Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Comput Methods Programs Biomed ; 189: 105319, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31951872

RESUMEN

BACKGROUND AND OBJECTIVE: The use of modelling techniques that combine CT data and bone tissue micromechanics is spreading in computational biomechanics. Finite Element models show great potential in surgical planning of intervention and in prediction of stress and strain fields through a non-invasive method. The main challenge pertains to the reliable characterization of bone mechanical behaviour. An almost automatic procedure is here defined, which provides computational models of bony structures considering the actual anisotropy of bone tissue response. The innovative aspect resides on the automatic detection of the directions of anisotropy as the eigenvectors of a three-dimensional distribution matrix of HU values. METHODS: The procedure combines CT data and micromechanics modelling techniques. Regarding a specific location, the procedure reports both the orthotropic elastic constants, by the analysis of the local HU value, and the anisotropic material directions, by the analysis of the HU values distribution around the specific location. RESULTS: The procedure returns the distribution of bone tissue orthotropic elasticity tensor. The procedure proves to correctly respect the differentiation between cortical and trabecular bone. Principal directions show to be consistent with experimental data from ultrasound measurements. Regarding the material mapping from voxel to FE model, the developed strategies show to be reliable, leading to marginal errors (lower than 10%) for most of CT voxels (more than 90%). The computational analyses of typical structural loading conditions lead to strain values that are comparable with results from strain gauges experimentations. The development and the exploitation of FE models of different bony structures allow assessing the reliability of the procedure for cortical bone. CONCLUSIONS: The results highlight the potentialities of the procedure in providing accurate patient-specific biomechanical models of bony structures starting from CT data. The accuracy and the automatism of the procedure are important factors for the development of real time clinical tools. The main limitations of this work remain the not fully automatism and the reliability assessment, which is based mainly on cortical bone regions only.


Asunto(s)
Anisotropía , Fenómenos Biomecánicos/fisiología , Huesos/diagnóstico por imagen , Huesos/fisiología , Simulación por Computador , Tomografía Computarizada por Rayos X , Humanos
2.
Materials (Basel) ; 10(10)2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-29027926

RESUMEN

Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance.

3.
Philos Trans A Math Phys Eng Sci ; 375(2085)2017 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-27956504

RESUMEN

Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 103 to 104 s-1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual-Forquin-Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA