Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.807
Filtrar
1.
Heliyon ; 10(16): e35850, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39220897

RESUMEN

Objective: It has recently been highlighted how a short healthy life-style program (LSP) can improve the functional outcomes of older people admitted to a Long-Term Care (LTC) facility. Although it is known that life-style medicine-based interventions can exert anti-aging effects through the modulation of oxidative stress and mitochondrial function, the mechanisms underlying the aforementioned effects have not been clarified, yet. For this reason, in this study, the outcomes were focused on the investigation of the possible mechanisms underlying the benefits of a short LSP in older people. This was achieved by examining circulating markers of oxidative stress and immunosenescence, such as Tymosin ß (Tß4), before and after LSP and the effects of plasma of older people undergone or not LSP on endothelial cells. Methods: Fifty-four older people were divided into two groups (n = 27 each): subjects undergoing LSP and subjects not undergoing LSP (control). The LSP consisted of a combination of caloric restriction, physical activity, and psychological intervention and lasted 3 months. Plasma samples were taken before (T0) and after LSP (T1) and were used to measure thiobarbituric acid reactive substances (TBARS), 8-hydroxy-2-deoxyguanosine (8OHdG), 8-Isoprostanes (IsoP), glutathione (GSH), superoxide dismutase (SOD) activity and Tß4. In addition, plasma was used to stimulate human vascular endothelial cells (HUVEC), which were examined for cell viability, mitochondrial membrane potential, reactive oxygen species (ROS) and mitochondrial ROS (MitoROS) release. Results: At T1, in LSP group we did not detect the increase of plasma TBARS and IsoP, which was observed in control. Also, plasma levels of 8OHdG were lower in LSP group vs control. In addition, LSP group only showed an increase of plasma GSH and SOD activity. Moreover, plasma levels of Tß4 were more preserved in LSP group. Finally, at T1, in HUVEC treated with plasma from LSP group only we found an increase of the mitochondrial membrane potential and a reduction of ROS and MitoROS release in comparison with T0. Conclusions: The results of this study showed that a short LSP in older persons exerts antiaging effects by modulating oxidative stress also at cellular levels. Implications of those findings could be related to both prognostic and therapeutic strategies, which could be pursued as antiaging methods.

2.
J Proteomics ; : 105309, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39244022

RESUMEN

Colon cancer is a significant public health issue, and a deeper understanding of the molecular fundamentals [16] ehind is required to improve sensitivity and curability. This research explored the gene NDUFAF4 as a target of concern due to its link to a mitochondrial function and protein "Relatively of liver tumorigenesis", which remains unclear is attributable to its inclusion into the complex I (CI) pathway. The gene ontology analysis, in turn, showed that NDUFAF4 is a key player in several critical biological phases linked to mitochondrial function and energy metabolism. Furthermore, survival analysis displayed that there was a strong correlation between NDUFAF4 expression and the patients' longevity suggesting that this factor may be important in colon cancer prognosis as well. The TCGA data proved that NDUFAF4 is elevated in colon cancer making the results of the analysis reported credible. All of the above justified the understanding of the role and importance of NDUFAF4 in treating each colon cancer patient as a molecular target. The findings help in understanding the colon cancer pathogenesis and suggest ways for developing more efficient diagnosis and treatment of the disease. SIGNIFICANCE: This research explored the gene NDUFAF4 as a target of concern due to its link to a mitochondrial function and protein "Relatively of liver tumorigenesis", which remains unclear is attributable to its inclusion into the complex I (CI) pathway. Using a comprehensive approach to Gene Ontology analysis, Protein-Protein Interaction network modelling, survival analysis, KEGG pathway analysis, and validation using TCGA data, we identified the activities of NDUFAF4 in colon cancer. The Gene Ontology analysis, in turn, showed that NDUFAF4 is a key player in several critical biological phases linked to mitochondrial function and energy metabolism. The construction of the PPI network illustrates the interactors of NDUFAF4, the functional association protein within the cellular regulatory networks. In addition, survival analysis indicated that there was a considerable relationship between the expression of NDUFAF4 and patient survival, indicating its potential role as a prognostic factor in colon cancer. KEGG pathway analysis suggested that NDUFAF4 plays a role in thermogenesis and mitochondrial biogenesis, biological processes that should be targeted due to their implication in cellular metabolism and cancer onset. The use of TCGA information confirmed the upregulation of NDUFAF4 in colon cancer, thus making the findings of the analysis reported dependable. Overall, our study provided necessary information on the role and significance of NDUFAF4, a potential molecular target in colon cancer cases. These present findings enhance our knowledge of the pathogenesis of colon cancer and open new opportunities for designing novel diagnostic and therapeutic approaches to improve patient outcomes.

3.
Ageing Res Rev ; 101: 102484, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218079

RESUMEN

BACKGROUND: The prevalence of stroke-related sarcopenia has been noted; however, epidemiological data and interventions that increase or reduce the incidence of stroke-related sarcopenia remain lacking. METHODS: Studies on stroke-related sarcopenia were included in association or interventional analyses. All analyses were performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Two evaluators independently extracted the data. RESULTS: Female stroke patients had a higher preference for sarcopenia than male patients (pooled odds ratio [OR] = 0.670, 95 % CI 0.533-0.842, p = 0.001). Although stroke patients without drug use have improved skeletal muscle mass index (SMI) (MD = 0.272, 95 % CI 0.087-0.457, p = 0.004), handgrip strength (HGS) was not significantly altered (MD = -0.068, 95 % CI -0.221-0.076, p = 0.354). Stroke patients with nutrient interventions have improved SMI (MD = -0.354, 95 % CI -0.635- -0.073, p = 0.014) and HGS (MD = -0.394, 95 % CI -0.678- -0.111, p = 0.006); the synergistic effect of rehabilitation exercise has not been ruled out. Whether a sex difference exists in these interventions remains to be investigated. The underlying pathological mechanisms and potential therapeutic strategies for this disease are discussed. CONCLUSION: Sex difference, proteostasis, and mitochondrial function may impact the incidence of stroke-related sarcopenia. Understanding the underlying pathological mechanisms and potential therapeutic targets for this disease will provide new insights into disease treatment, prevention, and drug development.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39240255

RESUMEN

Mitochondrial dysfunction contributes significantly to the development of atrial fibrillation (AF). Conflicting data regarding the atrial pacing and the risk of AF existed and the impact of atrial pacing on mitochondrial function remains unknown. Therefore, we sought to examine the association between atrial pacing percentage and mitochondrial function in patients with cardiovascular implantable electronic devices (CIED) with atrial pacing capability. This is a cross-sectional study involving 183 patients with CIED with atrial pacing capability. The oxidative stress and mitochondrial function were determined in peripheral blood mononuclear cells (PBMCs). Among 183 patients, 55.7% had permanent pacemakers, 7.7% had defibrillators and 36.6% had cardiac resynchronization therapy. Mean age was 67.5±14.7 years with 51% being male. Mean left ventricular ejection fraction (LVEF) was 53.9 ± 16.8%. We demonstrated that the presence of atrial pacing above 50% correlated with higher levels of mitochondrial spared respiratory capacity (P=0.043) and coupling efficiency (P=0.045). After adjusting with multiple linear regression for age, sex, LVEF, history of AF, sick sinus syndrome, co-morbidities, eGFR, CRT, and percentage of ventricular pacing, our findings revealed a statistically significant association between a higher percentage of atrial pacing and increased spared respiratory capacity (ß 0.217, P=0.046), lower non-mitochondrial respiration (ß -0.230, P=0.023) and proton leak (ß -0.247, P=0.022). We demonstrated that atrial pacing enhances mitochondrial performance in PBMCs and left ventricular contractile performance in patients with CIED. This observation may serve as additional support for the preventive effect of atrial pacing in the prevention of atrial arrhythmia.

5.
Cardiovasc Toxicol ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240426

RESUMEN

To uncover the possible role of TRAF3IP3 in the progression of myocardial infarction (MI), clarify its role in mitophagy and mitochondrial function, and explore the underlying mechanism. GEO chip analysis, RT-qPCR, and LDH release assay were used to detect the expression of TRAF3IP3 in tissues and cells and its effects on cell damage. Immunostaining and ATP product assays were performed to examine the effects of TRAF3IP3 on mitochondrial function. Co-IP, CHX assays, Immunoblot and Immunostaining assays were conducted to determine the effects of TRAF3IP3 on mitophagy. TRAF3IP3 was highly expressed in IR rats and HR-induced H9C2 cells. TRAF3IP3 knockdown can alleviate H/R-induced H9C2 cell damage. In addition, TRAF3IP3 knockdown can induce mitophagy, thus enhancing mitochondrial function. We further revealed that TRAF3IP3 can promote the degradation of NEDD4 protein. Moreover, TRAF3IP3 knockdown suppressed myocardial injury in I/R rats. TRAF3IP3 blocks mitophagy to exacerbate myocardial injury induced by I/R via mediating NEDD4 expression.

6.
J Photochem Photobiol B ; 260: 113024, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39276447

RESUMEN

Ovarian aging is a serious clinical concern. Few safe and effective methods are currently available to improve ovarian functions. Photobiomodulation (PBM) is a safe and noninvasive physical therapy that can modulate a series of biological processes. Recently, several studies have noted its potential to improve the function of ovary and reproductive cells. However, the effects of PBM treatment on natural ovarian aging remain unclear. In this study, we used a naturally reproductive aging mouse model to observe the effect of PBM on ovarian function. Young and aged female ICR mice were treated with or without PBM for 2 months. PBM was performed using a semiconductor InGaAlP laser emitting at 650 nm (80 mW, 6.7 mW/cm2 for 5 or 10 min, resulting in a dose of 2 or 4 J/cm2, respectively). After treatment, the effects of PBM and its role in oxidative stress, inflammation, and mitochondrial function were investigated. We found that PBM (4 J/cm2) effectively recovered the levels of sex hormones, increased the number of primordial and growing follicles, improved angiogenesis, and decreased cell apoptosis in naturally aged mice. Moreover, PBM reduced oxidative stress, inhibited chronic ovarian inflammation, and improved mitochondrial function in aged ovaries. Similar protective effects of PBM were observed in a hydrogen peroxide-induced oxidative stress model of human granulosa cell line (KGN) in vitro. Increased cell viability, cell proliferation, hormone secretion, mitochondrial membrane potential, and adenosine triphosphate levels and decreased apoptosis and oxidative stress were detected in KGN cells after PBM treatment. Collectively, this study suggest that PBM treatment is beneficial for restoring ovarian function in naturally reproductive aging mice and has a significant protective effect against oxidative stress damage in KGN cells. The mechanisms underlying the benefits of PBM in ovarian aging include antioxidant stress, reduction of inflammation, and preservation of mitochondrial function. Therefore, this study emphasizes the potential of PBM as a therapeutic intervention to ameliorate ovarian aging.

7.
Sci Rep ; 14(1): 21165, 2024 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256449

RESUMEN

Diabetes mellitus (DM) is a well-documented risk factor of intervertebral disc degeneration (IVDD). The current study was aimed to clarify the effects and mechanisms of NADH: ubiquinone oxidoreductase subunit A3 (NDUFA3) in human nucleus pulposus cells (HNPCs) exposed to high glucose. NDUFA3 was overexpressed in HNPCs via lenti-virus transduction, which were co-treated with high glucose and rotenone (a mitochondrial complex I inhibitor) for 48 h. Cell activities were assessed for cell viability, cell apoptosis, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) ratio, oxygen consumption rate (OCR) and mitochondrial complexes I activities. High glucose decreased cell viability, increased apoptotic cells, increased ROS production, decreased MMP levels and OCR values in HNPCs in a dose-dependent manner. Rotenone co-treatment augmented the high glucose-induced injuries on cell viability, apoptosis, ROS production and mitochondrial function. NDUFA3 overexpression counteracted the high glucose-induced injuries in HNPCs. HDAC/H3K27ac mechanism was involved in regulating NDUFA3 transcription. NDUFA3 knockdown decreased cell viability and increased apoptotic cells, which were reversed by ROS scavenger N-acetylcysteine. HDAC/H3K27ac-mediated transcription of NDUFA3 protects HNPCs against high glucose-induced injuries through suppressing cell apoptosis, eliminating ROS, improving mitochondrial function and oxidative phosphorylation. This study sheds light on candidate therapeutic targets and deepens the understanding of molecular mechanisms behind DM-induced IVDD.


Asunto(s)
Apoptosis , Complejo I de Transporte de Electrón , Glucosa , Histonas , Mitocondrias , Núcleo Pulposo , Humanos , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Glucosa/farmacología , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Histonas/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Rotenona/farmacología , Transcripción Genética/efectos de los fármacos
8.
J Cell Physiol ; : e31436, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39286968

RESUMEN

During skeletal muscle adaptation to physiological or pathophysiological signals, contractile apparatus and mitochondrial function are coordinated to alter muscle fiber type. Although recent studies have identified various factors involved in modifying contractile proteins and mitochondrial function, the molecular mechanisms coordinating contractile and metabolic functions during muscle fiber transition are not fully understood. Using a gene-deficient mouse approach, our previous studies uncovered that vestigial-like family member 2 (Vgll2), a skeletal muscle-specific transcription cofactor activated by exercise, is essential for fast-to-slow adaptation of skeletal muscle. The current study provides evidence that Vgll2 plays a role in increasing muscle mitochondrial mass and oxidative capacity. Transgenic Vgll2 overexpression in mice altered muscle fiber composition toward the slow type and enhanced exercise endurance, which contradicted the outcomes observed with Vgll2 deficiency. Vgll2 expression was positively correlated with the expression of genes related to mitochondrial function in skeletal muscle, mitochondrial DNA content, and protein abundance of oxidative phosphorylation complexes. Additionally, Vgll2 overexpression significantly increased the maximal respiration of isolated muscle fibers and enhanced the suppressive effects of endurance training on weight gain. Notably, no additional alteration in expression of myosin heavy chain genes was observed after exercise, suggesting that Vgll2 plays a direct role in regulating mitochondrial function, independent of its effect on contractile components. The observed increase in exercise endurance and metabolic efficiency may be attributed to the acute upregulation of genes promoting fatty acid utilization as a direct consequence of Vgll2 activation facilitated by endurance exercise. Thus, the current study establishes that Vgll2 is an integrative regulator of mitochondrial function and contractility in skeletal muscle.

9.
Angiogenesis ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287727

RESUMEN

Pathological neovascularization in retinopathy of prematurity (ROP) can cause visual impairment in preterm infants. Current ROP treatments which are not preventative and only address late neovascular ROP, are costly and can lead to severe complications. We showed that topical 0.1% dexamethasone eye drops administered prior to peak neovessel formation prevented neovascularization in five extremely preterm infants at high risk for ROP and suppressed neovascularization by 30% in mouse oxygen-induced retinopathy (OIR) modeling ROP. In contrast, in OIR, topical dexamethasone treatment before any neovessel formation had limited efficacy in preventing later neovascularization, while treatment after peak neovessel formation had a non-statistically significant trend to exacerbating disease. Optimally timed topical dexamethasone suppression of neovascularization in OIR was associated with increased retinal mitochondrial gene expression and decreased inflammatory marker expression, predominantly found in immune cells. Blocking mitochondrial ATP synthetase reversed the inhibitory effect of dexamethasone on neovascularization in OIR. This study provides new insights into topical steroid effects in retinal neovascularization and into mitochondrial function in phase II ROP, and suggests a simple clinical approach to prevent severe ROP.

10.
Anim Nutr ; 18: 191-202, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39281051

RESUMEN

This study aims to elucidate the mechanism of lipid metabolism disorder in intrauterine growth retardation (IUGR) pigs and the potential alleviating effects of dimethylglycine sodium salt (DMG-Na). A total of 60 male newborn piglets were selected for this study. Within each litter, one normal birth weight (NBW) male piglet (1.53 ± 0.04 kg) and two IUGR male piglets (0.76 ± 0.06 kg) were chosen based on their birth weight. The piglets were divided into three groups for the study: NBW pigs received a PBS gavage and a common basal diet (NBW-C group), IUGR pigs received the same PBS gavage and common basal diet (IUGR-C group), and IUGR pigs received a 70-mg DMG-Na gavage along with a common basal diet supplemented with 0.1% DMG-Na (IUGR-D group). At 150 d of age, all piglets underwent euthanasia by exsanguination following electrical stunning, after which plasma, liver, and longissimus dorsi (LM) samples were promptly collected. The IUGR-D group demonstrated improvements in plasma parameters (P < 0.05), with lower triglyceride and free fatty acid (FFA) values, and hormone levels (P < 0.05), with lower growth hormone, insulin, and homeostasis model assessment of insulin resistance values. Restoration of lipid metabolism was observed (P < 0.05), with lower triglyceride and FFA, and higher hepatic lipase and total lipase values in the liver, and lower triglyceride and FFA values in the LM. Mitochondrial ETC complexes showed increased levels (P < 0.05), including higher complex III values in the liver, and higher complex I, complex III, and complex V values in the LM. Enhanced levels of energy metabolites were noted (P < 0.05), with higher NAD+, NAD+/NADH, adenosine triphosphate, and mtDNA values, and lower NADH values in the liver and LM. Additionally, meat quality parameters showed improvement (P < 0.05), with higher pH 24 h and a∗ values, and lower drip loss 48 h, L∗, and b∗ values. The expressions of lipid metabolism and mitochondrial function-related genes and proteins were upregulated (P < 0.05) compared to the IUGR-C group. In conclusion, it was indicated that IUGR pigs experienced lipid metabolism disorders and diminished performance. However, supplementation with DMG-Na showed promise in mitigating these adverse physiological effects by safeguarding body tissues and modulating energy metabolism.

11.
Biomed Pharmacother ; 179: 117383, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39232383

RESUMEN

Ischemic heart disease (IHD) is a significant global health concern, resulting in high rates of mortality and disability among patients. Although coronary blood flow reperfusion is a key treatment for IHD, it often leads to acute myocardial ischemia-reperfusion injury (IRI). Current intervention strategies have limitations in providing adequate protection for the ischemic myocardium. DJ-1, originally known as a Parkinson's disease related protein, is a highly conserved cytoprotective protein. It is involved in enhancing mitochondrial function, scavenging reactive oxygen species (ROS), regulating autophagy, inhibiting apoptosis, modulating anaerobic metabolism, and exerting anti-inflammatory effects. DJ-1 is also required for protective strategies, such as ischemic preconditioning, ischemic postconditioning, remote ischemic preconditioning and pharmacological conditioning. Therefore, DJ-1 emerges as a potential target for the treatment of myocardial IRI. Our comprehensive review delves into its protective mechanisms in myocardial IRI and the structural foundations underlying its functions.

12.
Int J Nanomedicine ; 19: 8751-8768, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220194

RESUMEN

Purpose: Periodontitis is a chronic infectious disease characterized by progressive inflammation and alveolar bone loss. Forkhead box O1 (FoxO1), an important regulator, plays a crucial role in maintaining bone homeostasis and regulating macrophage energy metabolism and osteogenic differentiation of mesenchymal stem cells (MSCs). In this study, FoxO1 was overexpressed into small extracellular vesicles (sEV) using engineering technology, and effects of FoxO1-overexpressed sEV on periodontal tissue regeneration as well as the underlying mechanisms were investigated. Methods: Human periodontal ligament stem cell (hPDLSCs)-derived sEV (hPDLSCs-sEV) were isolated using ultracentrifugation. They were then characterized using transmission electron microscopy, Nanosight, and Western blotting analyses. hPDLSCs were treated with hPDLSCs-sEV in vitro after stimulation with lipopolysaccharide, and osteogenesis was evaluated. The effect of hPDLSCs-sEV on the polarization phenotype of THP-1 macrophages was also evaluated. In addition, we measured the reactive oxygen species (ROS) levels, adenosine triphosphate (ATP) production, mitochondrial characteristics, and metabolism of hPDLSCs and THP-1 cells. Experimental periodontitis was established in vivo in mice. HPDLSCs-sEV or phosphate-buffered saline (PBS) were injected into periodontal tissues for four weeks, and the maxillae were collected and assessed by micro-computed tomography, histological staining, and small animal in vivo imaging. Results: In vitro, FoxO1-overexpressed sEV promoted osteogenic differentiation of hPDLSCs in the inflammatory environment and polarized THP-1 cells from the M1 phenotype to the M2 phenotype. Furthermore, FoxO1-overexpressed sEV regulated the ROS level, ATP production, mitochondrial characteristics, and metabolism of hPDLSCs and THP-1 cells in the inflammatory environment. In the in vivo analyses, FoxO1-overexpressed sEV effectively promoted bone formation and inhibited inflammation. Conclusion: FoxO1-overexpressed sEV can regulate osteogenesis and immunomodulation. The ability of FoxO1-overexpressed sEV to regulate inflammation and osteogenesis can pave the way for the establishment of a therapeutic approach for periodontitis.


Asunto(s)
Vesículas Extracelulares , Proteína Forkhead Box O1 , Mitocondrias , Osteogénesis , Ligamento Periodontal , Periodontitis , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Osteogénesis/efectos de los fármacos , Animales , Humanos , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Mitocondrias/metabolismo , Periodontitis/terapia , Periodontitis/metabolismo , Ratones , Ligamento Periodontal/citología , Células THP-1 , Especies Reactivas de Oxígeno/metabolismo , Inflamación/metabolismo , Masculino , Diferenciación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Macrófagos/metabolismo , Regeneración , Células Cultivadas
13.
Oncol Lett ; 28(4): 474, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39161338

RESUMEN

Dihydroartemisinin (DHA) may inhibit the migration and invasion of liver cancer cells by reducing ATP synthase production (specifically ATP1A1 and ATP5H) through the calcium/calmodulin dependent protein kinase kinase 2/solute carrier family 8 member B1 signaling pathway. However, it is unclear whether DHA regulates ATP synthase activity by modulating other calcium ion signals to inhibit the energy metabolism and the transfer of hepatocellular carcinoma (HCC) cells. Using the Gene Expression Profiling Interactive Analysis database, a search for specific expression genes in liver cancer tissues was performed. Human HCC HuH-7 and Li-7 cells were used to produce CANX overexpression and small interfering RNA cell models. The study assessed changes in cell proliferation, apoptosis, migration and invasion. Reactive oxygen species production, ATP production, mitochondrial membrane potential (JC-1), NAD+/NADH ratio and mitochondrial fluorescence were also evaluated. Western blotting was used to assess changes in CANX, ATP6V1 domain (ATP6V1F) and V0 domain (ATP6V0B) protein expression levels. The results demonstrated that CANX is highly expressed in liver cancer tissues. Furthermore, CANX regulated malignant biological behavior, mediated mitochondrial function and energy metabolism. However, these effects were inhibited by DHA, which decreased the expression of CANX, ATP6V0B and ATP6V1F. The findings of the present study underscore the central role of CANX in affecting the malignant biological behavior of liver cancer cells by regulating mitochondrial function and energy metabolism. Additionally, they indicate that DHA serves an anticancer role by inhibiting CANX expression.

14.
Front Pharmacol ; 15: 1444117, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161898

RESUMEN

Objective: Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disease globally, characterized by the accumulation of lipids, oxidative stress, and mitochondrial dysfunction in the liver. Celastrus orbiculatus Thunb. (COT) and its active compound celastrol (CEL) have demonstrated antioxidant and anti-inflammatory properties. Our prior research has shown the beneficial effects of COT in mitigating NAFLD induced by a high-fat diet (HFD) in guinea pigs by reducing hepatic lipid levels and inhibiting oxidative stress. This study further assessed the effects of COT on NAFLD and explored its underlying mitochondria-related mechanisms. Methods: COT extract or CEL was administered as an intervention in C57BL/6J mice fed a HFD or in HepG2 cells treated with sodium oleate. Oral glucose tolerance test, biochemical parameters including liver enzymes, blood lipid, and pro-inflammatory factors, and steatosis were evaluated. Meanwhile, mitochondrial ultrastructure and indicators related to oxidative stress were tested. Furthermore, regulators of mitochondrial function were measured using RT-qPCR and Western blot. Results: The findings demonstrated significant reductions in hepatic steatosis, oxidative stress, and inflammation associated with NAFLD in both experimental models following treatment with COT extract or CEL. Additionally, improvements were observed in mitochondrial structure, ATP content, and ATPase activity. This improvement can be attributed to the significant upregulation of mRNA and protein expression levels of key regulators including FGF21, AMPK, PGC-1α, PPARγ, and SIRT3. Conclusion: These findings suggest that COT may enhance mitochondrial function by activating the FGF21/AMPK/PGC-1α signaling pathway to mitigate NAFLD, which indicated that COT has the potential to target mitochondria and serve as a novel therapeutic option for NAFLD.

15.
J Nanobiotechnology ; 22(1): 473, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39135024

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly malignant tumor known for its hypoxic environment, which contributes to resistance against the anticancer drug Sorafenib (SF). Addressing SF resistance in HCC requires innovative strategies to improve tumor oxygenation and effectively deliver therapeutics. RESULTS: In our study, we explored the role of KPNA4 in mediating hypoxia-induced SF resistance in HCC. We developed hemoglobin nanoclusters (Hb-NCs) capable of carrying oxygen, loaded with indocyanine green (ICG) and SF, named HPRG@SF. In vitro, HPRG@SF targeted HCC cells, alleviated hypoxia, suppressed KPNA4 expression, and enhanced the cytotoxicity of PDT against hypoxic, SF-resistant HCC cells. In vivo experiments supported these findings, showing that HPRG@SF effectively improved the oxygenation within the tumor microenvironment and countered SF resistance through combined photodynamic therapy (PDT). CONCLUSION: The combination of Hb-NCs with ICG and SF, forming HPRG@SF, presents a potent strategy to overcome drug resistance in hepatocellular carcinoma by improving hypoxia and employing PDT. This approach not only targets the hypoxic conditions that underlie resistance but also provides a synergistic anticancer effect, highlighting its potential for clinical applications in treating resistant HCC.


Asunto(s)
Carcinoma Hepatocelular , Hemoglobinas , Verde de Indocianina , Neoplasias Hepáticas , Fotoquimioterapia , Sorafenib , Microambiente Tumoral , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Microambiente Tumoral/efectos de los fármacos , Humanos , Fotoquimioterapia/métodos , Animales , Hemoglobinas/farmacología , Línea Celular Tumoral , Sorafenib/farmacología , Sorafenib/uso terapéutico , Ratones , Verde de Indocianina/química , Verde de Indocianina/farmacología , Verde de Indocianina/uso terapéutico , Ratones Desnudos , Ratones Endogámicos BALB C , Antineoplásicos/farmacología , Antineoplásicos/química , alfa Carioferinas/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Nanopartículas/química
16.
J Neuroinflammation ; 21(1): 191, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095788

RESUMEN

OBJECTIVE: Obesity represents a significant global health challenge characterized by chronic low-grade inflammation and metabolic dysregulation. The hypothalamus, a key regulator of energy homeostasis, is particularly susceptible to obesity's deleterious effects. This study investigated the role of the immunoproteasome, a specialized proteasomal complex implicated in inflammation and cellular homeostasis, during metabolic diseases. METHODS: The levels of the immunoproteasome ß5i subunit were analyzed by immunostaining, western blotting, and proteasome activity assay in mice fed with either a high-fat diet (HFD) or a regular diet (CHOW). We also characterized the impact of autophagy inhibition on the levels of the immunoproteasome ß5i subunit and the activation of the AKT pathway. Finally, through confocal microscopy, we analyzed the contribution of ß5i subunit inhibition on mitochondrial function by flow cytometry and mitophagy assay. RESULTS: Using an HFD-fed obese mouse model, we found increased immunoproteasome levels in hypothalamic POMC neurons. Furthermore, we observed that palmitic acid (PA), a major component of saturated fats found in HFD, increased the levels of the ß5i subunit of the immunoproteasome in hypothalamic neuronal cells. Notably, the increase in immunoproteasome expression was associated with decreased autophagy, a critical cellular process in maintaining homeostasis and suppressing inflammation. Functionally, PA disrupted the insulin-glucose axis, leading to reduced AKT phosphorylation and increased intracellular glucose levels in response to insulin due to the upregulation of the immunoproteasome. Mechanistically, we identified that the protein PTEN, a key regulator of insulin signaling, was reduced in an immunoproteasome-dependent manner. To further investigate the potential therapeutic implications of these findings, we used ONX-0914, a specific immunoproteasome inhibitor. We demonstrated that this inhibitor prevents PA-induced insulin-glucose axis imbalance. Given the interplay between mitochondrial dysfunction and metabolic disturbances, we explored the impact of ONX-0914 on mitochondrial function. Notably, ONX-0914 preserved mitochondrial membrane potential and attenuated mitochondrial ROS production in the presence of PA. Moreover, we found that ONX-0914 reduced mitophagy in the presence of PA. CONCLUSIONS: Our findings strongly support the pathogenic involvement of the immunoproteasome in hypothalamic neurons in the context of HFD-induced obesity and metabolic disturbances. Targeting the immunoproteasome highlights a promising therapeutic strategy to mitigate the detrimental effects of obesity on the insulin-glucose axis and cellular homeostasis. This study provides valuable insights into the mechanisms driving obesity-related metabolic diseases and offers potential avenues for developing novel therapeutic interventions.


Asunto(s)
Dieta Alta en Grasa , Hipotálamo , Ratones Endogámicos C57BL , Neuronas , Obesidad , Complejo de la Endopetidasa Proteasomal , Animales , Dieta Alta en Grasa/efectos adversos , Ratones , Hipotálamo/metabolismo , Obesidad/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Masculino , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/etiología , Oligopéptidos
17.
CNS Neurosci Ther ; 30(8): e14836, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39097918

RESUMEN

INTRODUCTION: Cerebral ischemia-reperfusion injury (CIRI) is a common and debilitating complication of cerebrovascular diseases such as stroke, characterized by mitochondrial dysfunction and cell apoptosis. Unraveling the molecular mechanisms behind these processes is essential for developing effective CIRI treatments. This study investigates the role of RACK1 (receptor for activated C kinase 1) in CIRI and its impact on mitochondrial autophagy. METHODS: We utilized high-throughput transcriptome sequencing and weighted gene co-expression network analysis (WGCNA) to identify core genes associated with CIRI. In vitro experiments used human neuroblastoma SK-N-SH cells subjected to oxygen and glucose deprivation (OGD) to simulate ischemia, followed by reperfusion (OGD/R). RACK1 knockout cells were created using CRISPR/Cas9 technology, and cell viability, apoptosis, and mitochondrial function were assessed. In vivo experiments involved middle cerebral artery occlusion/reperfusion (MCAO/R) surgery in rats, evaluating neurological function and cell apoptosis. RESULTS: Our findings revealed that RACK1 expression increases during CIRI and is protective by regulating mitochondrial autophagy through the PINK1/Parkin pathway. In vitro, RACK1 knockout exacerbated cell apoptosis, while overexpression of RACK1 reversed this process, enhancing mitochondrial function. In vivo, RACK1 overexpression reduced cerebral infarct volume and improved neurological deficits. The regulatory role of RACK1 depended on the PINK1/Parkin pathway, with RACK1 knockout inhibiting PINK1 and Parkin expression, while RACK1 overexpression restored them. CONCLUSION: This study demonstrates that RACK1 safeguards against neural damage in CIRI by promoting mitochondrial autophagy through the PINK1/Parkin pathway. These findings offer crucial insights into the regulation of mitochondrial autophagy and cell apoptosis by RACK1, providing a promising foundation for future CIRI treatments.


Asunto(s)
Autofagia , Mitocondrias , Proteínas Quinasas , Receptores de Cinasa C Activada , Daño por Reperfusión , Ubiquitina-Proteína Ligasas , Animales , Humanos , Ratas , Apoptosis/fisiología , Autofagia/fisiología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Línea Celular Tumoral , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/metabolismo , Mitocondrias/metabolismo , Proteínas de Neoplasias , Neuroprotección/fisiología , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Ratas Sprague-Dawley , Receptores de Cinasa C Activada/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética
18.
Metabolomics ; 20(5): 96, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110263

RESUMEN

INTRODUCTION: Ginseng berry (GB) has previously been demonstrated to improve systemic insulin resistance and regulate hepatic glucose metabolism and steatosis in mice with diet-induced obesity (DIO). OBJECTIVES: In this study, the role of GB in metabolism was assessed using metabolomics analysis on the total liver metabolites of DIO mice. METHODS: Metabolomic profiling was performed using capillary electrophoresis time-of-flight mass spectrometry (CE-TOF/MS) of liver tissue from mice on a 12-wk normal chow diet (NC), high-fat diet (HFD), and HFD supplemented with 0.1% GB (HFD + GB). The detected metabolites, its pathways, and functions were analyzed through partial least square discriminant analysis (PLS-DA), the small molecular pathway database (SMPDB), and MetaboAnalyst 5.0. RESULTS: The liver metabolite profiles of NC, HFD, and GB-fed mice (HFD + GB) were highly compartmentalized. Metabolites involved in major liver functions, such as mitochondrial function, gluconeogenesis/glycolysis, fatty acid metabolism, and primary bile acid biosynthesis, showed differences after GB intake. The metabolites that showed significant correlations with fasting blood glucose (FBG), insulin, and homeostatic model assessment for insulin resistance (HOMA-IR) were highly associated with mitochondrial membrane function, energy homeostasis, and glucose metabolism. Ginseng berry intake increased the levels of metabolites involved in mitochondrial membrane function, decreased the levels of metabolites related to glucose metabolism, and was highly correlated with metabolic phenotypes. CONCLUSION: This study demonstrated that long-term intake of GB changed the metabolite of hepatosteatotic livers in DIO mice, normalizing global liver metabolites involved in mitochondrial function and glucose metabolism and indicating the potential mechanism of GB in ameliorating hyperglycemia in DIO mice.


Asunto(s)
Dieta Alta en Grasa , Glucosa , Hígado , Metabolómica , Obesidad , Panax , Animales , Panax/metabolismo , Panax/química , Ratones , Metabolómica/métodos , Hígado/metabolismo , Glucosa/metabolismo , Masculino , Obesidad/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ratones Obesos , Resistencia a la Insulina , Frutas/metabolismo , Frutas/química , Metaboloma/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos
19.
Cell Signal ; 122: 111333, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39102928

RESUMEN

PIWI-interacting RNAs (piRNAs) are involved in the regulation of hypertrophic cardiomyopathy, heart failure and myocardial methylation. However, their functions and the underlying molecular mechanisms in diabetic cardiomyopathy (DCM) have yet to be fully elucidated. In the present study, a pyroptosis-associated piRNA (piR112710) was identified that ameliorates cardiac remodeling through targeting the activation of inflammasomes and mitochondrial dysfunction that are mediated via the thioredoxin-interacting protein (Txnip)/NLRP3 signaling axis. Subsequently, the cardioprotective effects of piR112710 on both the myocardium from db/db mice and cardiomyocytes from neonatal mice that were incubated with a high concentration of glucose combined with palmitate were examined. piR112710 was found to significantly improve cardiac dysfunction in db/db mice, characterized by improved echocardiography, lower levels of fibrosis, attenuated expression levels of inflammatory factors and pyroptosis-associated proteins (namely, Txnip, ASC, NLRP3, caspase-1 and GSDMD-N), and enhanced myocardial mitochondrial respiratory functions. In cultured neonatal mice cardiomyocytes, piR112710 deficiency and high glucose along with palmitate treatment led to significantly upregulated expression levels of pyroptosis associated proteins and collagens, oxidative stress, mitochondrial dysfunction and increased levels of inflammatory factors. Supplementation with piR112710, however, led to a reversal of the aforementioned changes induced by high glucose and palmitate. Mechanistically, the cardioprotective effect of piR112710 appears to be dependent upon effective elimination of reactive oxygen species and inactivation of the Txnip/NLRP3 signaling axis. Taken together, the findings of the present study have revealed that the piRNA-mediated inhibitory mechanism involving the Txnip/NLRP3 axis may participate in the regulation of pyroptosis, which protects against DCM both in vivo and in vitro. piR112710 may therefore be a potential therapeutic target for the reduction of myocardial injury caused by cardiomyocyte pyroptosis in DCM.


Asunto(s)
Proteínas Portadoras , Cardiomiopatías Diabéticas , Miocitos Cardíacos , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/efectos de los fármacos , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Proteínas Portadoras/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de los fármacos , Masculino , ARN Interferente Pequeño/metabolismo , Ratones Endogámicos C57BL , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Transducción de Señal/efectos de los fármacos , Inflamasomas/metabolismo
20.
Cell Signal ; 122: 111340, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39127135

RESUMEN

Obesity and its complications have become a global health problem that needs to be addressed urgently. White adipose tissue (WAT) browning contributes to consuming excess energy in WAT, which is important for improving obesity and maintaining a healthy energy homeostasis. Mitochondria, as the energy metabolism center of cells, are extensively involved in many metabolic processes, including the browning of WAT. NADH: Ubiquinone oxidoreductase subunit A8 (NDUFA8) is a constituent subunit of respiratory chain complex I (CI), which has been found to participate in a wide range of physiological processes by affecting the activity of respiratory CI. However, the regulatory effect of Ndufa8 on the browning of WAT has not been reported. Here, we used ß3-adrenergic agonis CL316, 243 to construct WAT browning models in vivo and in vitro to investigate the role and mechanism of Ndufa8 in the regulation of WAT browning. Briefly, Ndufa8 significantly increased CI activity and suppressed mitochondrial ROS levels in vitro, thereby improving mitochondrial function. Ndufa8 also increased the transcriptional levels and protein levels of UCP1 in vitro and in vivo, which promoted WAT browning. Our findings provide a new molecular approach for the research of browning of WAT in animals, as well as a new target for animal metabolism improvement and obesity treatments.


Asunto(s)
Tejido Adiposo Pardo , Tejido Adiposo Blanco , Complejo I de Transporte de Electrón , Ratones Endogámicos C57BL , Mitocondrias , Obesidad , Animales , Complejo I de Transporte de Electrón/metabolismo , Obesidad/metabolismo , Tejido Adiposo Blanco/metabolismo , Ratones , Mitocondrias/metabolismo , Tejido Adiposo Pardo/metabolismo , Masculino , Especies Reactivas de Oxígeno/metabolismo , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Dioxoles/farmacología , Dieta Alta en Grasa , Termogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA