RESUMEN
Microplastics, considered emerging environmental contaminants resulting from plastic degradation, are discovered in diverse aquatic ecosystems and can be unintentionally ingested by fish. Therefore, it is essential to characterize their interaction with other contaminants, such as agrochemicals, in aquatic environments. This study aimed to assess histological, enzymatic, and genotoxic biomarkers in juvenile pacú (Piaractus mesopotamicus) exposed to polyethylene (PE) microplastic particles and the herbicide atrazine, individually or combined, for 15 days. Four treatments were used: a negative control (CON), PE in the fish diet (0.1% w/w, FPE), atrazine through water (100 µg L-1, ATZ), and the mixture (ATZ+FPE). Results confirmed histological alterations in gills (edema and lamellar fusion) and liver (necrotic areas and congestion) of fish exposed to ATZ and ATZ+FPE. The number of goblet cells increased in the posterior intestine of fish under ATZ+FPE compared to CON and FPE. Enzyme activities (CAT, GST, AChE, and BChE) significantly increased in ATZ+FPE compared to CON. However, no genotoxic effect was demonstrated. These findings provide insights into the complex impacts of simultaneous exposure to atrazine and microplastics, emphasizing the need for continued research to guide effective environmental management strategies against these contaminants that represent a risk to aquatic organisms.
Asunto(s)
Atrazina , Microplásticos , Contaminantes Químicos del Agua , Atrazina/toxicidad , Microplásticos/toxicidad , Animales , Contaminantes Químicos del Agua/toxicidad , Branquias/efectos de los fármacosRESUMEN
The main aimed of this study was to provide information on microplastics present in the freshwater of fish farm ponds. In addition, the study showes a relationship between the seasonal, spatial distribution and the amount of microplastics found. This study was conducted in 35 fish farms located in the Rondônia state, Brazil, the sample collects were carried out in the two Amazonian hydrological seasons (dry and rainy). The study was developed in a completely randomized factorial scheme 35 × 3 x 3 (35 fish farms, 3 ponds and 3 repetitions per ponds). Microplastic sampling was performed following a modified method based on National Oceanic and Atmospheric Administration (NOAA). Samples of 250 mL freshwater collected, which were deionized and pre-filtered through 6.0 mm mesh granulometric sieves. The average abundances of the different hydrological seasons were compared by Student's t-test, with differences statistically significant at p < 0.05. The microplastics were morphological categorized into fibers and colors blue, red or transparent. Microplastic contamination was confirmed in freshwater of 9 fish farming, with greater abundance of blue fibers and greater quantification in the rainy season. Fish farms P3, P4 and P6 had the highest quantifications of blue fiber in the two seasons (6 and 43, 19 and 56, 11 and 88 items mL-1, respectively). Almost all fish farms had a higher abundance of microplastics in the rainy season. It is important to highlight the prominence of microplastics in the blue fiber rainy season (286 items mL-1) compared to the dry season (58 items mL-1). Fish farms P3, P4 and P6 showed a strong positive correlation between the factors distance from the nearest urban area (r = 0.94, 0.79 and 0.97, respectively) and seasonality (r = 0.98, 0.77 and 0.96, respectively). Rainfall variations influenced the abundance of microplastics, especially of blue fibers. Fish farms are supplied with fresh water by rivers or streams, so it is possible that microplastics originate outside the fish farm, perhaps they were introduced due to high soil occupation, although surface runoff (of water contaminated by sewage) caused by heavy rains the most important factor. Therefore, one factor must be considered, surface runoff and groundwater contaminated by urban, agricultural and urban effluents may have contaminated rivers and streams and then contaminated the water in the fish farm ponds.
RESUMEN
With the objective of characterizing the composition and spatial distribution of plastic fragments in a subtropical lagoon system, five sample areas affected by various anthropogenic impacts were chosen in the southern part of the Estuarine Lagoon System in Laguna, Santa Catarina, Brazil. The total density of the floating meso- and microplastics encountered was 7.32/m3, with the greatest density in the access channel and external area of the lagoon. Plastic filament was the most abundant and mainly comprised polyester (PET), polypropylene (PP) and polyethylene (PE) from 0.05 to 0.71 mm2. Fishing and urbanization were the main sources of the meso- and microplastics in the environment. This is the first study to evaluate contamination by meso- and microplastics in the southern part of the Estuarine Lagoon System and provides information about the nature and extent of contamination by plastics in this estuarine ecosystem.
Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , Microplásticos , Contaminantes Químicos del Agua/análisisRESUMEN
The ubiquitous presence of microplastics in the aquatic environment has raised concern about their potential impacts on and risks to the biota. While the presence of microplastics in a marine environment has been well studied, the impact of microplastic contamination in freshwater bodies is understudied. In the present study, baseline data about contamination with microplastics in Lake Guaíba in southern Brazil are presented. The abundance, distribution, and composition of microplastics in the surface of this freshwater body were investigated, and these parameters were correlated with population density, land occupation, wind, and geohydrologic processes. The samples were collected with a manta net (60 µm mesh size). Microplastics were found in all the samples, with an average of 11.9 ± 0.6 to 61.2 ± 6.1 items m-3, which indicates the widespread contamination of the lake with plastic particles. The most frequent microplastic morphology was the fragment type in the size range of 100 to 250 µm, and the predominant colours were white/transparent and red. Measurement uncertainty of the visual microplastic counts showed that black colour microplastics is more susceptible to be mistaken, which might lead to an underestimation and/or overestimation of the total number of microplastics. Polypropylene and polyethylene together comprised most of the polymer types (98%). Micro-Fourier transform infrared (micro-FTIR) spectroscopy analyses showed that 58% of the analysed polymers were highly oxidised, indicating long residence of this particles in the water. In addition, our data show that the distribution of microplastics is strongly influenced by the geohydrological characteristics of the lake. Therefore, this research may provide information for further investigations of microplastic distribution in Lake Guaíba and can serve as a base to improve the regulations regarding waste management to effectively reduce microplastic pollution in freshwater systems. Additionally, the measurement uncertainty showed that black microplastics are more susceptible to variations in their measurements.
RESUMEN
Tourism is an important socioeconomic activity in coastal communities, which deteriorates marine-coastal ecosystem quality when poorly managed, increasing litter pollution on beaches during the main tourist seasons. This study aims to assess the tourism impact on litter pollution on eleven Santa Marta beaches, Colombian Caribbean. During high and low tourist seasons, people on the beaches were counted, macrolitter and microplastics were sampled, and perception surveys about litter on beaches were conducted. During the high tourist season, the number of people and macrolitter pollution increased, compared to the low tourist season. Plastics accounted for 30%-77% of macrolitter and microplastics ranged from 1 to 355 items/m2. Respondents identified tourism as a main litter source and plastics as the most common litter type. All assessed beaches are impacted by tourism causing litter pollution, therefore, stronger controls, educational, and awareness strategies are needed to reduce litter pollution and prevent ecological and socioeconomic impacts.
Asunto(s)
Monitoreo del Ambiente , Plásticos , Playas , Región del Caribe , Colombia , Ecosistema , Humanos , Residuos/análisisRESUMEN
The gut contents of 292 planktivorous fish, from four families (Atherinopsidae, Clupeidae, Engraulidae and Scombridae) and seven species, captured along the coast of the southeast Pacific, were examined for microplastic contamination. Only a small fraction of all studied fish (2.1%; 6 individuals) contained microplastic particles in their digestive tract. Microplastics found were degraded hard fragments and threads, ranging from 1.1 to 4.9 (3.8±SD 2.4) mm in length, and of various colours, which suggests that the planktivorous fish species examined herein did not capture microplastics on the basis of their colour. The low prevalence of microplastic contamination in planktivorous fishes found in this study suggests that the risk of accidental ingestion by these species might be limited in the coastal upwelled waters of the southeast Pacific, perhaps due to small human population and highly dynamic oceanographic processes.