Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 11531, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773173

RESUMEN

The biogeographical range shift of insect pests is primarily governed by temperature. However, the range shift of seasonal long-distance migratory insects may be very different from that of sedentary insects. Nilaparvata lugens (BPH), a serious rice pest, can only overwinter in tropical-to-subtropical regions, and some populations migrate seasonally to temperate zones with the aid of low-level jet stream air currents. This study utilized the CLIMEX model to project the overwintering area under the climate change scenarios of RCP2.6 and RCP8.5, both in 2030s and 2080s. The overwintering boundary is predicted to expand poleward and new overwintering areas are predicted in the mid-latitude regions of central-to-eastern China and mid-to-southern Australia. With climate change, the habitable areas remained similar, but suitability decreased substantially, especially in the near-equatorial regions, owing to increasing heat stress. The range shift is similar between RCP2.6-2030s, RCP2.6-2080s, and RCP8.5-2030s, but extreme changes are projected under RCP8.5-2080s with marginal areas increasing from 27.2 to 38.8% and very favorable areas dropping from 27.5 to 3.6% compared to the current climate. These findings indicate that climate change will drive range shifts in BPH and alter regional risks differently. Therefore, international monitoring programs are needed to effectively manage these emerging challenges.


Asunto(s)
Migración Animal , Cambio Climático , Hemípteros , Oryza , Animales , Oryza/parasitología , Hemípteros/fisiología , Migración Animal/fisiología , Australia , Estaciones del Año , China , Temperatura
2.
Front Physiol ; 14: 1136559, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960153

RESUMEN

Research on the ovarian development of insect pests helps provide key information for predicting pest occurrences, and currently, there is very limited information about the reproductive system of Ceracris kiangsu Tsai. This study aimed to assess the reproductive fitness of 321 adult female insects by using traditional methods to dissect female adults, measure female ovaries, and assess the process of egg formation. The phenotypic traits including body weight and body length were also measured and used to estimate the model of ovarian developmental stages. Four ovarian developmental stages before the oviposition were identified, and the fundamental ovarian structure of C. kiangsu displayed red dots on the matured eggs inside the calyx at ovarian developmental stage V. The accessory glands of C. kiangsu had the deepest folds at stage Ⅲ. Redundancy analysis (RDA) was used to explore the correlation between ovarian development, body weight, and body length. A significant positive correlation was observed for body weight (p = 0.001) and body length (p = 0.009), which varied with the grade of ovarian development evaluated by the ovarian developmental stage, ovarian length, ovarian width, and ovarian cross-sectional area. A partial least square (PLS) regression was used to model the ovarian developmental stage, with a stage-based PLS being identified as the more effective method, which was y = 1.509x 1 + 0.114x 2. The model provides a potentially rapid way to identify the population source as either "native" or "immigrant" from the phenotypic traits without dissection. The aforementioned model may be used to estimate adult emergence periods and identify migratory populations from their ovarian development, potentially aiding in implementing proper prevention measures.

3.
Environ Entomol ; 51(6): 1224-1233, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36153756

RESUMEN

Fall armyworm, Spodoptera frugiperda (J.E. Smith), is a notorious invasive pest native to subtropical and tropical regions in the Western Hemisphere. It has recently invaded and established in south Asian countries and in South Korea only seasonally. Longevity, survival, and fecundity of fall armyworm were examined at different temperatures (16, 20, 24, 28, and 32°C) and an oviposition model was developed. The maximum observed fecundity was 1,485 eggs per female at 22.0°C, which decreased to ca. 815 eggs at 32.0°C. Female longevity decreased as the temperature increased up to 24°C, and then was constant around 13-14 d until temperature reached 32°C, ranging from 33.1 d at 16.0°C to 13.1 d at 32.0°C. Temperature-dependent total fecundity (TDF) was well described by the extreme value function. Age-specific cumulative oviposition rate (AOR) and age-specific survival rate (ASR) curves were fitted to logistic and sigmoid functions, respectively. The model of female adults' aging rate (1/mean longevity) as a function of temperature was used to calculate the physiological age of fall armyworm females in AOR and ASR models. Three temperature-dependent components of TDF, AOR, and ASR were incorporated to construct the oviposition model, and it was simulated to project corn damage with tentative parameters. When 10 fall armyworm females were assumed, a total of 68-74 corn ears with kernel damage were predicted. Such loss was estimated to be US$75-83 currently in the Korean market.


Asunto(s)
Mariposas Nocturnas , Oviposición , Animales , Femenino , Fertilidad/fisiología , Mariposas Nocturnas/fisiología , Oviposición/fisiología , Temperatura , Zea mays
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA