Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 640: 727-736, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36898179

RESUMEN

The information of structure and stability of actinide species is key to understand the sorption mechanism of actinides at mineral-water interface. Such information is approximately derived from experimental spectroscopic measurements and needs to be accurately obtained by a direct atomic-scale modelling. Herein, systematic first-principles calculations and ab initio molecular dynamics (AIMD) simulations are carried out to study the coordination structures and absorption energies of Cm(III) surface complexes at gibbsite-water interface. Eleven representative complexing sites are investigated. The most stable Cm3+ sorption species are predicted to be a tridentate surface complex in weakly acidic/neutral solution condition and a bidentate one in the alkaline solution condition. Moreover, luminescence spectra of the Cm3+ aqua ion and the two surface complexes are predicted based on the high-accuracy ab initio wave function theory (WFT). The results give a gradually decreasing emission energy in good agreement with experimental observation of a red shift of peak maximum with pH increasing from 5 to 11. This work is a comprehensive computational study involving AIMD and ab initio WFT methods to gain the coordination structures, stabilities, and electronic spectra of actinide sorption species at the mineral-water interface, thus providing important theoretical support for geological disposal of actinide waste.

2.
J Hazard Mater ; 445: 130470, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-36493644

RESUMEN

Reactive iron (Fe) mineral coatings found in subsurface reduction-oxidation transition zones (RTZs) contribute to the attenuation of contaminants. An 18.3-m anoxic core was collected from the site, where constituents of concern (COCs) in groundwater included chlorinated solvents. Reactive Fe mineral coatings were found to be abundant in the RTZs. This research focused on evaluating reaction kinetics with anoxic sediments bearing ferrous mineral nano-coatings spiked with either tetrachloroethylene (PCE), trichloroethylene (TCE), or 1,4-dichlorobenzene (1,4-DCB). Reaction kinetics with RTZ sediments followed pseudo-first-order reactions for the three contaminants with 90% degradation achieved in less than 39 days. The second-order rate constants for the three COCs ranged from 6.20 × 10-4 to 1.73 × 10-3 Lg-1h-1 with pyrite (FeS2), 4.97 × 10-5 to 1.24 × 10-3 Lg-1h-1with mackinawite (FeS), 1.25 × 10-4 to 1.89 × 10-4 Lg-1h-1 with siderite (FeCO3), and 1.79 × 10-4 to 1.10 × 10-3 Lg-1h-1 with magnetite (Fe3O4). For these three chlorinated solvents, the trend for the rate constants followed: Fe(II) sulfide minerals > magnetite > siderite. The high reactivity of Fe mineral coatings is hypothesized to be due to the large surface areas of the nano-mineral coatings. As a result, these surfaces are expected to play an important role in the attenuation of chlorinated solvents in contaminated subsurface environments.


Asunto(s)
Óxido Ferrosoférrico , Tricloroetileno , Hierro , Minerales , Oxidación-Reducción , Solventes
3.
Angew Chem Int Ed Engl ; 61(46): e202207017, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36006393

RESUMEN

The dissolution of minerals in contact with water plays a crucial role in geochemistry. However, obtaining molecular insight into interfacial chemistry is challenging. Dissolution typically involves the release of ions from the surface, giving rise to a charged mineral surface. This charge affects the interfacial water arrangement, which can be investigated by surface-specific vibrational Sum Frequency Generation (v-SFG) spectroscopy. For the fluorite-water interface, recent spectroscopic studies concluded that fluoride adsorption/desorption determines the surface charge, which contrasts zeta potential measurements assigning this role to the calcium ion. By combining v-SFG spectroscopy and flow experiments with systematically suppressed dissolution, we uncover the interplay of dominant fluoride and weak calcium adsorption/desorption, resolving the controversy in the literature. We infer the calcium contribution to be orders of magnitude smaller, emphasizing the sensitivity of our approach.

4.
iScience ; 25(8): 104691, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35856035

RESUMEN

Loess features metastable microstructure and is deemed susceptible to chemical contaminant permeation. However, studies on the loess permeability evolution under water and chemical environments are remarkably limited. In this study, the response of the loess to the water and sodium sulfate seepages was analyzed using the temporal relationship of cations concentration, X-ray diffraction and fluorescence (XRD and XRF), mercury intrusion porosimetry (MIP), and scanning electron microscope (SEM) tests. The permeability evolution characteristics were identified, and its underlying mechanisms were revealed from aspects of the diffuse double layer (DDL) theory and physiochemical actions. The discharge of Mg2+ and precipitation of calcium carbonate, referred also to as the dedolomitization, degraded the macro permeability when subjected to the water seepage test. The salt-induced swelling, induced by the intrusion of Na+ into the DDL, caused an increase in the micropore fraction under the sodium sulfate seepage test, thereby increasing the macro permeability.

5.
J Hazard Mater ; 416: 125976, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34492884

RESUMEN

The molecular-scale adsorption mechanism of heavy metal ions in the interlayer and nanopore regions of montmorillonite (MMT) were investigated by molecular dynamics simulations. Three typical heavy metals (zinc, cadmium, and lead) were selected as the model ions, and two types of MMT (Arizona and Wyoming) were considered. The results showed that Cd2+ and Pb2+ can form both inner- and outer-sphere complexes on Wyoming MMT, while Zn2+ only formed outer-sphere complex due to the stronger hydration interaction of Zn2+ than Cd2+ and Pb2+. For Arizona MMT, all of the three ions only formed outer-sphere complexes on its interlayer and external basal surface in which the cations remained a fully hydrated state. The calculated diffusion coefficients of three cations in interlayer and nanopore indicated that their diffusion abilities were significantly impaired, implying that MMT adsorbents have a strong ability to fix and retard heavy metal ions. The derived results and mechanisms are instrumental to a profound understanding of the transport and retention of heavy metal elements in subsurface environments, and provide guidance for the management of heavy metal pollution.


Asunto(s)
Metales Pesados , Nanoporos , Adsorción , Bentonita , Cadmio , Iones , Simulación de Dinámica Molecular
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 217: 263-270, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30947135

RESUMEN

Due to the supply-side reform and environmental protection in China, many small coal mines have been closed since 2015. However, acid mine drainage from these coal mines are continuously discharging into many rural creeks, which requires the systematical investigation on the variations of geochemical and environmental biological aspects in these water systems. In this study, from a classic acid mine drainage (AMD) from a closed coal mine of Hunan, China, various sediments and water samples in different sections were collected and analyzed. According to the corresponding Mineralogical and simple bacterial characteristics analysis (16S rRNA gene sequencing), the main findings were: 1) Secondary iron-containing minerals gradually transited from Gr(CO32-) (green rust), Sh (schwertmannite) to Akg (Akaganeite) and more stable Gt (Goethite); 2) compared to the pristine sediment, these minerals decreased the acid-neutralizing capacity and cation exchange capacity (CEC) of sediments; 3) Proteobacteria and Firmicutes were the dominant phyla and the obvious variation of Firmicutes species was observed in the creek affected by AMD, which probably could been a biological index to diagnose the natural attenuation of AMD. These results could be greatly significant to understand typical variations of creek attenuation and bacterial community in the presence of high metal and sulfate concentration.


Asunto(s)
Ácidos/química , Bacterias/clasificación , Sedimentos Geológicos/análisis , Minerales/análisis , Minería , Ríos/química , Contaminantes Químicos del Agua/análisis , Bacterias/genética , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , ARN Ribosómico 16S/genética
7.
Geochem Trans ; 18(1): 3, 2017 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-29086806

RESUMEN

BACKGROUND: Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite [α-Fe(OOH)]. Ab initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Several exchange correlation functionals were employed (PBE96, PBE96 + Grimme, and PBE0) in the simulations of a (3 × 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a = 30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick). RESULTS: The lowest energy goethite (100) surface termination model was determined to have an exposed surface Fe3+ that was loosely capped by a water molecule and a shared hydroxide with a neighboring surface Fe3+. The water molecules capping surface Fe3+ ions were found to be loosely bound at all DFT levels with and without Grimme corrections, indicative that each surface Fe3+ was coordinated with only five neighbors. These long bonds were supported by bond valence theory calculations, which showed that the bond valence of the surface Fe3+ was saturated and surface has a neutral charge. The polarization of the water layer adjacent to the surface was found to be small and affected only the nearest water. Analysis by density difference plots and localized Boys orbitals identified three types of water molecules: those loosely bound to the surface Fe3+, those hydrogen bonded to the surface hydroxyl, and bulk water with tetrahedral coordination. Boys orbital analysis showed that the spin down lone pair orbital of the weakly absorbed water interact more strongly with the spin up Fe3+ ion. These weakly bound surface water molecules were found to rapidly exchange with the second water layer (~0.025 exchanges/ps) using a dissociative mechanism. CONCLUSIONS: Water molecules adjacent to the surface were found to only weakly interact with the surface and as a result were readily able to exchange with the bulk water. To account for the large surface Fe-OH2 distances in the DFT calculations it was proposed that the surface Fe3+ atoms, which already have their bond valence fully satisfied with only five neighbors, are under-coordinated with respect to the bulk coordination. Graphical abstract All first principle calculations, at all practically achievable levels, for the goethite 100 aqueous interface support a long bond and weak interaction between the exposed surface Fe3+ and water molecules capping the surface. This result is supported by bond valence theory calculations and is indicative that each surface Fe3+ is coordinated with only 5 neighbors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA