Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202415044, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39313948

RESUMEN

Electrocatalytic oxidation of C-H bonds in hydrocarbons represents an efficient and sustainable strategy for the synthesis of value-added chemicals. Herein, a highly selective and continuous-flow electrochemical oxidation process of toluene to various oxygenated products (benzyl alcohol, benzaldehyde, and benzyl acetate) is developed with the electrocatalytic membrane electrodes (ECMEs). The selectivity of target products can be manipulated via surface and interface engineering of Co3O4-based electrocatalysts. We achieved a high benzaldehyde selectivity of 90% at a toluene conversion of 47.6% using 1D-Co3O4 nanoneedles (NNs) loaded on a microfiltration (MF) titanium (Ti) membrane, i.e, Co3O4 NNs/Ti. In contrast, the main product shifted to benzyl alcohol with a selectivity of 90.1% at conversion of 32.1% after modifying MnO2 nanosheets (NSs) on Co3O4 NNs/Ti (Co3O4@MnO2/Ti) catalyst. Moreover, benzyl acetate product can be obtained with selectivity of 92% at a conversion of 58.5% at high current density (> 1.5mA cm-2), demonstrating that the pathway of toluene oxidation is readily maneuvered. DFT results reveal that modifying MnO2 on Co3O4 optimizes the electron structure of Co3O4@MnO2/Ti and modulates the adsorption behavior of intermediate species. This work demonstrates a sustainable, and continuous-flow process for precise control over production selectivity of value-added oxygenated derivatives in electrochemical oxidation of aromatic hydrocarbons.

2.
Environ Technol ; : 1-12, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955495

RESUMEN

A novel modification technique employing a layer-by-layer (LbL) self-assembly method, integrated with a pressure-assisted filtration system, was developed for enhancing a commercial polyethersulfone (PES) microfiltration (MF) membrane. This modification involved the incorporation of tannic acid (TA) in conjunction with graphene oxide (GO) nanosheets. The effectiveness of the LbL method was confirmed through comprehensive characterization analyses, including ATR-FTIR, SEM, water contact angle (WCA), and mean pore size measurements, comparing the modified membrane with the original commercial one. Sixteen variations of PES MF membranes were superficially modified using a three-factorial design, with the deposited amount of TA and GO as key factors. The influence of these factors on the morphology and performance of the membranes was systematically investigated, focusing on parameters such as pure water permeability (PWP), blue corazol (BC) dye removal efficiency, and flux recovery rate (FRR). The membranes produced with the maximum amount of GO (0.1 mg, 0.55 wt%) and TA as the inner and outer layers demonstrated remarkable FRR and significant BC removal, exceeding 80%. Notably, there was no significant difference observed when using either 0.2 (1.11 wt%) or 0.4 mg (2.22 wt%) in the first layer, as indicated by the Tukey mean test. Furthermore, the modified membrane designated as MF/TA0.4GO0.1TA0.4 was evaluated in the filtration of a simulated dye bath wastewater, exhibiting a BC removal efficiency of 49.20% and a salt removal efficiency of 27.74%. In conclusion, the novel PES MF membrane modification proposed in this study effectively enhances the key properties of pressure-driven separation processes.

3.
Glob Chall ; 8(3): 2300198, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38486926

RESUMEN

In this work, bismuth tungstate Bi2WO6 is immobilized on polymer membranes to photocatalytically remove micropollutants from water as an alternative to titanium dioxide TiO2. A synthesis method for Bi2WO6 preparation and its immobilization on a polymer membrane is developed. Bi2WO6 is characterized using X-ray diffraction and UV-vis reflectance spectroscopy, while the membrane undergoes analysis through scanning electron microscopy, X-ray photoelectron spectroscopy, and degradation experiments. The density of states calculations for TiO2 and Bi2WO6, along with PVDF reactions with potential reactive species, are investigated by density functional theory. The generation of hydroxyl radicals OH• is investigated via the reaction of coumarin to umbelliferone via fluorescence probe detection and electron paramagnetic resonance. Increasing reactant concentration enhances Bi2WO6 crystallinity. Under UV light at pH 7 and 11, the Bi2WO6 membrane completely degrades propranolol in 3 and 1 h, respectively, remaining stable and reusable for over 10 cycles (30 h). Active under visible light with a bandgap of 2.91 eV, the Bi2WO6 membrane demonstrates superior stability compared to a TiO2 membrane during a 7-day exposure to UV light as Bi2WO6 does not generate OH• radicals. The Bi2WO6 membrane is an alternative for water pollutant degradation due to its visible light activity and long-term stability.

4.
Molecules ; 29(5)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38474513

RESUMEN

The fouling of separation membranes has consistently been a primary factor contributing to the decline in membrane performance. Enhancing the surface hydrophilicity of the membrane proves to be an effective strategy in mitigating membrane fouling in water treatment processes. Zwitterionic polymers (containing an equimolar number of homogeneously distributed anionic and cationic groups on the polymer chains) have been used extensively as one of the best antifouling materials for surface modification. The conventional application of zwitterionic compounds as surface modifiers is intricate and inefficient, adding complexity and length to the membrane preparation process, particularly on an industrial scale. To overcome these limitations, zwitterionic polymer, directly used as a main material, is an effective method. In this work, a novel zwitterionic polymer (TB)-zwitterionic Tröger's base (ZTB)-was synthesized by quaternizing Tröger's base (TB) with 1,3-propane sultone. The obtained ZTB is blended with TB to fabricate microfiltration (MF) membranes via the vapor-induced phase separation (VIPS) process, offering a strategic solution for separating emulsified oily wastewater. Atomic force microscopy (AFM), scanning electron microscopy (SEM), water contact angle, and zeta potential measurements were employed to characterize the surface of ZTB/TB blended membranes, assessing surface morphology, charge, and hydrophilic/hydrophobic properties. The impact of varying ZTB levels on membrane surface morphology, hydrophilicity, water flux, and rejection were investigated. The results showed that an increase in ZTB content improved hydrophilicity and surface roughness, consequently enhancing water permeability. Due to the attraction of water vapor, the enrichment of zwitterionic segments was enriched, and a stable hydration layer was formed on the membrane surface. The hydration layer formed by zwitterions endowed the membrane with good antifouling properties. The proposed mechanism elucidates the membrane's proficiency in demulsification and the reduction in irreversible fouling through the synergistic regulation of surface charge and hydrophilicity, facilitated by electrostatic repulsion and the formation of a hydration layer. The ZTB/TB blended membranes demonstrated superior efficiency in oil-water separation, achieving a maximum flux of 1897.63 LMH bar-1 and an oil rejection rate as high as 99% in the oil-water emulsion separation process. This study reveals the migration behavior of the zwitterionic polymer in the membrane during the VIPS process. It enhances our comprehension of the antifouling mechanism of zwitterionic membranes and provides guidance for designing novel materials for antifouling membranes.

5.
Environ Res ; 244: 117837, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38065381

RESUMEN

This study investigated the removal performance of ofloxacin (OFL) by a novel electro-Fenton enhanced microfiltration membrane. The membranes used in this study consisted of metal-organic framework derived porous carbon, carbon nanotubes and Fe2+, which were able to produce hydroxyl radicals (•OH) in-situ via reducing O2 to hydrogen peroxide. Herein, membrane filtration with bias not only concentrated the pollutants to the level that could be efficiently treated by electro-Fenton but also confined/retained the toxic intermediates within the membrane to ensure a prolonged contact time with the oxidants. After validated by experiments, the applied bias of -1.0 V, pH of 3 and electrolyte concentration of 0.1 M were the relatively optimum conditions for OFL degradation. Under these conditions, the average OFL removal rate could be reach 75% with merely 5% membrane flux loss after 4 cycles operation by filtrating 1 mg/L OFL. Via decarboxylation reaction, piperazinyl ring opening, dealkylation and ipso substitution reaction, etc., OFL could be gradually and efficiently degraded to intermediate products and even to CO2 by •OH. Moreover, the oxidation reaction was preferred to following first-order reaction kinetics. This research verified a possibility for antibiotic removal by electro-enhanced microfiltration membrane.


Asunto(s)
Nanotubos de Carbono , Contaminantes Químicos del Agua , Ofloxacino , Porosidad , Antibacterianos , Oxidantes , Peróxido de Hidrógeno , Oxidación-Reducción
6.
Environ Sci Pollut Res Int ; 30(40): 92027-92041, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37480529

RESUMEN

Membrane-based separation technology has attracted enormous attention for oil/water emulsion treatment. Here, composite microfiltration carbon membranes (MCMs) were prepared from the precursor of phenolic resin doping with TiO2 and Fe2O3 via the processes of stereotype and pyrolysis. The functional groups, thermal stability, porous structure, microstructure, morphology, and hydrophilicity of the membrane samples were analyzed by Fourier-transform infrared spectroscopy, thermogravimetric analysis, bubble pressure method, X-ray diffraction, scanning electron microscope, and water contact angle, respectively. The effect of dopant amount on the separation performance of MCMs was investigated. The results show that a mixed matrix system is constructed by TiO2 and Fe2O3 in MCMs, which is beneficial for further optimizing the pore size, porosity, and hydrophilicity of MCMs for oily wastewater treatment by varying the dopant amount. The maximum oil rejections are achieved at 98.9% and 99.6% for MCMs with a dopant content of TiO2 and Fe2O3 at 25%, respectively. In brief, this study offers an attractive strategy for improving the separation performance of MCMs for oily wastewater.


Asunto(s)
Carbono , Pirólisis , Emulsiones , Porosidad
7.
Front Microbiol ; 14: 1166907, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37303803

RESUMEN

Strong alkali alkali-surfactant-polymer (ASP) flooding produced water is a by-product of oil recovery, and it is a stable system composed of petroleum, polyacrylamide, surfactant, and inorganic salts. Efficient, green, and safe ASP produced water treatment technology is essential for oilfield exploitation and environmental protection. In this study, an anaerobic/anoxic/moving bed biofilm reactor with a microfiltration membrane was established and assessed for the real strong alkali ASP flooding produced water (pH 10.1-10.4) treatment. The results show that the average removal rates of COD, petroleum, suspended solids, polymers and surfactants in this process are 57, 99, 66, 40, and 44%, respectively. GC-MS results show that most of the organic compounds such as alkanes and olefins in the strong alkali ASP produced water are degraded. Microfiltration membrane can significantly improve the efficiency and stability of sewage treatment system. Paracoccus (AN), Synergistaceae (ANO) and Trichococcus (MBBR) are the main microorganisms involved in the degradation of pollutants. This study reveals the potential and adaptability of composite biofilm system in treating the produced water of strong alkali ASP produced water.

8.
Water Res ; 218: 118469, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35462262

RESUMEN

Because of their low-cost and high bacterial interception efficiency, large-scale membrane separation technologies like microfiltration (MF) have been widely implemented for water disinfection. However, lack of antibacterial ability and low sustainability are two major drawbacks of most petroleum-based MF membranes, which are normally associated with hazardous issues including biofouling and nonbiodegradable waste. In this work, abundant animal hides, which are by-products of the meat processing industry, were proposed as raw materials to fabricate a sustainable MF membrane due to their natural, hierarchical, and renewable collagen fibrous network (CFN) with inherent biodegradability. After the removal of non-collagen compositions from animal hides, such as hair and fat, through a facile pretreating process base on green chemistry principles, a thin CFN based membrane (CFN-M) with a similar micropore size to that of commercial MF membranes could be produced. Furthermore, inspired by conventional leather tanning technology, tannic acids (TA) were selected as plant polyphenol tanning agent to modify collagen fibers based on tanning chemistry to improve the thermal stability of CFN-M. Moreover, the TA cross-linked CFN-M (TA@CFN-M) exhibited excellent antibacterial properties due to the production of reactive oxygen species (ROS) by the catechol functional group. The resulting TA@CFN-M achieved >99.9% water disinfection efficiency with a flux of ∼150 L m-2 h-1 via gravity-driven operation, while simultaneously showing admirable anti-biofouling ability. Different from the commercial MF membrane, based on the green chemistry principle, this work may shed light on designing new sustainable and antibacterial membranes for anti-biofouling water disinfection.


Asunto(s)
Desinfección , Agua , Animales , Antibacterianos/farmacología , Colágeno , Membranas Artificiales , Polifenoles , Taninos
9.
Membranes (Basel) ; 12(2)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35207025

RESUMEN

TiAl-based porous microfiltration membranes are expected to be the next-generation filtration materials for potential applications in high-temperature flue gas separation in corrosive environments. Unfortunately, the insufficient high-temperature oxidation resistance severely limits their industrial applications. To tackle this issue, a Ti-40Al-10Nb-10Cr porous alloy was fabricated for highly effective high-temperature flue gas purification. Benefited from microstructural changes and the formation of two new phases, the Ti-40Al-10Nb-10Cr porous alloy demonstrated favorable high-temperature anti-oxidation performance with the incorporation of Nb and Cr high-temperature alloying elements. By the separation of a simulated high-temperature flue gas, we achieved an ultra-high PM-removal efficiency (62.242% for PM<2.5 and 98.563% for PM>2.5). These features, combined with our experimental design strategy, provide a new insight into designing high-temperature TiAl-based porous materials with enhanced performance and durability.

10.
Polymers (Basel) ; 14(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35215745

RESUMEN

With the aim of exploring new materials and properties, we report the synthesis of a thermoplastic chain extended polyurethane membrane, with superior strength and toughness, obtained by incorporating two different concentrations of reactive cellulose nanocrystals (CNC) for potential use in kidney dialysis. Membrane nanocomposites were prepared by the phase inversion method and their structure and properties were determined. These materials were prepared from a polyurethane (PU) yielded from poly(1,4 butylene adipate) as a soft segment diol, isophorone diisocyanate (IPDI) and hexamethylenediamine (HMDA) as isocyanate and chain extender, respectively (hard segment), filled with 1 or 2% w/w CNC. Membrane preparation was made by the phase inversion method using N,N-dimethylformamide as solvent and water as nonsolvent, and subjected to dead-end microfiltration. Membranes were evaluated by their pure water flux, water content, hydraulic resistance and protein rejection. Polymers and nanocomposites were characterized by scanning electronic and optical microscopy, differential scanning calorimetry, infrared spectroscopy, strain stress testing and 13C solid state nuclear magnetic resonance. The most remarkable effects observed by the addition of CNCs are (i) a substantial increment in Young's modulus to twenty-two times compared with the neat PU and (ii) a marked increase in pure water flux up to sixty times, for sample containing 1% (w/w) of CNC. We found that nanofiller has a strong affinity to soft segment diol, which crystallizes in the presence of CNCs, developing both superior mechanical and pure water flow properties, compared to neat PU. The presence of nanofiller also modifies PU intermolecular interactions and consequently the nature of membrane pores.

11.
Chemosphere ; 287(Pt 3): 132260, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34543907

RESUMEN

Cementitious membrane (CM) is a promising microfiltration membrane with low cost for raw materials and low energy consumption of non-sintering fabrication process. A novel carbon-cementitious microfiltration membrane (CCM) was fabricated with powdered activated carbon (PAC) as an additive based on CM, to solve the low mechanical strength of CM during multiple practical uses. While maintaining adequate pure water flux and porosity, the mechanical strength of the membrane was greatly improved to ensure the stability of the membrane in the filtration process. The bending strength of the CCM was 2-3 times higher than that of CM. 10 wt% CCM has the smallest critical pore size and optimal permeability, which was chosen to be the optimal PAC doping ratio. The X-ray diffraction and FT-IR results indicated that the addition of PAC did not change the mineral composition of cement hydration products, and the appropriate amount of PAC acted as a nucleation site and accelerated hydration. The effect of size effect on bending strength was more obvious with the decrease of membrane thickness. In the membrane adsorption experiments of benzophenone-4, nitrobenzene and p-chloronitrobenzene, the CCM exhibited prominent adsorption properties than CM. These results broaden the application scope of microfiltration membranes in water treatment process.


Asunto(s)
Carbón Orgánico , Purificación del Agua , Adsorción , Membranas Artificiales , Polvos , Espectroscopía Infrarroja por Transformada de Fourier
12.
Sci Total Environ ; 816: 151524, 2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-34752873

RESUMEN

Hydraulic fracturing wastewater (HFW), a byproduct of hydraulic fracturing oil extraction, contains a complex mixture of oil, aldehydes, and benzene compounds. Efficient and eco-friendly HFW treatment means are critical for the oil extraction industry, particularly in developing countries. In this study, two biological processes namely an anaerobic/anoxic/moving bed biofilm reactor (A2-MBBR) and an A2-MBBR with a microfiltration membrane (A2-MFMBBR) were established, and assessed for the real HFW treatment. Removal efficiencies of chemical oxygen demand (COD) and NH4+-N were over 92% and 95%, respectively, in both processes with a hydraulic retention time of 72 h. The majority of organic compounds in both systems identified by GC-MS were degraded in the anaerobic units. In comparison, A2-MFMBBR demonstrated higher removal efficiencies for oil, total suspended solids, and complex compounds. The average relative abundances of refractory compound degrading bacteria were 43.4% and 51.6% in the A2-MBBR and A2-MFMBBR, respectively, which was consistent with the COD and oil removal, and suggested that the MBR could maintain a high diversity of microorganisms and contribute to deep recalcitrant organics degradation. This study sheds light on the potential of using a compact biological process for the real HFW treatment.


Asunto(s)
Fracking Hidráulico , Purificación del Agua , Biopelículas , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Eliminación de Residuos Líquidos , Aguas Residuales
13.
Membranes (Basel) ; 11(8)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34436364

RESUMEN

In this study, powdered activated carbon (PAC) was added to replace the silica in a cementitious microfiltration membrane (CM) to solve the problems of the low mechanical strength and short lifetime of CMs. The carbon-cementitious microfiltration membrane (CCM) was fabricated by the dry pressing method and cured at room temperature. The bending strength of CCM was 12.69 MPa, which was about three times more than that of CM. The average pore size was 0.129 µm, and was reduced by about 80% compared to that of CM. The addition of PAC did not reduce the degradation efficiency of membrane catalytic ozonation. Because of the strong alkaline buffering ability of CCM, the CCM-ozone coupling process could eliminate the effect of the pH value of the solution. The strong alkaline environment inside the membrane pores effectively accelerated the ozone decomposition and produced oxidizing radicals, which accelerated the reaction rate and improved the utilization rate of ozone. The CCM-catalytic ozonation reaction of organic compounds occurred within the pores and membrane surface, resulting in the pH of the solution belonging to the neutral range. The addition of PAC accelerated the mass transfer and made the pollutants and oxidant react in the membrane pores and on the membrane surface. The reuse experiments of the CCM-ozone coupling process for removing nitrobenzene demonstrated that CCM has good catalytic activity and reuse stability. It broadens the application scope of CCM in the field of drinking water and provides theoretical support for the practical application of CCM.

14.
Membranes (Basel) ; 11(7)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34357182

RESUMEN

In this study, a low-cost cementitious microfiltration membrane (CM) with a catalytic ozone oxidation function for the removal of organic pollutants was fabricated by using cementitious and C-10 µm silica powders at a certain silica-cementitious particle ratio (s/c). The effect of the s/c on the pore size distribution and mechanical strength of the membrane was investigated. The membrane pore size showed a bimodal distribution, and the higher the s/c, the closer the second peak was to the accumulated average particle size of silica. The increase in the s/c led to a decrease in the bending strength of the membrane. The cross-sectional morphology by SEM and crystal structure by XRD of CMs confirmed that a calcium silicate hydrate gel was generated around the silica powder to improve the mechanical strength of the CM. Considering the bending strength and pore size distribution of CMs, s/c = 0.5 was selected as the optimal membrane fabrication condition. The FT-IR results characterizing the surface functional groups of CMs were rich in surface hydroxyl groups with the ability to catalyze ozone oxidation for organic pollutant removal. Six small molecule organic pollutants were selected as model compounds for the efficiency experiments via a CM-ozone coupling process to prove the catalytic property of the CM. The CM has an alkaline buffering effect and can stabilize the initial pH of the solution in the catalytic ozonation process. The reuse experiments of the CM-ozone coupling process demonstrated the broad spectrum of the CM catalytic performance and self-cleaning properties. The results of this study provide the basis and experimental support to expand the practical application of CMs.

15.
Microb Cell Fact ; 20(1): 145, 2021 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-34303376

RESUMEN

BACKGROUND: trans-cinnamic acid (t-CA) is a phenylpropanoid with a broad spectrum of biological activities including antioxidant and antibacterial activities, and it also has high potential in food and cosmetic applications. Although significant progress has been made in the production of t-CA using microorganisms, its relatively low product titers still need to be improved. In this study, we engineered Corynebacterium glutamicum as a whole-cell catalyst for the bioconversion of L-phenylalanine (L-Phe) into t-CA and developed a repeated bioconversion process. RESULTS: An expression module based on a phenylalanine ammonia lyase-encoding gene from Streptomyces maritimus (SmPAL), which mediates the conversion of L-Phe into t-CA, was constructed in C. glutamicum. Using the strong promoter PH36 and ribosome binding site (RBS) (in front of gene 10 of the T7 phage), and a high-copy number plasmid, SmPAL could be expressed to levels as high as 39.1% of the total proteins in C. glutamicum. Next, to improve t-CA production at an industrial scale, reaction conditions including temperature and pH were optimized; t-CA production reached up to 6.7 mM/h in a bioreactor under optimal conditions (50 °C and pH 8.5, using NaOH as base solution). Finally, a recycling system was developed by coupling membrane filtration with the bioreactor, and the engineered C. glutamicum successfully produced 13.7 mM of t-CA (24.3 g) from 18.2 mM of L-Phe (36 g) and thus with a yield of 75% (0.75 mol/mol) through repetitive supplementation. CONCLUSIONS: We developed a highly efficient bioconversion process using C. glutamicum as a biocatalyst and a micromembrane-based cell recycling system. To the best of our knowledge, this is the first report on t-CA production in C. glutamicum, and this robust platform will contribute to the development of an industrially relevant platform for the production of t-CA using microorganisms.


Asunto(s)
Cinamatos/metabolismo , Corynebacterium glutamicum/metabolismo , Ingeniería Metabólica/métodos , Fenilalanina/metabolismo , Biocatálisis , Reactores Biológicos , Cinamatos/análisis , Corynebacterium glutamicum/genética , Fermentación , Concentración de Iones de Hidrógeno , Fenilanina Amoníaco-Liasa/genética , Streptomyces/enzimología , Streptomyces/genética
16.
J Hazard Mater ; 402: 123501, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-32712354

RESUMEN

A membrane bioreactor (MBR) integrates process such as membrane filtration and biological treatment of activated sludge. However, organic, inorganic and biological matters cause membrane fouling, which seriously affects membrane performance. The goal of this study was to evaluate the biofouling inhibition capacity of raffinose during the MBR process. The results showed that 0-1,000 µM raffinose significantly reduced the formation of the P. aeruginosa and S. aureus co-culture biofilm by about 25-52 % in a concentration-dependent manner. In addition, the effect of raffinose on the microfiltration membrane biofilm was tested in a flow reactor and lab-scale MBR unit. The results showed that the co-culture biofilm and transmembrane pressure were decreased by raffinose treatment compared to those by furanone C-30 treatment. These results clearly demonstrated that raffinose, broad-spectrum biofilm inhibitor, inhibits biofilm formation in mixed cultures and could be used to mitigate biofouling in MBR processes.


Asunto(s)
Incrustaciones Biológicas , Staphylococcus aureus , Biopelículas , Incrustaciones Biológicas/prevención & control , Reactores Biológicos , Técnicas de Cocultivo , Galactósidos , Membranas Artificiales , Rafinosa , Aguas del Alcantarillado
17.
Materials (Basel) ; 13(21)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33172217

RESUMEN

Surface modification on microporous polyethylene (PE) membranes was facilitated by plasma polymerizing with two hydrophilic precursors: ethylene oxide vinyl ether (EO1V) and diethylene oxide vinyl ether (EO2V) to effectively improve the fouling against mammalian cells (Chinese hamster ovary, CHO cells) and proteins (bovine serum albumin, BSA). The plasma polymerization procedure incorporated uniform and pin-hole free ethylene oxide-containing moieties on the filtration membrane in a dry single-step process. The successful deposition of the plasma polymers was verified by Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) analyses. Water contact angle measurements and permeation experiments using cell and protein solutions were conducted to evaluate the change in hydrophilicity and fouling resistance for filtrating biomolecules. The EO1V and EO2V plasma deposited PE membranes showed about 1.45 fold higher filtration performance than the pristine membrane. Moreover, the flux recovery reached 80% and 90% by using deionized (DI) water and sodium hydroxide (NaOH) solution, indicating the efficacy of the modification and the good reusability of the modified PE membranes.

18.
Membranes (Basel) ; 10(1)2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31947785

RESUMEN

A series of microfiltration membranes were fabricated by the extraction of polyisobutylene (PIB) from its immiscible blends with polymethylpentene (PMP). Three PIB with different molecular weight of 7.5 × 104 (Oppanol B15), 34 × 104 (Oppanol B50) and 110 × 104 (Oppanol B100) g/mol, respectively, were used to evaluate the effect of molecular weight on the porous structure and transport properties of resulting PMP-based membranes. To mimic the conditions of 3D printing, the flat-sheet membranes were fabricated by means of melting of mixtures of various PMP and PIB concentrations through the hot rolls at 240 ∘ C followed by a quick cooling. The rheology study of individual components and blends at 240 ∘ C revealed that PIB B50 possessed the most close flow curve to the pure PMP, and their blends demonstrated the lowest viscosity comparing to the compositions made of PIB with other molecular weights (B15 or B100). SEM images of the cross-section PMP membranes after PIB extraction (PMP/PIB = 55/45) showed that the use of PIB B50 allowed obtaining the sponge-like porous structure, whereas the slit-shaped pores were found in the case of PIB B15 and PIB B100. Additionally, PMP/B50 blends demonstrated the optimum combinations of mechanical properties (str = 9.1 MPa, E = 0.20 GPa), adhesion to steel (adh = 0.8 kPa) and retention performance (R240 nm = 99%, R38 nm = 39%). The resulting membranes were non- or low-permeable for water if the concentration of PIB B50 in the initial blends was 40 wt.% or lower. The optimal filtration performance was observed in the case of PMP/B50 blends with a ratio of 55/45 (Pwater = 1.9 kg/m2hbar, R240 nm = 99%, R38 nm = 39%) and 50/50 (Pwater = 1100 kg/m2hbar, R240 nm = 91%, R38 nm = 36%).

19.
Molecules ; 24(12)2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31242707

RESUMEN

For the first time, a nanosilver-coated hollow fiber microfiltration (MF) was fabricated by a simple chemical reduction method, then tested for membrane biofouling mitigation study under extreme high mixed liquor suspended solid (MLSS) concentration for long term. This study presents a simple and novel technique to modify a commercially available MF membrane using silver nanoparticles (AgNPs) followed by an investigation of mitigating membrane biofouling potentials using this modified membrane to compare with an unmodified membrane for 60-day operation period. The modified membranes showed that AgNPs was attached to the MF-membrane successfully with a high density of 119.85 ± 5.42 mg/m2. After long-term testing of 60 days in membrane bioreactor with a MLSS concentration of 11,000 mg/L, specific flux of the AgNPs coated MF (AgNPs-MF) decreased 59.7%, while the specific flux of the unmodified membrane dropped 81.8%, resulted from the increase of transmembrane vacuum pressure for the AgNPs-MF was lower than that of the unmodified one. The resistance-in-series model was used to calculate the resistance coefficients of membrane modules, and the result showed that the cake layer resistance coefficient of the unmodified membrane was 2.7 times higher than that of the AgNPs-MF after the 60-day operation, confirming that AgNPs displayed great antimicrobial properties to mitigate membrane biofouling under such high MLSS.


Asunto(s)
Incrustaciones Biológicas , Reactores Biológicos , Membranas Artificiales , Nanopartículas del Metal , Plata , Ultrafiltración , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Plata/química , Análisis Espectral
20.
J Environ Sci (China) ; 72: 176-184, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30244744

RESUMEN

To understand the adsorption behavior of endocrine disrupting chemicals (EDCs) is important for enhancing the treatment performance and preventing potential secondary pollution caused by EDCs desorption in a microfiltration system. The dynamic adsorption of four representative EDCs, namely estriol (E3), 17ß-estradiol (E2), 17α-ethynylestradiol (EE2), and 4-nonylphenol (4-NP) in a microfiltration system was investigated using the Thomas' model. The product of the equilibrium constant and the total adsorption capacity of the membrane, Ka, for E3, E2, EE2, and 4-NP were 4.91, 9.78, 15.6, and 826, respectively, strongly correlating with the compound octanol-water partition coefficient (KOW). Adsorption appeared to be enhanced when organic fouling formed on the surface of membrane, indicating the role of an additional adsorption column for EDCs acted by a fouling layer in microfiltration. Results of a comparison between the Ka values for clean membrane and fouled membrane illustrated that the significant contribution made by fouling layers may be attributed to the foulant layer's hydrophobicity (in the case of calcium humate layer) and thickness (in the case of calcium alginate layer). This study provided a novel perspective to quantitatively analyze the dynamic adsorption behavior of trace pollutants in membrane process.


Asunto(s)
Disruptores Endocrinos/análisis , Filtración/métodos , Membranas Artificiales , Modelos Químicos , Contaminantes Químicos del Agua/química , Adsorción , Disruptores Endocrinos/química , Estradiol/análisis , Estriol/análisis , Etinilestradiol/análisis , Fenoles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA