMDR2) myogenic cell lines, expression of CD82 protein is near absent in two of four patient samples. In the cell lines where CD82 protein levels are unaffected, increased expression of the ≈72 kDa mini-dysferlin product is identified using an antibody recognizing the dysferlin C-terminus. These data demonstrate that CD82 binds dysferlin/myoferlin in differentiating muscle cells and its expression can be affected by loss of dysferlin in human myogenic cells.


Asunto(s)
Proteínas Musculares , Distrofias Musculares , Humanos , Disferlina/genética , Proteína Kangai-1 , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Distrofias Musculares/metabolismo , Tetraspaninas
8.
J Pers Med ; 13(3)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36983702

RESUMEN

For inherited diseases, obtaining a definitive diagnosis is critical for proper disease management, family planning, and participation in clinical trials. This can be challenging for dysferlinopathy due to the significant clinical overlap between the 30+ subtypes of limb-girdle muscular dystrophy (LGMD) and the large number of variants of unknown significance (VUSs) that are identified in the dysferlin gene, DYSF. We performed targeted RNA-Seq using a custom gene-panel in 77 individuals with a clinical/genetic suspicion of dysferlinopathy and evaluated all 111 identified DYSF variants according to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines. This evaluation identified 11 novel DYSF variants and allowed for the classification of 87 DYSF variants as pathogenic/likely pathogenic, 8 likely benign, while 16 variants remained VUSs. By the end of the study, 60 of the 77 cases had a definitive diagnosis of dysferlinopathy, which was a 47% increase in diagnostic yield over the rate at study onset. This data shows the ability of RNA-Seq to assist in variant pathogenicity classification and diagnosis of dysferlinopathy and is, therefore, a type of analysis that should be considered when DNA-based genetic analysis is not sufficient to provide a definitive diagnosis.

9.
Neuromuscul Disord ; 33(2): 199-207, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36689846

RESUMEN

Myostatin is a myokine which acts upon skeletal muscle to inhibit growth and regeneration. Myostatin is endogenously antagonised by follistatin. This study assessed serum myostatin and follistatin concentrations as monitoring or prognostic biomarkers in dysferlinopathy, an autosomal recessively inherited muscular dystrophy. Myostatin was quantified twice with a three-year interval in 76 patients with dysferlinopathy and 38 controls. Follistatin was quantified in 62 of these patients at the same timepoints, and in 31 controls. Correlations with motor function, muscle fat fraction and contractile cross-sectional area were performed. A regression model was used to account for confounding variables. Baseline myostatin, but not follistatin, correlated with baseline function and MRI measures. However, in individual patients, three-year change in myostatin did not correlate with functional or MRI changes. Linear modelling demonstrated that function, serum creatine kinase and C-reactive protein, but not age, were independently related to myostatin concentration. Baseline myostatin concentration predicted loss of ambulation but not rate of change of functional or MRI measures, even when relative inhibition with follistatin was considered. With adjustment for extra-muscular causes of variation, myostatin could form a surrogate measure of functional ability or muscle mass, however myostatin inhibition does not form a promising treatment target in dysferlinopathy.


Asunto(s)
Distrofia Muscular de Cinturas , Miostatina , Humanos , Pronóstico , Distrofia Muscular de Cinturas/diagnóstico por imagen , Distrofia Muscular de Cinturas/metabolismo , Músculo Esquelético/metabolismo , Biomarcadores/metabolismo
10.
Methods Mol Biol ; 2587: 183-196, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36401031

RESUMEN

Dysferlinopathies are a group of disabling muscular dystrophies  that includes limb girdle muscular dystrophy type 2B (LGMD2B), Miyoshi myopathy, and distal myopathy with anterior tibial onset (DMAT) as the main phenotypes. They are associated with molecular defects in DYSF, which encodes dysferlin, a key player in sarcolemmal homeostasis. Previous investigations have suggested that exon skipping may be a promising therapy for many patients with dysferlinopathies. It was reported that exons 28-29 of DYSF are dispensable for dysferlin functions. Here, we present a method for multiexon skipping of DYSF exons 28-29 using a cocktail of two phosphorodiamidate morpholino oligomers (PMOs) on cells derived from a dystrophinopathy patient. Also, we describe assays to characterize the multiexon skipped dysferlin at several levels by using one-step RT-PCR, immunoblotting, and a membrane wounding assay.


Asunto(s)
Miopatías Distales , Proteínas Musculares , Humanos , Disferlina/genética , Morfolinos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Musculares/genética , Proteínas de la Membrana/genética , Mutación , Exones/genética , Miopatías Distales/genética , Immunoblotting
11.
Neurogenetics ; 24(1): 43-53, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36580222

RESUMEN

Dysferlinopathies are a group of limb-girdle muscular dystrophies causing significant disability in the young population. There is a need for studies on large cohorts to describe the clinical, genotypic and natural history in our subcontinent. To describe and correlate the clinical, genetic profile and natural history of genetically confirmed dysferlinopathies. We analysed a retrospective cohort of patients with dysferlinopathy from a single quaternary care centre in India. A total of 124 patients with dysferlinopathy were included (40 females). Median age at onset and duration of illness were 21 years (range, 13-50) and 48 months (range, 8-288), respectively. The average follow-up period was 60 months (range, 12-288). Fifty-one percent had LGMD pattern of weakness at onset; 23.4% each had Miyoshi and proximo-distal type while isolated hyperCKemia was noted in 1.6%. About 60% were born to consanguineous parents and 26.6% had family history of similar illness. Twenty-three patients (18.6%) lost ambulation at follow-up; the median time to loss of independent ambulation was 120 months (range, 72-264). Single-nucleotide variants (SNVs) constituted 78.2% of patients; INDELs 14.5% and 7.3% had both SNVs and INDELs. Earlier age at onset was noted with SNVs. There was no correlation between the other clinical parameters and ambulatory status with the genotype. Thirty-seven (45.7%) novel pathogenic/likely pathogenic (P/LP) variants were identified out of a total of 81 variations. The c.3191G > A variant was the most recurrent mutation. Our cohort constitutes a clinically and genetically heterogeneous group of dysferlinopathies. There is no significant correlation between the clinico-genetic profile and the ambulatory status.


Asunto(s)
Distrofia Muscular de Cinturas , Femenino , Humanos , Estudios Retrospectivos , Distrofia Muscular de Cinturas/epidemiología , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/patología , Mutación , Estudios de Asociación Genética , India
12.
Curr Genomics ; 24(5): 330-335, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38235354

RESUMEN

Background: Dysferlinopathies represent a group of limb girdle or distal muscular dystrophies with an autosomal-recessive inheritance pattern resulting from the presence of pathogenic variants in the dysferlin gene (DYSF). Objective: In this work, we describe a population from a small city in Brazil carrying the c.5979dupA pathogenic variant of DYSF responsible for limb girdle muscular dystrophy type 2R and distal muscular dystrophy. Methods: Genotyping analyses were performed by qPCR using customized probe complementary to the region with the duplication under analysis in the DYSF. Results: A total of 104 individuals were examined. c.5979dupA was identified in 48 (46.15%) individuals. Twenty-three (22%) were homozygotes, among whom 13 (56.5%) were female. A total of 91.3% (21) of homozygous individuals had a positive family history, and seven (30.4%) reported consanguineous marriages. Twenty-five (24%) individuals were heterozygous (25.8±16 years) for the same variant, among whom 15 (60%) were female. The mean CK level was 697 IU for homozygotes, 140.5 IU for heterozygotes and 176 IU for wild-type homo-zygotes. The weakness distribution pattern showed 17.3% of individuals with a proximal pattern, 13% with a distal pattern and 69.6% with a mixed pattern. Fatigue was present in 15 homozygotes and one heterozygote. Conclusion: The high prevalence of this variant in individuals from this small community can be explained by a possible founder effect associated with historical, geographical and cultural aspects.

13.
Genes (Basel) ; 13(10)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36292621

RESUMEN

Anoctaminopathy-5 refers to a group of hereditary skeletal muscle or bone disorders due to mutations in the anoctamin 5 (ANO5)-encoding gene, ANO5. ANO5 is a 913-amino acid protein of the anoctamin family that functions predominantly in phospholipid scrambling and plays a key role in the sarcolemmal repairing process. Monoallelic mutations in ANO5 give rise to an autosomal dominant skeletal dysplastic syndrome (gnathodiaphyseal dysplasia or GDD), while its biallelic mutations underlie a continuum of four autosomal recessive muscle phenotypes: (1). limb-girdle muscular dystrophy type R12 (LGMDR12); (2). Miyoshi distal myopathy type 3 (MMD3); (3). metabolic myopathy-like (pseudometabolic) phenotype; (4). asymptomatic hyperCKemia. ANO5 muscle disorders are rare, but their prevalence is relatively high in northern European populations because of the founder mutation c.191dupA. Weakness is generally asymmetric and begins in proximal muscles in LGMDR12 and in distal muscles in MMD3. Patients with the pseudometabolic or asymptomatic hyperCKemia phenotype have no weakness, but conversion to the LGMDR12 or MMD3 phenotype may occur as the disease progresses. There is no clear genotype-phenotype correlation. Muscle biopsy displays a broad spectrum of pathology, ranging from normal to severe dystrophic changes. Intramuscular interstitial amyloid deposits are observed in approximately half of the patients. Symptomatic and supportive strategies remain the mainstay of treatment. The recent development of animal models of ANO5 muscle diseases could help achieve a better understanding of their underlying pathomechanisms and provide an invaluable resource for therapeutic discovery.


Asunto(s)
Enfermedades Musculares , Distrofia Muscular de Cinturas , Animales , Distrofia Muscular de Cinturas/genética , Anoctaminas/genética , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Músculo Esquelético/patología , Fosfolípidos , Aminoácidos
14.
Clin Genet ; 102(6): 465-473, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36029111

RESUMEN

Dysferlinopathies are a clinically heterogeneous group of diseases caused by mutations in the DYSF gene encoding the dysferlin protein. Dysferlin is mostly expressed in muscle tissues and is localized in the sarcolemma, where it performs its main function of resealing and maintaining of the integrity of the cell membrane. At least four forms of dysferlinopathies have been described: Miyoshi myopathy, limb-girdle muscular dystrophy type 2B, distal myopathy with anterior tibial onset, and isolated hyperCKemia. Here we review the clinical features of different forms of dysferlinopathies and attempt to identify genotype-phenotype correlations. Because of the great clinical variability and rarety of the disease and mutations little is known, how different phenotypes develop as a result of different mutations. However, missense mutations seem to induce more severe disease than LoF, which is typical for many muscle dystrophies. The role of several specific mutations and possible gene modifiers is also discussed in the paper.


Asunto(s)
Miopatías Distales , Distrofia Muscular de Cinturas , Humanos , Disferlina/genética , Proteínas Musculares/genética , Proteínas de la Membrana/genética , Distrofia Muscular de Cinturas/genética , Mutación
15.
BMC Pediatr ; 22(1): 515, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042458

RESUMEN

BACKGROUND: Dysferlinopathy refers to a heterogenous group of autosomal recessive disorders that affect a skeletal muscle protein called dysferlin. These mutations are associated with limb-girdle muscular dystrophy type 2B, Miyoshi myopathy, asymptomatic hyperCKemia, and distal myopathy with anterior tibial onset. CASE PRESENTATION: A 16 year old female presented with myalgia, weakness and dark urine one week after her second BNT162b2 mRNA (Pfizer) vaccine. Initial serum creatine kinase (CK) was measured at 153,000 IU/L, eventually up-trending to over 200,000 IU/L. However, stable renal function precluded hemodialysis allowing discharge after 10 days of intravenous (IV) hydration and alkaline diuresis. Just two years prior to the current presentation, the patient was hospitalized following Group A Streptococcal pharyngitis infection complicated by rhabdomyolysis. She presented with fatigue, lower extremity weakness, and dark oliguria with CK measuring 984,800 IU/L. IV hydration was attempted however hemodialysis was ultimately required throughout her 24-day hospital stay. Her episode was presumed to be idiopathic and no further work-up was performed at that time. During the patient's current hospitalization, she reported similar symptomology (myalgias and weakness) following her first quadrivalent Gardasil vaccine at age 11. No hospitalization was required at that time. A comprehensive workup was now initiated while the patient was being treated for her suspected second or third non-exertional, non-traumatic rhabdomyolysis. Rheumatologic, metabolic, infectious, and endocrinologic workup were all unremarkable. Patient eventually had whole exome sequencing performed which revealed a heterozygous pathogenic variant in the DYSF gene (DYSF c.2643 + 1G > A) encoding dysferlin. No clinically significant sequelae occurred thus far. CONCLUSIONS: While there have been reports of symptomatic heterozygote carriers of dysferlinopathies, to our knowledge none have been associated with recurrent rhabdomyolysis after immunogenic stimuli. This unique case presentation highlights the importance of a multi-disciplinary care team, the utility of modern whole-exome gene sequencing, and the future challenges of balancing vaccine risk vs benefit.


Asunto(s)
Distrofia Muscular de Cinturas , Rabdomiólisis , Adolescente , Vacuna BNT162 , Niño , Disferlina/genética , Femenino , Humanos , Proteínas de la Membrana/genética , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/patología , Mutación , Rabdomiólisis/etiología
16.
Front Neurosci ; 16: 815556, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35273475

RESUMEN

Background: To characterize the phenotypic, neurophysiological, radiological, pathological, and genetic profile of 33 Saudi Arabian families with dysferlinopathy. Methods: A descriptive observational study was done on a cohort of 112 Saudi Arabian families with LGMD. Screening for the Dysferlin (DYSF) gene was done in a tertiary care referral hospital in Saudi Arabia. Clinical, Neurophysiological, Radiological, Pathological, and Genetic findings in subjects with dysferlin mutation were the primary outcome variables. Statistical analysis was done by Epi-info. Results: 33 out of 112 families (29.46%) registered in the LGMD cohort had Dysferlinopathy. 53 subjects (28 males, 52.83%) from 33 families were followed up for various periods ranging from 1 to 28 years. The mean age of onset was 17.79 ± 3.48 years (Range 10 to 25 years). Miyoshi Myopathy phenotype was observed in 50.94% (27 out of 53), LGMDR2 phenotype in 30.19% (16 out of 53), and proximodistal phenotype in 15.09% (8 out of 53) of the subjects. Loss of ambulation was observed in 39.62% (21 out of 53 subjects). Electrophysiological, Radiological, and histopathological changes were compatible with the diagnosis. Mean serum Creatinine Kinase was 6,464.45 ± 4,149.24 with a range from 302 to 21,483 IU/L. In addition, 13 dysferlin mutations were identified two of them were compound heterozygous. One founder mutation was observed c.164_165insA in 19 unrelated families. Conclusion: The prevalence of Dysferlinopathy was 29.46% in the native Saudi LGMD cohort. It is the most prevalent subtype seconded by calpainopathy. The clinical course varied among the study subjects and was consistent with those reported from different ethnic groups. One founder mutation was identified. Initial screening of the founder mutations in new families is highly recommended.

17.
Cureus ; 14(1): e21353, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35198268

RESUMEN

Limb-girdle muscle dystrophy (LGMD) is the fourth most common genetic cause of muscle weakness, with LGMD type 2A (LGMD2A) being one of the most common adult-onset muscular dystrophies presenting with limb-girdle weakness, while LGMD type 2B (LGMD2B) being the most common distal myopathy. This study includes two cases. The first case is a 13-year-old male, with no family history of similar symptoms, who presented with lower extremity weakness at the age of nine, starting with proximal weakness of the lower extremities, progressively involving the upper extremities. He had scapular winging and contracture of both Achilles tendons. The second case involves a 19-year-old male, with a distant family history of weakness, who presented with lower extremity weakness at the age of 10. He had distal myopathy, mainly as foot drop and atrophic gastrocnemii. In both cases, cardiac, intelligence, and bulbar function are spared. Electroneuromyography (ENMG) for both revealed myopathic process. Genetic testing results revealed calpain 3 (CAPN3) and dysferlin (DYSF) abnormality, confirming the diagnosis of LGMD2A and LGMD2B, respectively. This will be the first of its kind adequately documenting two of the most common LGMD subtype in our locale. Clinical phenomenology and preferential muscle involvement lead one to the gold standard genetic testing in heritable myopathies, which was well established in this report.

18.
Muscle Nerve ; 65(5): 531-540, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35179231

RESUMEN

INTRODUCTION/AIMS: There is debate about whether and to what extent either respiratory or cardiac dysfunction occurs in patients with dysferlinopathy. This study aimed to establish definitively whether dysfunction in either system is part of the dysferlinopathy phenotype. METHODS: As part of the Jain Foundation's International Clinical Outcome Study (COS) for dysferlinopathy, objective measures of respiratory and cardiac function were collected twice, with a 3-y interval between tests, in 188 genetically confirmed patients aged 11-86 y (53% female). Measures included forced vital capacity (FVC), electrocardiogram (ECG), and echocardiogram (echo). RESULTS: Mean FVC was 90% predicted at baseline, decreasing to 88% at year 3. FVC was less than 80% predicted in 44 patients (24%) at baseline and 48 patients (30%) by year 3, including ambulant participants. ECGs showed P-wave abnormalities indicative of delayed trans-atrial conduction in 58% of patients at baseline, representing a risk for developing atrial flutter or fibrillation. The prevalence of impaired left ventricular function or hypertrophy was comparable to that in the general population. DISCUSSION: These results demonstrate clinically significant respiratory impairment and abnormal atrial conduction in some patients with dysferlinopathy. Therefore, we recommend that annual or biannual follow-up should include FVC measurement, enquiry about arrhythmia symptoms and peripheral pulse palpation to assess cardiac rhythm. However, periodic specialist cardiac review is probably not warranted unless prompted by symptoms or abnormal pulse findings.


Asunto(s)
Distrofia Muscular de Cinturas , Electrocardiografía , Femenino , Humanos , Estudios Longitudinales , Masculino , Distrofia Muscular de Cinturas/genética , Fenotipo
19.
J Musculoskelet Neuronal Interact ; 21(3): 397-400, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34465679

RESUMEN

Miyoshi myopathy (MM) is a rare autosomal recessive disorder caused by dysferlin (DYSF) gene mutation. Miyoshi myopathy-inducing mutation sites in the DYSF gene have been discovered worldwide. In the present study, a patient with progressive lower extremity weakness is reported, for which MM was diagnosed according to clinical manifestations, muscle biopsy, and immunohistochemistry. In addition, the DYSF gene of the patient and his parents was sequenced and analyzed and two heterozygous mutations of the DYSF gene (c.4756C> T and c.5316dupC) were discovered. The first mutation correlated with MM while the second was a new mutation. The patient was diagnosed with a compound heterozygous mutation. The mutation site is a new member of pathogenic MM gene mutations.


Asunto(s)
Proteínas de la Membrana , Proteínas Musculares , Alelos , Miopatías Distales , Disferlina/genética , Humanos , Proteínas de la Membrana/genética , Proteínas Musculares/genética , Atrofia Muscular , Mutación/genética
20.
Acta Myol ; 40(4): 158-171, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35047756

RESUMEN

The widespread use of magnetic resonance imaging (MRI) in the diagnosis of myopathies has made it possible to clarify the typical MRI pattern of dysferlinopathy. However, sufficient attention has not been given to the variability of MRI patterns in dysferlinopathy. MATERIALS AND METHODS: Twenty-five patients with the clinical manifestations of dysferlinopathy were examined. For all patients, creatine phosphokinase levels were measured and molecular genetics were examined. In two patients, immunohistochemical examinations of muscle biopsies were performed. MRI scanning was included T2 multi-slice multi-echo, T1 weighted, T2 weighted and Short Tau Inversion Recovery T2 weighted sequences. Quantitative and semi-quantitative evaluations of fatty replacement and swelling of the muscles were undertaken. RESULTS: Variability in the MRI patterns was lowest in the pelvis and leg muscles and highest in the thigh muscles. Three main types of MRI patterns were distinguished: posterior-dominant (80%), anterior-dominant (16%), and diffuse (4%). Among patients with the anterior-dominant pattern, the collagen-like variant (4%), proximal variant (4%) and pseudo-myositis (8%) were separately distinguished. CONCLUSIONS: Awareness of atypical MRI patterns in dysferlinopathy is important for increasing the efficiency of routine diagnostics and optimizing the search for causative gene mutations.


Asunto(s)
Enfermedades Musculares , Distrofia Muscular de Cinturas , Humanos , Imagen por Resonancia Magnética , Músculo Esquelético/diagnóstico por imagen , Distrofia Muscular de Cinturas/diagnóstico por imagen , Distrofia Muscular de Cinturas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA