Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Sens ; 7(8): 2303-2311, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35913393

RESUMEN

Using intracellular-controlled photochemistry to track dynamic organelle processes is gaining attention due to its broad applications. However, most of the employed molecular probes usually require toxic photosensitizers and complex bioanalytical protocols. Here, the synthesis and performance of two new subcellular probes (MitoT1 and MitoT2) are described. The probes undergo photooxidation in the damaged tissue of zebrafish, a model system for tissue regeneration studies. Using high-resolution confocal microscopy and fluorescence spectroscopy, we combine the mentioned photoinduced interconversion at the homeostatic membrane viscosity to track singlet oxygen activity selectively. The continuous and real-time biosensing method reported here provides a new approach for simultaneously detecting endogenous singlet oxygen and viscosity status.


Asunto(s)
Colorantes Fluorescentes , Oxígeno Singlete , Animales , Colorantes Fluorescentes/química , Mitocondrias/química , Viscosidad , Pez Cebra
2.
J Bioenerg Biomembr ; 49(6): 453-461, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29043530

RESUMEN

Subunit II of cytochrome c oxidase (Cox2) is usually encoded in the mitochondrial genome, synthesized in the organelle, inserted co-translationally into the inner mitochondrial membrane, and assembled into the respiratory complex. In chlorophycean algae however, the cox2 gene was split into the cox2a and cox2b genes, and in some algal species like Chlamydomonas reinhardtii and Polytomella sp. both fragmented genes migrated to the nucleus. The corresponding Cox2A and Cox2B subunits are imported into mitochondria forming a heterodimeric Cox2 subunit. When comparing the sequences of chlorophycean Cox2A and Cox2B proteins with orthodox Cox2 subunits, a C-terminal extension in Cox2A and an N-terminal extension in Cox2B were identified. It was proposed that these extensions favor the Cox2A/Cox2B interaction. In vitro studies carried out in this work suggest that the removal of the Cox2B extension only partially affects binding of Cox2B to Cox2A. We conclude that this extension is dispensable, but when present it weakly reinforces the Cox2A/Cox2B interaction.


Asunto(s)
Chlorophyta/enzimología , Complejo IV de Transporte de Electrones/química , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
3.
Mitochondrion ; 19 Pt B: 314-22, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24561572

RESUMEN

The cox3 gene, encoding subunit III of cytochrome c oxidase (Cox3) is in mitochondrial genomes except in chlorophycean algae, where it is localized in the nucleus. Therefore, algae like Chlamydomonas reinhardtii, Polytomella sp. and Volvox carteri, synthesize the Cox3 polypeptide in the cytosol, import it into mitochondria, and integrate it into the cytochrome c oxidase complex. In this work, we followed the in vitro internalization of the Cox3 precursor by isolated, import-competent mitochondria of Polytomella sp. In this colorless alga, the precursor Cox3 protein is synthesized with a long, cleavable, N-terminal mitochondrial targeting sequence (MTS) of 98 residues. In an import time course, a transient Cox3 intermediate was identified, suggesting that the long MTS is processed more than once. The first processing step is sensitive to the metalo-protease inhibitor 1,10-ortophenantroline, suggesting that it is probably carried out by the matrix-located Mitochondrial Processing Protease. Cox3 is readily imported through an energy-dependent import pathway and integrated into the inner mitochondrial membrane, becoming resistant to carbonate extraction. Furthermore, the imported Cox3 protein was assembled into cytochrome c oxidase, as judged by the presence of a labeled band co-migrating with complex IV in Blue Native Electrophoresis. A model for the biogenesis of Cox3 in chlorophycean algae is proposed. This is the first time that the in vitro mitochondrial import of a cytosol-synthesized Cox3 subunit is described.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Proteínas Mitocondriales/metabolismo , Multimerización de Proteína , Volvocida/enzimología , Transporte Biológico Activo , Modelos Biológicos , Procesamiento Proteico-Postraduccional , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA