Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 512
Filtrar
1.
Sci Rep ; 14(1): 21497, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277691

RESUMEN

The miniaturization of antennas is crucial as it improves the integration of wireless communication system. In order to achieve miniaturization of antennas, a performance-constrained multi-objective optimization method (PCMOM) considering the size and return loss is proposed. In the PCMOM method, an optimization strategy based on a multi-port network model is introduced, enabling the formation of antennas with various structures. Furthermore, we integrate the constraint of return loss performance into the non-dominated sorting genetic algorithm II (NSGA-II), eliminating solutions that do not meet performance requirements. Three pixel antennas are designed using the PCMOM method and two of them are fabricated. Experimental results demonstrate that the proposed PCMOM method can effectively address the complex trade-off issues in antenna miniaturization design.

2.
Heliyon ; 10(17): e37069, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39286186

RESUMEN

We proposed and fabricated a miniaturized multi-core fiber grating vibration sensor. The size of the miniaturized vibration sensor is 10mm × 10mm × 10 mm with a mass of only 0.25g. Finite element analysis and experimental tests were carried out to validate the performance of the vibration sensor. The experiment results indicate that the sensor has a sensitivity of 68.72 pm/g in the X direction and 64.52 pm/g in the Y direction within the operating frequency range of 20-240Hz. The cross-interference between the two directions of vibration measurement falls within 4 %. The sensor is suitable for measuring mechanical vibrations in the mid-low frequency range, especially in cases where size, quality, and distributed measurement are of particular concern.

3.
Clin Kidney J ; 17(9): sfae259, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39301271

RESUMEN

Background: Dialysis modalities and their various treatment schedules result from complex compromises ('trade-offs') between medical, financial, technological, ergonomic, and ecological factors. This study targets summarizing the mutual influence of these trade-offs on (trans)portable, wearable, or even (partially) implantable haemodialysis (HD) systems, identify what systems are in development, and how they might improve quality of life (QoL) for patients with kidney failure. Methods: HD as defined by international standard IEC 60601-2-16 was applied on a PUBMED database query regarding (trans)portable, wearable, and (partly) implantable HD systems. Out of 159 search results, 24 were included and scanned for specific HD devices and/or HD systems in development. Additional information about weight, size, and development status was collected by the internet and/or contacting manufacturers. International airplane hand baggage criteria formed the boundary between transportable and portable. Technology readiness levels (TRLs) were assigned by combining TRL scales from the European Union and NATO medical staff. Results: The query revealed 13 devices/projects: seven transportable (six TRL9, one TRL5); two portable (one TRL6-7, one TRL4); two wearable (one TRL6, one frozen); and two partly implantable (one TRL4-5, one TRL2-3). Discussion: Three main categories of technical approaches were distinguished: single-pass, dialysate regenerating, and implantable HD filter with extracorporeal dialysate regeneration (in climbing order of mobility). Conclusions: Kidneys facilitate mobility by excreting strongly concentrated waste solutes with minimal water loss. Mimicking this kidney function can increase HD system mobility. Dialysate-regenerating HD systems are enablers for portability/wearability and, combined with durable implantable HD filters (once available), they may enable HD without needles or intravascular catheters. However, lack of funding severely hampers progress.

4.
ACS Appl Mater Interfaces ; 16(34): 44428-44439, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39146498

RESUMEN

Continuous sensing of biomarkers, such as potassium ions or pH, in wearable patches requires miniaturization of ion-selective sensor electrodes. Such miniaturization can be achieved by using nanostructured carbon materials as solid contacts in microneedle-based ion-selective and reference electrodes. Here we compare three carbon materials as solid contacts: colloid-imprinted mesoporous (CIM) carbon microparticles with ∼24-28 nm mesopores, mesoporous carbon nanospheres with 3-9 nm mesopores, and Super P carbon black nanoparticles without internal porosity but with textural mesoporosity in particle aggregates. We compare the effects of carbon architecture and composition on specific capacitance of the material, on the ability to incorporate ion-selective membrane components in the pores, and on sensor performance. Functioning K+ and H+ ion-selective electrodes and reference electrodes were obtained with gold-coated stainless-steel microneedles using all three types of carbon. The sensors gave near-Nernstian responses in clinically relevant concentration ranges, were free of potentially detrimental water layers, and showed no response to O2. They all exhibited sufficiently low long-term potential drift values to permit calibration-free, continuous operation for close to 1 day. In spite of the different specific capacitances and pore architecture of the three types of carbon, no significant difference in potential stability for K+ ion sensing was observed between electrodes that used each material. In the observed drift values, factors other than the carbon solid contact are likely to play a role, too. However, for pH sensing, electrodes with CIM as a carbon solid contact, which had the highest specific capacitance and best access to the pores, exhibited better long-term stability than electrodes with the other carbon materials.

5.
Sensors (Basel) ; 24(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39204833

RESUMEN

This study investigates the efficacy of handheld Near-Infrared Spectroscopy (NIRS) devices for in-field estimation of forage quality using undried samples. The objective is to assess the precision and accuracy of multiple handheld NIRS instruments-NeoSpectra, TrinamiX, and AgroCares-when evaluating key forage quality metrics such as Crude Protein (CP), Neutral Detergent Fiber (aNDF), Acid Detergent Fiber (ADF), Acid Detergent Lignin (ADL), in vitro Total Digestibility (IVTD)and Neutral Detergent Fiber Digestibility (NDFD). Samples were collected from silage bunkers across 111 farms in New York State and scanned using different methods (static, moving, and turntable). The results demonstrate that dynamic scanning patterns (moving and turntable) enhance the predictive accuracy of the models compared to static scans. Fiber constituents (ADF, aNDF) and Crude Protein (CP) show higher robustness and minimal impact from water interference, maintaining similar R2 values as dried samples. Conversely, IVTD, NDFD, and ADL are adversely affected by water content, resulting in lower R2 values. This study underscores the importance of understanding the water effects on undried forage, as water's high absorption bands at 1400 and 1900 nm introduce significant spectral interference. Further investigation into the PLSR loading factors is necessary to mitigate these effects. The findings suggest that, while handheld NIRS devices hold promise for rapid, on-site forage quality assessment, careful consideration of scanning methodology is crucial for accurate prediction models. This research contributes valuable insights for optimizing the use of portable NIRS technology in forage analysis, enhancing feed utilization efficiency, and supporting sustainable dairy farming practices.


Asunto(s)
Alimentación Animal , Espectroscopía Infrarroja Corta , Espectroscopía Infrarroja Corta/métodos , Alimentación Animal/análisis , Ensilaje/análisis , Animales , Fibras de la Dieta/análisis , Lignina/análisis , Lignina/química
6.
Sensors (Basel) ; 24(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39204986

RESUMEN

To address the current demands for antenna miniaturization, ultra-bandwidth, and circular polarization in advanced medical devices, a novel ISM band implantable antenna for blood glucose monitoring has been developed. This antenna achieves miniaturization by incorporating slots in the radiation patch and adding symmetric short-circuit probes, resulting in a compact size of only 0.054λ0 × 0.054λ0 × 0.005λ0 (λ0 is the wavelength in free space in respect of the lowest working frequency). By combining two resonance points and utilizing a differential feed structure, the antenna achieves ultra-broadband and circular polarization. Simulations indicate a |S11| bandwidth of 1.1 GHz (1.65-2.75 GHz) and an effective axial ratio (based on 3 dB axis ratio) bandwidth of 590 MHz (1.89-2.48 GHz), able to cover both the ISM frequency band (2.45 GHz) and the mid-field frequency band (1.9 GHz). The antenna exhibits CP gains of -20.04 dBi at a frequency of 2.45 GHz, while it shows gains of -24.64 dBi at 1.9 GHz. Furthermore, a superstrate layer on the antenna's radiating surface enhances its biocompatibility and minimizes its impact on the human body. Simulation and experimental results indicate that the antenna can establish a stable wireless communication link for implantable continuous blood glucose monitoring systems.


Asunto(s)
Glucemia , Prótesis e Implantes , Tecnología Inalámbrica , Glucemia/análisis , Humanos , Tecnología Inalámbrica/instrumentación , Automonitorización de la Glucosa Sanguínea/instrumentación , Automonitorización de la Glucosa Sanguínea/métodos , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Diseño de Equipo
7.
Sensors (Basel) ; 24(16)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39205061

RESUMEN

This paper demonstrates the design steps of a slot-loaded Vivaldi antenna for biomedical microwave imaging applications, showing the influence of the design parameters on the antenna's dimensions and performances. Several antenna miniaturization techniques were taken into consideration during the design: reduction in the electromagnetic wavelength by using a high-permittivity substrate material (relative permittivity ϵr=10.2), the placement of the antenna inside a coupling medium (ϵr=23), and the elongation of the current path by etching slots on each side of the radiator to reduce the antenna's lowest resonant frequency without increasing its physical dimensions. Moreover, an analysis of different antenna slot design scenarios was performed considering different slot lengths, inclination angles, positions, and numbers. Considering the frequency range of microwave imaging (i.e., about 500 MHz-5 GHz) and the array arrangement typical of microwave imaging, the best design was chosen. Finally, the antenna was fabricated and its performances in the coupling medium were characterized. The simulation and measurement results showed good agreement between each other. In comparison with literature antennas, the one developed in this work shows wide bandwidth and compact dimensions.

8.
Magn Reson Med ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39188192

RESUMEN

PURPOSE: There is currently a strong trend in developing RF coils that are high-density, lightweight, and highly flexible. In addition to the resonator structure of the RF coil itself, the balun or cable trap circuit serves as another essential element in the functionality and sensitivity of RF coils. This study explores the development and application of reproducible highly miniaturized baluns in RF coil design. METHODS: We introduce a novel approach to producing Bazooka baluns with printed coaxial capacitors, enabling the achievement of significant capacitance per unit length. Rigorous electromagnetic simulations and thorough hardware fabrication validate the efficacy of the proposed design across various magnetic field strengths, including 1.5 T, 3 T, and 7 T MRI systems. RESULTS: Bench testing reveals that the proposed balun can achieve an acceptable common-mode rejection ratio even when it is highly miniaturized. The use of printed capacitors allows for a notable reduction in balun length and ensures high reproducibility. Findings demonstrate that the proposed balun exhibits no RF field distortion even when placed close to the sample, making it suitable for flexible coils, wearable coils, and high-density coils, particularly in high-field MRI. CONCLUSION: The reproducibility inherent in the manufacturing process of printed coaxial capacitors allows for simple fabrication and ensures consistency in production. These advancements pave the way for the development of flexible coils, wearable coils, and high-density coils.

9.
Biomed Eng Online ; 23(1): 87, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210335

RESUMEN

This review presents an in-depth examination of implantable antennas for various biomedical purposes. The development of implantable antennas, including their designs, materials, and operating principles, are introduced at the beginning of the discussion. An overview of the many kinds of implantable antennas utilized in implantable medical devices (IMDs) are presented in this study. The article then discusses the important factors to consider when developing implantable antennas for biomedical purposes, including implant placement, frequency range, and power needs. This investigation additionally examines the challenges and limitations encountered with implantable antennas, including the limited space available within the human body, the requirement for biocompatible materials, the impact of surrounding tissue on antenna performance, tissue attenuation, and signal interference. This review also emphasizes the most recent advances in implanted antenna technology, such as wireless power transmission, multiband operation, and miniaturization. Furthermore, it offers illustrations of several biomedical uses for implantable antennas, including pacemaker, capsule endoscopy, intracranial pressure monitoring, retinal prostheses, and bone implants. This paper concludes with a discussion of the future of implantable antennas and their possible use in bioelectronic medicine and novel medical implants. Overall, this survey offers a thorough analysis of implantable antennas in biomedical applications, emphasizing their importance in the development of implantable medical technology.


Asunto(s)
Prótesis e Implantes , Humanos , Materiales Biocompatibles , Diseño de Equipo/tendencias , Prótesis e Implantes/tendencias , Tecnología Inalámbrica/instrumentación , Tecnología Inalámbrica/tendencias
10.
J Chromatogr A ; 1734: 465292, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39208477

RESUMEN

Extra-column band broadening can significantly reduce the performance of rapid ultra-high performance liquid chromatography-MS-based methods (UHPLC-MS). However, as we show here, UHPLC-MS/MS methods on short 2.1 mm i.d. columns can be optimized to reduce band broadening by simple procedures such as dispensing with the solvent divert valves placed between the column and the MS source. Vacuum jacketed columns have previously been shown to provide superior performance to conventional UHPLC-MS/MS by reducing on and post column band broadening. Here we have compared the optimized "direct" UHPLC approach for the high throughput (HT) bioanalysis of drugs and metabolites in biofluids such as urine and blood plasma with vacuum jacketed chromatography (VJC), using columns of the same geometry and packed with the same stationary phases. This study demonstrates that the performance of VJC was still superior to the direct UHPLC-MS/MS methods for rapid "generic" bioanalysis using gradient times of 0.25 to 5 min. Further investigations using microbore VJC-MS/MS, with 1 mm i.d. columns, for bioanalysis of the same biofluid samples showed that this format offers great promise for HT "discovery" drug and metabolite analysis/profiling. In addition the reduction of solvent use, by up to 90 % for methods when using microbore columns, can significantly contribute to improved sustainability and reducing costs per analysis.


Asunto(s)
Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Vacio , Preparaciones Farmacéuticas/sangre , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/orina , Humanos , Ensayos Analíticos de Alto Rendimiento/métodos
11.
Animals (Basel) ; 14(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39061509

RESUMEN

The rapid progress of the modern world has resulted in new materials and products created at an accelerating pace. As such, nanoparticles have widespread applications and often find their way into the aquatic ecosystem. In the case of freshwater ecosystems, one of the commonly used bioindicators species used for pollution assessment is Daphnid magna. The Organization for Economic Co-operation and Development (OECD), and other organizations such as the European Chemicals Agency (ECHA) and Environmental Protection Agency (EPA), have set guidelines for acute toxicity testing in daphnids that are severely lacking in terms of information on the characteristics of the exposure vessel when studying the adverse effects of nanoparticles (NPs). Understanding the toxicity mechanisms of nanomaterials is imperative given the scarcity of information on their adverse effects. Furthermore, miniaturization of nanotoxicity assays can reduce the number of daphnids used, as well as the cost and nanomaterial waste, and provide results even at the individual animal level with enhanced reproducibility of testing. In this study, the impact of the exposure vessel on the observed physiological changes of daphnids was investigated for a silver nano ink. Exposures in eleven commercially available vessels; nine made of plastic and two made of glass were compared for 24 h. The effect of surface to volume ratio of the exposure vessel and the animal number or "crowding" during exposure was investigated in the context of miniaturizing biomarker assays as alternatives to traditional experimental setups in Daphnid magna. Toxicity curves showed differences depending on the vessel used, while a novel feeding rate assay and the activity of key enzymes were assessed as physiology endpoints.

12.
ACS Appl Mater Interfaces ; 16(29): 38733-38743, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38985460

RESUMEN

Cilia are hair-like organelles present on cell surfaces. They often exhibit a collective wave-like motion that can enhance fluid or particle transportation function, known as metachronal motion. Inspired by nature, researchers have developed artificial cilia capable of inducing metachronal motion, especially magnetic actuation. However, current methods remain intricate, requiring either control of the magnetic or geometrical properties of individual cilia or the generation of a complex magnetic field. In this paper, we present a novel elegant method that eliminates these complexities and induces metachronal motion of arrays of identical microscopic magnetic artificial cilia by applying a simple rotating uniform magnetic field. The key idea of our method is to place arrays of cilia on surfaces with a specially designed curvature. This results in consecutive cilia experiencing different magnetic field directions at each point in time, inducing a phase lag in their motion, thereby causing collective wave-like motion. Moreover, by tuning the surface curvature profile, we can achieve diverse metachronal patterns analogous to symplectic and antiplectic metachronal motion observed in nature, and we can even devise novel combinations thereof. Furthermore, we characterize the local flow patterns generated by the motion of the cilia, revealing the formation of vortical patterns. Our novel approach simplifies the realization of miniaturized metachronal motion in microfluidic systems and opens the possibility of controlling flow pattern generation and transportation, opening avenues for applications such as lab-on-a-chip technologies, organ-on-a-chip platforms, and microscopic object propulsion.


Asunto(s)
Cilios , Campos Magnéticos , Propiedades de Superficie , Movimiento (Física)
13.
Micromachines (Basel) ; 15(7)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39064321

RESUMEN

The acoustically actuated nanomechanical magnetoelectric (ME) antennas represent a promising new technology that can significantly reduce antenna size by 1-2 orders of magnitude compared to traditional antennas. However, current ME antennas face challenges such as low antenna gain and narrow operating bandwidth, limiting their engineering applications. In this paper, we enhance the bandwidth and radiation performance of ME antennas through structural optimization, leveraging theoretical analysis and numerical simulations. Our findings indicate that optimizing the inner diameter of the ring-shaped ME antenna can elevate the average stress of the magnetic layer, leading to improved radiation performance and bandwidth compared to circular ME antennas. We establish an optimization model for the radiation performance of the ME antenna and conduct shape optimization simulations using COMSOL Multiphysics. The results of the Multiphysics field optimization align with the stress concentration theory, demonstrating a strong correlation between the radiation performance and bandwidth of the ME antenna with the average stress of the magnetic film. The resonant frequency in the thickness vibration mode is determined to be 170 MHz. Furthermore, shape optimization can enhance the bandwidth by up to 104% compared to circular ME antenna structures of the same size.

14.
Sensors (Basel) ; 24(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38931619

RESUMEN

In this paper, two kinds of miniaturization methods for designing a compact wideband tapered slot antenna (TSA) using either fan-shaped structures only or fan-shaped and stepped structures were proposed. First, a miniaturization method appending the fan-shaped structures, such as quarter circular slots (QCSs), half circular slots (HCSs), and half circular patches (HCPs), to the sides of the ground conductor for the TSA was investigated. The effects of appending the QCSs, HCSs, and HCPs sequentially on the input reflection coefficient and gain characteristics of the TSA were compared. The compact wideband TSA using the first miniaturization method showed the simulated frequency band for a voltage standing wave ratio (VSWR) less than 2 of 2.530-13.379 GHz (136.4%) with gain in the band ranging 3.1-6.9 dBi. Impedance bandwidth was increased by 29.7% and antenna size was reduced by 39.1%, compared to the conventional TSA. Second, the fan-shaped structures combined with the stepped structures (SSs) were added to the sides of the ground conductor to further miniaturize the TSA. The fan-shaped structures based on the HCSs and HCPs were appended to the ground conductor with the QCSs and SSs. The compact wideband TSA using the second miniaturization method had the simulated frequency band for a VSWR less than 2 of 2.313-13.805 GHz (142.6%) with gain in the band ranging 3.0-8.1 dBi. Impedance bandwidth was increased by 37.8% and antenna size was reduced by 45.9%, compared to the conventional TSA. Therefore, the increase in impedance bandwidth and the size reduction effect of the compact wideband TSA using the second miniaturization method were better compared to those using the first method. In addition, sidelobe levels at high frequencies decreased while gain at high frequencies increased. A prototype of the compact wideband TSA using the second miniaturization method was fabricated on an RF-35 substrate to validate the simulation results. The measured frequency band for a VSWR less than 2 was 2.320-13.745 GHz (142.2%) with measured gain ranging 3.1-7.9 dBi.

15.
J Orthop Sci ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38890095

RESUMEN

BACKGROUND: Even though 20% of chronic lateral ankle instability results from a combined anterior talofibular ligament (ATFL) and calcaneofibular ligament (CFL) injury, only the ATFL is sutured using arthroscopic ligament repair techniques. Although some biomechanical and clinical studies have proved that isolated ATFL repair yields excellent results, previous biomechanical studies were performed using systems that only allow indirect estimations. The purpose of this study was to clarify strain patterns by directly measuring repaired ATFL and CFL strain patterns on cadaveric models that underwent isolated ATFL repair of a combined ATFL and CFL injury. METHODS: The miniaturization ligament performance probe (MLPP) system was used for directly measuring the strain patterns to insert the strain gauges into the mid-substance of normal and repaired ATFL and CFL fibers in five cadaveric specimens to allow measurement of strain patterns in the axial and three-dimensional motion of the ankle. RESULTS: The normal and repaired ATFL showed similar strain patterns in axial and three-dimensional motions. During the axial range of motion of the ankle, the repaired CFL showed a strain pattern almost similar to that of normal CFL, but the strain increased as the plantar flexion or dorsiflexion angle increased to the maximum value of 100 at 30° plantarflexion or strain values of 17-55/100 at 15°dorsiflexion. During three-dimensional motion, the repaired CFL was under the maximum value of 100 during dorsiflexion-inversion and exhibited less strain (7-38/100) during plantar flexion-eversion. CONCLUSION: The repaired CFL did not show a strain pattern that was completely consistent with a normal strain pattern; however, it did have some degree of tension similar to a normal strain pattern, even though it was not directly repaired.

16.
Sensors (Basel) ; 24(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38894103

RESUMEN

In answer to the demand for high sensitivity and miniaturization of ultra-high frequency (UHF) sensors for partial discharge (PD) detection in power equipment, this paper proposes research on miniaturized UHF-sensing technology for PD detection in power equipment based on symmetric cut theory. The symmetric cut theory is applied for the first time to the miniaturization of PD UHF sensors for power equipment. A planar monopole UHF sensor with a size of only 70 mm × 70 mm × 1.6 mm is developed using an exponential asymptotic feed line approach, which is a 50% size reduction. The frequency-response characteristics of the sensor are simulated, optimized and tested; the results show that the standing wave ratio of the sensor developed in this paper is less than 2 in the frequency band from 427 MHz to 1.54 GHz, and less than 5 in the frequency band from 300 MHz to 1.95 GHz; in the 300 MHz~1.5 GHz band; the maximum and average gains of the sensor E-plane are 4.76 dB and 1.02 dB, respectively. Finally, the PD simulation experiment platform for power equipment is built to test the sensor's sensing performance; the results show that the sensor can effectively detect the PD signals; the sensing sensitivity is improved by about 95% relative to an elliptical monopole UHF sensor.

17.
Sensors (Basel) ; 24(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38894179

RESUMEN

Microwave couplers are used in large numbers in beamforming networks, and their miniaturization can lead to a significant size reduction in the overall phased array. While the miniaturization of 3 dB couplers in the transverse direction (width) has been given considerable attention in the literature, there is minimal to no information on reducing coupler length. This is because of the trade-off between aperture length, bandwidth and coupling strength. The Bethe-Hole theory requires adding multiple apertures in the longitudinal direction for wide bandwidth, thus increasing the device length. Another factor is the aperture size, which determines the coupling strength and puts additional strain on the compactness of a 3 dB coupler. Contrariwise, this paper proposes to merge two weak (and hence compact) coupling mechanisms to design a wideband 3 dB coupler. This is achieved by using a longitudinal rectangular slot and three cross-slots in the transverse direction. Because of weak coupling, the slot sizes are smaller than a conventional 3 dB coupler, hence yielding a device whose length is less than one guided wavelength (λg) without compromising the bandwidth. The presented coupler is 0.63 λg in length, which is smaller than the state-of-the-art while maintaining a fractional bandwidth of 37% that is comparable to half-mode substrate integrated waveguide (HMSIW) couplers.

18.
Plant Methods ; 20(1): 91, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877523

RESUMEN

BACKGROUND: There is a growing demand for fast and reliable plant biomolecular analyses. DNA extraction is the major bottleneck in plant nucleic acid-based applications especially due to the complexity of tissues in different plant species. Conventional methods for plant cell lysis and DNA extraction typically require extensive sample preparation processes and large quantities of sample and chemicals, elevated temperatures, and multiple sample transfer steps which pose challenges for high throughput applications. RESULTS: In a prior investigation, an ionic liquid (IL)-based modified vortex-assisted matrix solid phase dispersion approach was developed using the model plant, Arabidopsis thaliana (L.) Heynh. Building upon this foundational study, the present study established a simple, rapid and efficient protocol for DNA extraction from milligram fragments of plant tissue representing a diverse range of taxa from the plant Tree of Life including 13 dicots and 4 monocots. Notably, the approach was successful in extracting DNA from a century old herbarium sample. The isolated DNA was of sufficient quality and quantity for sensitive molecular analyses such as qPCR. Two plant DNA barcoding markers, the plastid rbcL and nuclear ribosomal internal transcribed spacer (nrITS) regions were selected for DNA amplification and Sanger sequencing was conducted on PCR products of a representative dicot and monocot species. Successful qPCR amplification of the extracted DNA up to 3 weeks demonstrated that the DNA extracted using this approach remains stable at room temperature for an extended time period prior to downstream analysis. CONCLUSIONS: The method presented here is a rapid and simple approach enabling cell lysis and DNA extraction from 1.5 mg of plant tissue across a broad range of plant taxa. Additional purification prior to DNA amplification is not required due to the compatibility of the extraction solvents with qPCR. The method has tremendous potential for applications in plant biology that require DNA, including barcoding methods for agriculture, conservation, ecology, evolution, and forensics.

19.
J Chromatogr A ; 1730: 465021, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38897112

RESUMEN

This study introduces a feasible approach for utilizing a conventional High-Performance Liquid Chromatography (HPLC) instrument at the capillary scale (1 - 10 µL/min). The development of an active flow splitter and an adapted UV-visible (UV-vis) detection cell are described. The system employs an Arduino Uno board to monitor a flow sensor and control a stepper motor that automates a split valve to achieve capillary-scale flow rates from a conventional pump. A capillary UV-vis cell compatible with conventional detectors, featuring an optical path length with a volume of 14 nL, was developed to address the detection challenges at this scale and minimize extra column band broadening. The system performance was assessed by a lab-packed LC capillary column with 0.25 mm x 15 cm dimensions packed with 3.0 µm C18 particles. Model compounds, particularly polycyclic aromatic hydrocarbons (PAHs), were employed to assess the functionality of all developed components in terms of theoretical plates, resolution, and band broadening. The proposed system is a profitable, reliable, and cost-effective tool for miniaturized liquid chromatography.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Cromatografía Líquida de Alta Presión/métodos , Hidrocarburos Policíclicos Aromáticos/análisis , Diseño de Equipo , Espectrofotometría Ultravioleta
20.
J Chromatogr A ; 1730: 465099, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38901298

RESUMEN

A miniaturized microchip-based absorbance detector was developed for portable high-performance liquid chromatography (HPLC) to test glycated hemoglobin (HbA1c). The microchip integrating a Z-shaped cell, two collimating micro-lenses and two ink-filled optical slits is small in size (30 mm × 15 mm × 7 mm). The Z-shaped cell has a cross-sectional size of 500 µm × 500 µm and a physical optical path length of 2 mm. Two collimating micro-lenses were inserted in empty grooves on both sides of the cell, one micro-lens for collimating the initial light and the other for focusing the transmitted light. Optical slits on each end of the cell were used to block the stray light. Therefore, this detector indicated a low stray light level (0.011 %) and noise level (2.5 × 10-4 AU). This detector was applied for the commercial HPLC system to detect HbA1c level, and showed a low limit of detection (0.5 µg/mL) and excellent repeatability (≤ 2.03 %). The sensitivity was enhanced by 3.4 times when the optical path length was increased from 0.5 mm to 2 mm and the stray light was blocked by optical slits. The miniaturized microchip-based absorbance detector developed shows a great potential for application in portable and compact HPLC.


Asunto(s)
Diseño de Equipo , Hemoglobina Glucada , Límite de Detección , Cromatografía Líquida de Alta Presión/métodos , Hemoglobina Glucada/análisis , Humanos , Dispositivos Laboratorio en un Chip , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA