Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.799
Filtrar
1.
Alcohol ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39243874

RESUMEN

The unclear mechanisms of ethanol metabolism in the brain highlight the need for a deeper understanding of its metabolic pathways. This study used in vivo microdialysis to simultaneously sample ethanol and its metabolites, acetaldehyde and acetate, in the rat striatum following self-administration of ethanol, emphasizing the natural oral exposure route. To enhance the self-administration, rats underwent two-bottle-choice and limited access training. Dialysate samples, collected every 10 minutes for 2.5 hours, were analyzed using gas chromatography with flame ionization detection (GC-FID). The measured time courses of dialysate concentrations of ethanol, acetaldehyde, and acetate provided insights into dynamics of ethanol metabolism. Notably, in a subject with low ethanol consumption (0.29 g/kg), the concentration of acetaldehyde remained below the limit of detection throughout the experiment. However, the acetate concentration was clearly increased after ethanol consumption in this subject and was comparable to that of other rats with higher ethanol consumption. Compared with focusing only on peak values in the time-courses of concentrations of ethanol and its metabolites, calculating areas under curves provided better models of the relationships between ethanol intake and individual ethanol metabolites, as indicated by the r-square values for the linear regressions. This approach of using the area under the curve accounts for both the amplitude and duration of the concentration profiles, reducing the impact of variations in individual drinking patterns. In vivo microdialysis enables concurrent sampling of brain metabolites during oral ethanol administration, contributing insights into metabolite dynamics. To our knowledge, this paper is the first to report measurement of all three analytes in the brain following self-administration of ethanol. Future studies will explore regional variations and dynamics post-ethanol dependence, further advancing our understanding of ethanol metabolism in the brain.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39241006

RESUMEN

OBJECTIVE: To evaluate reactive oxygen species (ROS) modulation of cutaneous vasodilation during local and whole-body passive heating in young and older adults. METHODS: Cutaneous vascular conductance normalized to maximum vasodilation (%CVCmax) was assessed in young and older adults (10 per group) using laser-Doppler flowmetry at 4 dorsal forearm sites treated with 1) Ringer's solution (control), 2) 100 µM apocynin (NADPH oxidase inhibitor), 3) 10 µM allopurinol (xanthine oxidase inhibitor), or 4) 10 µM tempol (superoxide dismutase mimetic), via intradermal microdialysis during local (protocol-1) and whole-body heating (protocol-2). Protocol-1: forearm skin sites were set at 33°C during baseline and then progressively increased to 39°C and 42°C (30 min each). Protocol-2: participants were immersed in warm water (35°C, mid-sternum) with the experimental forearm above water level and local skin sites maintained at 34°C. Bath temperature was increased (~40°C) to clamp core temperature at 38.5°C for 60 min. RESULTS: Protocol-1: there were significant treatment site by age interactions for the 39°C (P=0.015) and 42°C (P=0.004) plateaus. Although, no significant effects were observed after post-hoc adjustment. Protocol-2: there was a significant treatment site by age interaction (P<0.001) whereby %CVCmax in older adults was 11.0% [7.4,14.6] higher for apocynin (P<0.001), 8.9% [5.3,12.5] higher for allopurinol (P<0.001) and 4.8% [1.3,8.4] higher for tempol (P=0.016) sites relative to the control site. CONCLUSION: ROS derived from NADPH oxidase and xanthine oxidase attenuate cutaneous vasodilation in older adults during passive whole-body heating, but not during local skin heating, with negligible effects on their young counterparts for either heating modality.

3.
Neurosci Lett ; 840: 137960, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39222834

RESUMEN

Caffeine, a methylxanthine alkaloid, works as a nonselective adenosine receptor antagonist. It is the most widely used psychostimulant drug worldwide. However, caffeine overdose can lead to acute intoxication, posing a clinical problem. Hyperthermia and hyperactivity are associated issues with acute caffeine intoxication; however, no definitive treatment exists. This study aimed to assess the ability of risperidone to attenuate caffeine-induced hyperthermia and hyperactivity while elucidating the unknown mechanisms of caffeine intoxication. The rats received intraperitoneal injections of saline, risperidone (0.25 mg/kg, 0.5 mg/kg), WAY-100635, ketanserin, haloperidol, sulpiride, or SCH 23390, 5 min after the administration of caffeine (25 mg/kg). Subcutaneous temperature and activity counts were measured using nano tag ® for up to 90 min. In vivo microdialysis was used to determine the effect of risperidone on caffeine-induced elevation of dopamine (DA), serotonin (5-HT), and noradrenaline (NA) concentrations in the anterior hypothalamus. Rats were injected with caffeine (25 mg/kg), followed by saline or risperidone (0.5 mg/kg) 5 min later. The levels of DA, 5-HT, and noradrenaline were measured every 15 min for up to 90 min after caffeine administration. Risperidone and 5-HT2A receptor antagonist ketanserin attenuated caffeine-induced hyperthermia and hyperactivity. Haloperidol and dopamine D1 antagonist SCH-23390 exacerbated hyperthermia without any effect on the hyperactivity. In the microdialysis study, risperidone treatment further attenuated caffeine-induced 5-HT elevation, but not DA and NA. Our results indicate that risperidone attenuates caffeine-induced hyperthermia and hyperactivity by blocking 5-HT2A receptor activity and may be potentially useful for treating caffeine intoxication.


Asunto(s)
Cafeína , Hipertermia , Risperidona , Serotonina , Animales , Cafeína/farmacología , Risperidona/farmacología , Masculino , Hipertermia/inducido químicamente , Serotonina/metabolismo , Ratas Sprague-Dawley , Dopamina/metabolismo , Ratas , Hipercinesia/inducido químicamente , Hipercinesia/prevención & control , Estimulantes del Sistema Nervioso Central/farmacología , Estimulantes del Sistema Nervioso Central/toxicidad , Norepinefrina/metabolismo
4.
Front Pharmacol ; 15: 1439203, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39221138

RESUMEN

The physiological effects of glucagon-like peptide-1 (GLP-1) are mainly centered on its ability to decrease blood glucose levels and facilitate satiety. Additional physiological functions have been identified by means of GLP-1 agonists such as exenatide (exendin-4; Ex4). In particular, Ex4 reduces the intake of natural and artificial rewards, effects that to some extent involve activation of GLP-1 receptors in the nucleus tractus solitarius (NTS). Although Ex4 acts in the brain, the neurochemical mechanisms underlying this activation are not fully elucidated. Investigating Ex4-induced neurochemical alterations in the nucleus accumbens (NAc) would be valuable for understanding its impact on reward-related behaviors. The aim of the present exploratory in vivo microdialysis study was therefore to study how Ex4, administered either systemically or locally into the NTS, influences classical neurotransmitters like dopamine, serotonin, noradrenaline, glutamate and GABA as well as additional players such as glycine, taurine and serine in NAc of male rats. We showed that Ex4 reduced extracellular levels of serine, taurine and glycine, where the latter two declines appear to involve activation of GLP-1R in the NTS. Besides, after systemic Ex4 injection the metabolites DOPAC, HVA, and 5HIAA are elevated. Where the increase in metabolites related to dopamine, but not serotonin, involves GLP-1 receptors in other areas than the NTS. Although the descriptive nature of the present data does not provide causality, it may however serve as an indication of mechanisms underlying how Ex4 may modulate reward-related behaviors.

5.
Front Pharmacol ; 15: 1445303, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39206256

RESUMEN

Introduction: The rewarding effects of drugs of abuse are associated with the dopaminergic system in the limbic circuitry. Nicotine exposure during adolescence is linked to increased use of drugs of abuse with nicotine and methamphetamine (METH) commonly used together. Nicotine acts on neuronal nicotinic acetylcholine receptor (nAChR) systems, critical for reward processing and drug reinforcement, while METH leads to a higher dopamine (DA) efflux in brain reward regions. A human single nucleotide polymorphism (SNP) in the 3'-untranslated region (UTR) of the α6 nicotinic receptor subunit gene (CHRNA6, rs2304297), has been linked with tobacco/nicotine and general substance use during adolescence. Using CRISPR-Cas9 genomic engineering, our lab recapitulated the CHRNA6 3'UTRC123G SNP, generating α6CC and α6GG allele carriers in Sprague Dawley rats. We hypothesized the CHRNA6 3'UTRC123G SNP would sex- and genotype-dependently enhance nicotine-induced METH self-administration as well as nicotine-induced DA overflow in the nucleus accumbens shell of adolescent α6GG and α6CC carriers. Methods: Adolescent male and female rats underwent a 4-day sub-chronic, low-dose (0.03 mg/kg/0.1 mL, x2) nicotine pretreatment paradigm to assess intravenous METH (0.02 mg/kg/0.1 mL) self-administration as well as nicotine- and METH (0.02 mg/kg/0.1 mL)-induced DA overflow in the nucleus accumbens shell (NAcS) using in vivo microdialysis coupled with high-performance liquid-chromatography-electrochemical detection (HPLC-ECD). Results: Nicotine pretreatment sex- and genotype-dependently enhanced subsequent METH self-administration in adolescent CHRNA6 3'UTRC123G SNP rats. Further nicotine and METH-induced DA overflow is observed in α6CC females as compared to α6GG females, with METH-induced DA overflow enhanced in α6GG males when compared to α6CC males. Conclusion: These findings demonstrate that the CHRNA6 3'-UTRC123G SNP can sex- and genotype-dependently impact adolescent nicotine-induced effects on METH self-administration and stimulant-induced DA overflow in reward regions of the brain.

6.
Artículo en Inglés | MEDLINE | ID: mdl-39142443

RESUMEN

BACKGROUND: Insight into the pathophysiology of inflammatory skin diseases, especially at the proteomic level, is severely hampered by the lack of adequate in situ data. OBJECTIVE: We characterized lesional and nonlesional skin of inflammatory skin diseases using skin microdialysis. METHODS: Skin microdialysis samples from patients with atopic dermatitis (AD, n = 6), psoriasis vulgaris (PSO, n = 7), or prurigo nodularis (PN, n = 6), as well as healthy controls (n = 7), were subjected to proteomic and multiplex cytokine analysis. Single-cell RNA sequencing of skin biopsy specimens was used to identify the cellular origin of cytokines. RESULTS: Among the top 20 enriched Gene Ontology (GO; geneontology.org) annotations, nicotinamide adenine dinucleotide metabolic process, regulation of secretion by cell, and pyruvate metabolic process were elevated in microdialysates from lesional AD skin compared with both nonlesional skin and controls. The top 20 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG; genome.jp/kegg) pathways in these 3 groups overlapped almost completely. In contrast, nonlesional skin from patients with PSO or PN and control skin showed no overlap with lesional skin in this KEGG pathway analysis. Lesional skin from patients with PSO, but not AD or PN, showed significantly elevated protein levels of MCP-1 compared with nonlesional skin. IL-8 was elevated in lesional versus nonlesional AD and PSO skin, whereas IL-12p40 and IL-22 were higher only in lesional PSO skin. Integrated single-cell RNA sequencing data revealed identical cellular sources of these cytokines in AD, PSO, and PN. CONCLUSION: On the basis of microdialysates, the proteomic data of lesional PSO and PN skin, but not lesional AD skin, differed significantly from those of nonlesional skin. IL-8, IL-22, MCP-1, and IL-12p40 might be suitable markers for minimally invasive molecular profiling.

7.
Cancers (Basel) ; 16(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39123433

RESUMEN

Aberrant metabolism is a hallmark of malignancies including gliomas. Intracranial microdialysis enables the longitudinal collection of extracellular metabolites within CNS tissues including gliomas and can be leveraged to evaluate changes in the CNS microenvironment over a period of days. However, delayed metabolic impacts of CNS injury from catheter placement could represent an important covariate for interpreting the pharmacodynamic impacts of candidate therapies. Intracranial microdialysis was performed in patient-derived glioma xenografts of glioma before and 72 h after systemic treatment with either temozolomide (TMZ) or a vehicle. Microdialysate from GBM164, an IDH-mutant glioma patient-derived xenograft, revealed a distinct metabolic signature relative to the brain that recapitulated the metabolic features observed in human glioma microdialysate. Unexpectedly, catheter insertion into the brains of non-tumor-bearing animals triggered metabolic changes that were significantly enriched for the extracellular metabolome of glioma itself. TMZ administration attenuated this resemblance. The human glioma microdialysate was significantly enriched for both the PDX versus brain signature in mice and the induced metabolome of catheter placement within the murine control brain. These data illustrate the feasibility of microdialysis to identify and monitor the extracellular metabolome of diseased versus relatively normal brains while highlighting the similarity between the extracellular metabolome of human gliomas and that of CNS injury.

8.
J Neurosci Methods ; 411: 110239, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39102902

RESUMEN

BACKGROUND: Mass spectrometry (MS)-based cerebrospinal fluid (CSF) proteomics is an important method for discovering biomarkers of neurodegenerative diseases. CSF serves as a reservoir for interstitial fluid (ISF), and extensive communication between the two fluid compartments helps to remove waste products from the brain. NEW METHOD: We performed proteomic analyses of both CSF and ISF fluid compartments using intracerebral microdialysis to validate and detect novel biomarkers of Alzheimer's disease (AD) in APPtg and C57Bl/6J control mice. RESULTS: We identified up to 625 proteins in ISF and 4483 proteins in CSF samples. By comparing the biofluid profiles of APPtg and C57Bl/6J mice, we detected 37 and 108 significantly up- and downregulated candidates, respectively. In ISF, 7 highly regulated proteins, such as Gfap, Aldh1l1, Gstm1, and Txn, have already been implicated in AD progression, whereas in CSF, 9 out of 14 highly regulated proteins, such as Apba2, Syt12, Pgs1 and Vsnl1, have also been validated to be involved in AD pathogenesis. In addition, we also detected new interesting regulated proteins related to the control of synapses and neurotransmission (Kcna2, Cacng3, and Clcn6) whose roles as AD biomarkers should be further investigated. COMPARISON WITH EXISTING METHODS: This newly established combined protocol provides better insight into the mutual communication between ISF and CSF as an analysis of tissue or CSF compartments alone. CONCLUSIONS: The use of multiple fluid compartments, ISF and CSF, for the detection of their biological communication enables better detection of new promising AD biomarkers.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Líquido Extracelular , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteoma , Animales , Enfermedad de Alzheimer/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Líquido Extracelular/metabolismo , Líquido Extracelular/química , Ratones , Proteómica/métodos , Modelos Animales de Enfermedad , Microdiálisis/métodos , Precursor de Proteína beta-Amiloide/líquido cefalorraquídeo , Masculino
9.
Eur J Pharm Sci ; 203: 106883, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39181172

RESUMEN

(AIM): Kp,uu,BBB values are crucial indicators of drug distribution into the brain, representing the steady-state relationship between unbound concentrations in plasma and in brain extracellular fluid (brainECF). Kp,uu,BBB values < 1 are often interpreted as indicators of dominant active efflux transport processes at the blood-brain barrier (BBB). However, the potential impact of brain metabolism on this value is typically not addressed. In this study, we investigated the brain distribution of remoxipride, as a paradigm compound for passive BBB transport with yet unexplained brain elimination that was hypothesized to represent brain metabolism. (METHODS): The physiologically-based LeiCNS pharmacokinetic predictor (LeiCNS-PK model) was used to compare brain distribution of remoxipride with and without Michaelis-Menten kinetics at the BBB and/or brain cell organelle levels. To that end, multiple in-house (IV 0.7, 3.5, 4, 5.2, 7, 8, 14 and 16 mg kg-1) and external (IV 4 and 8 mg kg-1) rat microdialysis studies plasma and brainECF data were analysed. (RESULTS): The incorporation of active elimination through presumed brain metabolism of remoxipride in the LeiCNS-PK model significantly improved the prediction accuracy of experimentally observed brainECF profiles of this drug. The model integrated with brain metabolism in both barriers and organelles levels is named LeiCNS-PK3.5. (CONCLUSION): For drugs with Kp,uu,BBB values < 1, not only the current interpretation of dominant BBB efflux transport, but also potential brain metabolism needs to be considered, especially because these may be concentration dependent. This will improve the mechanistic understanding of the processes that determine brain PK profiles.

10.
J Pharm Biomed Anal ; 251: 116448, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39216308

RESUMEN

Rheumatoid arthritis (RA) is a metabolically active disease, with shifts in fatty acid metabolism during disease progression profoundly affecting the systemic inflammatory response. Altered fatty acid biomarker metabolism may be a key target for the treatment of RA. To investigate the changes of fatty acid metabolism in RA, collagen-induced arthritis (CIA) model was established. Microdialysis sampling was utilized to overcome the characteristic of occlusive joint cavity in vivo synovial fluid (SF) sampling. Lipidomic methods were established with the UHPLC-Orbitrap Exploris120 platform, and lipid measurements were performed on serum and SF samples. Then, multivariate statistical analyses were performed to detect changes in lipid metabolites induced by CIA. Consequently, a total of 22 potential biomarkers associated with differential fatty acids were screened and identified in serum, and 13 were identified in SF. Notably, alterations were observed in metabolites such as Hexadecanoic acid, Octadecanoic acid, Arachidonic acid, (+/-)11,12-EpETrE, DHA, DPA, Myristic acid, Suberic acid, and others. This study explored a new mechanism of the RA disease process from the perspective of fatty acid metabolism. It provided a new strategy for experimental research on determining the optimal time for establishing CIA model and screening clinical diagnostic biomarkers.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Biomarcadores , Ácidos Grasos , Lipidómica , Microdiálisis , Líquido Sinovial , Microdiálisis/métodos , Ácidos Grasos/metabolismo , Artritis Reumatoide/metabolismo , Animales , Biomarcadores/metabolismo , Biomarcadores/sangre , Lipidómica/métodos , Líquido Sinovial/metabolismo , Masculino , Artritis Experimental/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Ratas , Metabolismo de los Lípidos , Ratones Endogámicos DBA
11.
Heliyon ; 10(15): e34820, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170551

RESUMEN

Aim of the study: Our hypothesis is that nirmatrelvir can penetrate the blood‒brain barrier and reach effective concentrations in the brain. Furthermore, herbal formulations can help maintain nirmatrelvir levels in the body, suggesting potential interactions between these medications. Materials and methods: To investigate this hypothesis, an animal model combining multisite microdialysis, ultrahigh-performance liquid chromatography and tandem mass spectrometry (UHPLC-MS/MS) methods was developed to monitor nirmatrelvir levels in the blood and brain of rats. Results: The pharmacokinetic results showed that the area under the curve (AUC) of nirmatrelvir in the blood and brain was 798.3 ± 58.56 and 187.2 ± 23.46 min µg/mL, respectively, after the administration of nirmatrelvir alone (15 mg/kg, iv). When the Scutellaria baicalensis formulations were administered for five consecutive days prior to drug administration, the AUC of nirmatrelvir in the blood increased. Conclusions: These results provide constructive preclinical information that the concentrations of nirmatrelvir in the blood and brain were greater than the effective concentration (EC90) for more than 6 h, and the Scutellaria baicalensis formulations had synergistic pharmacokinetic effects by increasing the concentration of nirmatrelvir in the blood.

12.
J Orthop Res ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101353

RESUMEN

Penicillin is available in both an oral (penicillin V) and intravenous formulation (penicillin G), theoretically allowing for a safe transition between the two. However, the use of oral penicillin remains a topic of debate due to low and variable bioavailability. This study aimed to assess the time for which the free penicillin concentration exceeded targeted minimum inhibitory concentrations for Staphylococcus aureus and Streptococcus species (0.125, 0.25, and 0.5 mg/L) in cancellous bone and subcutaneous tissue after intravenous penicillin and oral penicillin administration. 12 female pigs (68-75 kg) were assigned, according to local standard clinical regimes, to either intravenous penicillin (1.2 g) or oral penicillin (0.8 g) treatment every 6 h over an 18 h period. Microdialysis catheters were placed for sampling in tibial cancellous bone and adjacent subcutaneous tissue. Data was dynamic/continually collected in the first dosing interval (0-6 h), simulating a prophylactic situation, and the third dosing interval (12-18 h), simulating a therapeutic setting. Plasma samples were collected for reference. For all investigated targets, intravenous treatment resulted in a longer mean time above relevant minimum inhibitory concentrations in cancellous bone during the first dosing interval, and in both cancellous bone and subcutaneous tissue during the third dosing interval compared to oral treatment. With clinically relevant dosing, intravenous penicillin provides superior exposure compared to oral penicillin in both a prophylactic and therapeutic setting.

13.
J Pharm Sci ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39059554

RESUMEN

Enabling drug formulations are often required to ensure sufficient absorption after oral administration of poorly soluble drugs. While these formulations typically increase the apparent solubility of the drug, it is widely acknowledged that only molecularly dissolved, i.e., free fraction of the drug, is prone for direct absorption, while colloid-associated drug does not permeate to the same extent. In the present study, we aimed at comparing the effect of molecularly and apparently (i.e., the sum of molecularly and colloid-associated drug) dissolved drug concentrations on the oral absorption of a poorly water-soluble drug compound, Alectinib. Mixtures of Alectinib and respectively 50 %, 25 %, 12.5 %, and 3 % sodium lauryl sulfate (SLS) relative to the dose were prepared and small-scale dissolution tests were performed under simulated fed and fasted state conditions. Both the molecularly and apparently dissolved drug concentrations were assessed in parallel using microdialysis and centrifugation/filtration sampling, respectively. The data served as the basis for an in vitro-in vivo correlation (IVIVC) and as input for a GastroPlusTM physiologically-based biopharmaceutics model (PBBM). It was shown that with increasing the content of SLS the apparently dissolved drug in FeSSIF and FaSSIF increased to a linear extent and thus, the predicted in vivo performance of the 50 % SLS formulation, based on apparently dissolved drug, would outperform all other formulations. Against common expectation, however, the free (molecularly dissolved) drug concentrations were found to vary with SLS concentrations as well, yet to a minor extent. A systematic comparison of solubilized and free drug dissolution patterns at different SLS contents of the formulations and prandial states allowed for interesting insights into the complex dissolution-/supersaturation-, micellization-, and precipitation-behavior of the formulations. When comparing the in vitro datasets with human pharmacokinetic data from a bioequivalence study, it was shown that the use of molecularly dissolved drug resulted in an improved IVIVC. By incorporating the in vitro dissolution datasets into the GastroPlusTM PBBM, the apparently dissolved drug concentrations resulted in both, a remarkable overprediction of plasma concentrations as well as a misprediction of the influence of SLS on systemic exposure. In contrast, by using the molecularly dissolved drug (i.e., free fraction) as the model input, the predicted plasma concentration-time profiles were in excellent agreement with observed data for all formulations under both fed and fasted conditions. By combining an advanced in vitro assessment with PBBM, the present study confirmed that only the molecularly dissolved drug, and not the colloid-associated drug, is available for direct absorption.

14.
J Neurotrauma ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994598

RESUMEN

Cholinergic disruptions underlie attentional deficits following traumatic brain injury (TBI). Yet, drugs specifically targeting acetylcholinesterase (AChE) inhibition have yielded mixed outcomes. Therefore, we hypothesized that galantamine (GAL), a dual-action competitive AChE inhibitor and α7 nicotinic acetylcholine receptor (nAChR) positive allosteric modulator, provided chronically after injury, will attenuate TBI-induced deficits of sustained attention and enhance ACh efflux in the medial prefrontal cortex (mPFC), as assessed by in vivo microdialysis. In Experiment 1, adult male rats (n = 10-15/group) trained in the 3-choice serial reaction time (3-CSRT) test were randomly assigned to controlled cortical impact (CCI) or sham surgery and administered GAL (0.5, 2.0, or 5.0 mg/kg; i.p.) or saline vehicle (VEH; 1 mL/kg; i.p) beginning 24-h post-surgery and once daily thereafter for 27 days. Measures of sustained attention and distractibility were assessed on post-operative days 21-25 in the 3-CSRT, following which cortical lesion volume and basal forebrain cholinergic cells were quantified on day 27. In Experiment 2, adult male rats (n = 3-4/group) received a CCI and 24 h later administered (i.p.) one of the three doses of GAL or VEH for 21 days to quantify the dose-dependent effect of GAL on in vivo ACh efflux in the mPFC. Two weeks after the CCI, a guide cannula was implanted in the right mPFC. On post-surgery day 21, baseline and post-injection dialysate samples were collected in a temporally matched manner with the cohort undergoing behavior. ACh levels were analyzed using reverse phase high-performance liquid chromatography (HPLC) coupled to an electrochemical detector. Cortical lesion volume was quantified on day 22. The data were subjected to ANOVA, with repeated measures where appropriate, followed by Newman-Keuls post hoc analyses. All TBI groups displayed impaired sustained attention versus the pooled SHAM controls (p's < 0.05). Moreover, the highest dose of GAL (5.0 mg/kg) exacerbated attentional deficits relative to VEH and the two lower doses of GAL (p's < 0.05). TBI significantly reduced cholinergic cells in the right basal forebrain, regardless of treatment condition, versus SHAM (p < 0.05). In vivo microdialysis revealed no differences in basal ACh in the mPFC; however, GAL (5.0 mg/kg) significantly increased ACh efflux 30 min following injection compared to the VEH and the other GAL (0.5 and 2.0 mg/kg) treated groups (p's < 0.05). In both experiments, there were no differences in cortical lesion volume across treatment groups (p's > 0.05). In summary, albeit the higher dose of GAL increased ACh release, it did not improve measures of sustained attention or histopathological markers, thereby partially supporting the hypothesis and providing the impetus for further investigations into alternative cholinergic pharmacotherapies such as nAChR positive allosteric modulators.

15.
Neurocrit Care ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085507

RESUMEN

BACKGROUND: Brain energy metabolism is often disturbed after acute brain injuries. Current neuromonitoring methods with cerebral microdialysis (CMD) are based on intermittent measurements (1-4 times/h), but such a low frequency could miss transient but important events. The solution may be the recently developed Loke microdialysis (MD), which provides high-frequency data of glucose and lactate. Before clinical implementation, the reliability and stability of Loke remain to be determined in vivo. The purpose of this study was to validate Loke MD in relation to the standard intermittent CMD method. METHODS: Four pigs aged 2-3 months were included. They received two adjacent CMD catheters, one for standard intermittent assessments and one for continuous (Loke MD) assessments of glucose and lactate. The standard CMD was measured every 15 min. Continuous Loke MD was sampled every 2-3 s and was averaged over corresponding 15-min intervals for the statistical comparisons with standard CMD. Intravenous glucose injections and intracranial hypertension by inflation of an intracranial epidural balloon were performed to induce variations in intracranial pressure, cerebral perfusion pressure, and systemic and cerebral glucose and lactate levels. RESULTS: In a linear mixed-effect model of standard CMD glucose (mM), there was a fixed effect value (± standard error [SE]) at 0.94 ± 0.07 (p < 0.001) for Loke MD glucose (mM), with an intercept at - 0.19 ± 0.15 (p = 0.20). The model showed a conditional R2 at 0.81 and a marginal R2 at 0.72. In a linear mixed-effect model of standard CMD lactate (mM), there was a fixed effect value (± SE) at 0.41 ± 0.16 (p = 0.01) for Loke MD lactate (mM), with an intercept at 0.33 ± 0.21 (p = 0.25). The model showed a conditional R2 at 0.47 and marginal R2 at 0.17. CONCLUSIONS: The established standard CMD glucose thresholds may be used as for Loke MD with some caution, but this should be avoided for lactate.

16.
Sci Rep ; 14(1): 16337, 2024 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014025

RESUMEN

It has been suggested that sodium-glucose cotransporter 2 (SGLT2) inhibitors have cardioprotective effects during myocardial ischemia/reperfusion (I/R) independent of glucose-lowering action. However, the effects of SGLT2 inhibitors on structural damage to cardiomyocytes in the ischemic region during I/R remain unknown. We applied a microdialysis technique to the heart of anesthetized rats and investigated the effects of an SGLT2 inhibitor, dapagliflozin, on myocardial interstitial myoglobin levels in the ischemic region during coronary occlusion followed by reperfusion. Dapagliflozin was administered systemically (40 µg/body iv) or locally via a dialysis probe (100 µM and 1 mM) 30 min before coronary occlusion. In the vehicle group, coronary occlusion increased the dialysate myoglobin concentration in the ischemic region. Reperfusion further increased the dialysate myoglobin concentration. Intravenous administration of dapagliflozin reduced dialysate myoglobin concentration during ischemia and at 0-15 min after reperfusion, but local administration (100 µM and 1 mM) did not. Therefore, acute systemic administration of dapagliflozin prior to ischemia has cardioprotective effects on structural damage during I/R.


Asunto(s)
Compuestos de Bencidrilo , Glucósidos , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Mioglobina , Animales , Compuestos de Bencidrilo/farmacología , Mioglobina/metabolismo , Glucósidos/farmacología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Ratas , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Masculino , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Microdiálisis
17.
Neuropharmacology ; 258: 110065, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39004413

RESUMEN

(R,S)-ketamine (ketamine) has rapid and sustained antidepressant (AD) efficacy at sub-anesthetic doses in depressed patients. A metabolite of ketamine, including (2R,6R)-hydroxynorketamine ((6)-HNKs) has been reported to exert antidepressant actions in rodent model of anxiety/depression. To further understand the specific role of ketamine's metabolism in the AD actions of the drug, we evaluated the effects of inhibiting hepatic cytochrome P450 enzymes on AD responses. We assessed whether pre-treatment with fluconazole (10 and 20 mg/kg, i. p.) 1 h prior to ketamine or HNKs (10 mg/kg, i. p.) administration would alter behavioral and neurochemical actions of the drugs in male BALB/cJ mice with a highly anxious phenotype. Extracellular microdialysate levels of glutamate and GABA (Gluext, GABAext) were also measured in the medial prefrontal cortex (mPFC). Pre-treatment with fluconazole altered the pharmacokinetic profile of ketamine, by increasing both plasma and brain levels of ketamine and (R,S)-norketamine, while robustly reducing those of (6)-HNKs. At 24 h post-injection (t24 h), fluconazole prevented the sustained AD-like response of ketamine responses in the forced swim test and splash test, as well as the enhanced cortical GABA levels produced by ketamine. A single (2R,6R)-HNK administration resulted in prevention of the effects of fluconazole on the antidepressant-like activity of ketamine in mice. Overall, these findings are consistent with an essential contribution of (6)-HNK to the sustained antidepressant-like effects of ketamine and suggest potential interactions between pharmacological CYPIs and ketamine during antidepressant treatment in patients.


Asunto(s)
Antidepresivos , Sistema Enzimático del Citocromo P-450 , Fluconazol , Ketamina , Hígado , Ratones Endogámicos BALB C , Corteza Prefrontal , Ketamina/farmacología , Ketamina/análogos & derivados , Animales , Masculino , Antidepresivos/farmacología , Ratones , Sistema Enzimático del Citocromo P-450/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Fluconazol/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Ácido Glutámico/metabolismo , Inhibidores Enzimáticos del Citocromo P-450/farmacología
18.
Behav Brain Res ; 471: 115121, 2024 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-38945302

RESUMEN

Controlled nigrostriatal dopamine release supports effective limb use during locomotion coordination that becomes compromised after this pathway deteriorates in Parkinson's Disease (PD). How dopamine release relates to active ongoing behavior control remains unknown. Restoring proper release strategy appears important to successful PD treatment with transplanted dopamine-producing stem cells. This is suggested by apparently distinct behavioral support from tonic or phasic release and corresponding requirements of requisite afferent control exhibited by intact nigrostriatal neurons. Our laboratory previously demonstrated that transplanted dopaminergic cells can elicit skilled movement recovery known to depend on phasic dopamine release. However, efforts to measure this movement-related dopamine release yielded seemingly paradoxical, incongruent results. In response, here we explored whether those previous observations derived from rapid reuptake transport into either transplanted cells or residual, lesion-surviving terminals. We confirmed this using minimal reuptake blockade during intrastriatal microdialysis. After unilateral dopamine depletion, rats received transplants and were subjected to our swimming protocol. Among dopamine-depleted and transplanted rats, treatment supported restoration of limb movement symmetry. Interestingly, subsequent reuptake-restricted microdialysis confirmed distinct swimming-induced dopamine increases clearly occurred among these lesioned/transplanted subjects. Thus, phasic firing control appears to contribute to transplant-derived recovery in Parkinsonian animals.


Asunto(s)
Modelos Animales de Enfermedad , Dopamina , Microdiálisis , Animales , Dopamina/metabolismo , Masculino , Ratas , Mesencéfalo/metabolismo , Oxidopamina/farmacología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/fisiología , Cuerpo Estriado/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/fisiopatología , Extremidades , Sustancia Negra/metabolismo , Ratas Sprague-Dawley
19.
J Clin Med ; 13(12)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38930053

RESUMEN

Background: Cefazolin may minimize the risk of surgical site infection (SSI) following posterior spinal fusion (PSF) for adolescent idiopathic scoliosis (AIS). Cefazolin dosing recommendations vary and there is limited evidence for achieved tissue concentrations. Methods: We performed a randomized, controlled, prospective pharmacokinetic pilot study of 12 patients given cefazolin by either intermittent bolus (30 mg/kg every 3 h) or continuous infusion (30 mg/kg bolus followed by 10/mg/kg per hour) during PSF for AIS. Results: Patients were well matched for demographic and perioperative variables. While total drug exposure, measured as area-under-the-curve (AUC), was similar in plasma for bolus and infusion dosing, infusion dosing achieved greater cefazolin exposure in subcutaneous and muscle tissue. Using the pharmacodynamic metric of time spent above minimal inhibitory concentration (MIC), both bolus and infusion dosing performed well. However, when targeting a bactericidal concentration of 32 µg/mL, patients in the bolus group spent a median of 1/5 and 1/3 of the typical 6 h operative time below target in subcutaneous and muscle tissue, respectively. Conclusions: We conclude that intraoperative determination of cefazolin tissue concentrations is feasible and both bolus and infusion dosing of cefazolin achieve concentrations in excess of typical MICs. Infusion dosing appears to more consistently achieve bactericidal concentrations in subcutaneous and muscle tissues.

20.
Am J Physiol Heart Circ Physiol ; 327(2): H364-H369, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38847757

RESUMEN

The transcriptional regulator nuclear factor-κB (NF-κB) is a mediator of endothelial dysfunction. Inhibiting NF-κB with salsalate is used to investigate inflammatory mechanisms contributing to accelerated cardiovascular disease risk. However, in the absence of disease, inhibition of NF-κB can impact redox mechanisms, resulting in paradoxically decreased endothelial function. This study aimed to measure microvascular endothelial function during inhibition of the transcriptional regulator NF-κB in reproductive-aged healthy women. In a randomized, single-blind, crossover, placebo-controlled design, nine healthy women were randomly assigned oral salsalate (1,500 mg, twice daily) or placebo treatments for 5 days. Subjects underwent graded perfusion with the endothelium-dependent agonist acetylcholine (ACh, 10-10 to 10-1 M, 33°C) alone and in combination with 15 mM NG-nitro-l-arginine methyl ester [l-NAME; nonselective nitric oxide (NO) synthase inhibitor] through intradermal microdialysis. Laser-Doppler flux was measured over each microdialysis site, and cutaneous vascular conductance (CVC) was calculated as flux divided by mean arterial pressure and normalized to site-specific maximum (CVC%max; 28 mM sodium nitroprusside + 43°C). The l-NAME sensitive component was calculated as the difference between the areas under the dose-response curves. During the placebo and salsalate treatments, the l-NAME sites were reduced compared with the control sites (both P < 0.0001). Across treatments, there was a significant difference between the control and l-NAME sites, where both sites shifted upward following salsalate treatment (both P < 0.0001), whereas the l-NAME-sensitive component was not different (P = 0.94). These data demonstrate that inhibition of the transcriptional regulator NF-κB improves cutaneous microvascular function in reproductive-aged healthy women through non-NO-dependent mechanisms.NEW & NOTEWORTHY The transcription factor nuclear factor-κB (NF-κB) regulates multiple aspects of innate and adaptive immunity by encoding for genes that participate in inflammation and impact endothelial function following NF-κB inhibition with salsalate treatment. Our results show that cutaneous microvascular function is increased through non-nitric oxide (NO)-dependent mechanisms following salsalate treatment in reproductive-aged healthy women.


Asunto(s)
Estudios Cruzados , Microcirculación , FN-kappa B , Óxido Nítrico , Piel , Humanos , Femenino , Adulto , Piel/irrigación sanguínea , Piel/efectos de los fármacos , Piel/metabolismo , FN-kappa B/metabolismo , Método Simple Ciego , Microcirculación/efectos de los fármacos , Óxido Nítrico/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Vasodilatación/efectos de los fármacos , Adulto Joven , Acetilcolina/farmacología , Voluntarios Sanos , Vasodilatadores/farmacología , Inhibidores Enzimáticos/farmacología , Salicilatos/farmacología , Microvasos/efectos de los fármacos , Microvasos/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Flujo Sanguíneo Regional/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA