Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 12(7): e0374823, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38780256

RESUMEN

The lasso peptide microcin J25 (MccJ25) possesses strong antibacterial properties and is considered a potential effective component of bacterial disease treatment drugs and safe food preservatives. Although MccJ25 can be heterologously expressed in Bacillus subtilis as we have previously reported, its regulation and accumulation are yet to be understood. Here, we investigated the expression level and stability of MccJ25 in B. subtilis strains with disruption in peptidase genes pepA, pepF, and pepT. Oligoendopeptidase F (PepF) was found to be involved in reduction of the production of MccJ25 by degradation of its precursor peptide. In the pepF mutant, the MccJ25 reached a concentration of 1.68 µM after a cultivation time exceeding 60 hours, while the wild-type strain exhibited a concentration of only 0.14 µM. Moreover, the production of MccJ25 in B. subtilis downregulated the genes associated with sporulation, and this may contribute to its accumulation. Finally, this study provides a strategy to improve the stability and production of MccJ25 in B. subtilis. IMPORTANCE: MccJ25 displays significant antibacterial activity, a well-defined mode of action, exceptional safety, and remarkable stability. Hence, it presents itself as a compelling candidate for an optimal antibacterial or anti-endotoxin medication. The successful establishment of exogenous production of MccJ25 in Bacillus subtilis provides a strategy for reducing its production cost and diversifying its utilization. In this study, we have provided evidence indicating that both peptidase PepF and sporulation are significant factors that limit the expression of MccJ25 in B. subtilis. The ΔpepF and ΔsigF mutants of B. subtilis express MccJ25 with higher production yield and enhanced stability. To sum up, this study developed several better engineered strains of B. subtilis, which greatly reduced the consumption of MccJ25 during the nutrient depletion stage of the host strain, improved its production, and elucidated factors that may be involved in reducing MccJ25 accumulation in B. subtilis.


Asunto(s)
Antibacterianos , Bacillus subtilis , Proteínas Bacterianas , Bacteriocinas , Esporas Bacterianas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/crecimiento & desarrollo , Bacteriocinas/metabolismo , Bacteriocinas/genética , Bacteriocinas/biosíntesis , Esporas Bacterianas/genética , Esporas Bacterianas/crecimiento & desarrollo , Esporas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología , Antibacterianos/biosíntesis , Regulación Bacteriana de la Expresión Génica , Péptido Hidrolasas/metabolismo , Péptido Hidrolasas/genética
2.
J Agric Food Chem ; 71(14): 5600-5613, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36995900

RESUMEN

Microcin J25 (MccJ25) and microcin Y (MccY) are lasso peptides and considered potential alternatives to antibiotics and harmful preservatives. The combination of these two microcins can provide a wide antimicrobial spectrum against food-borne Salmonella. Currently, MccJ25 and MccY are produced using Escherichia coli expression systems; however, the entire production process is accompanied by negative effects from endotoxins. In this study, we identified Bacillus subtilis as a suitable host for MccJ25 and MccY production. High-level production of microcins was achieved by promoter optimization, host strain selection, and recombinant expression. The engineered strains produced maximum yields of 2.827 µM MccJ25 and 1.481 µM MccY. This is the first study to demonstrate the expression of MccJ25 and MccY in B. subtilis, and it offers a few engineered strains that are without antibiotic resistance markers, inducer-free, sporulation-deficient, and free of the negative effects of endotoxins for antibacterial therapy and food preservation.


Asunto(s)
Bacillus subtilis , Bacteriocinas , Bacillus subtilis/metabolismo , Bacteriocinas/farmacología , Antibacterianos/farmacología , Escherichia coli/metabolismo , Endotoxinas/metabolismo
3.
Eur J Pharm Sci ; 180: 106339, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36414157

RESUMEN

Microcin J25 (MccJ25), a lasso peptide, has a unique 3-D interlocked structure that provides high stability under acidic conditions, at high temperatures, and in the presence of proteases. In this study, we generated a positron emission tomography (PET) probe based on MccJ25 analog with an RGD motif and investigated their pharmacokinetics and utility for integrin αvß3 imaging in tumors. The MccJ25 variant with an RGD motif in the loop region and a lysine substitution at the C-terminus (MccJ25(RGDF)GtoK) was produced in E. coli transfected with plasmid DNA containing the MccJ25 biosynthetic gene cluster (mcjABCD). [64Cu]Cu-MccJ25(RGDF)GtoK was synthesized using the C-terminal lysine labeled with copper-64 (t1/2 = 12.7 h) via a bifunctional chelator; it showed stability in 90% mouse plasma for 45 min. Using PET imaging for integrin αvß3 positive U87MG tumor bearing mice, [64Cu]Cu-MccJ25(RGDF)GtoK could clearly distinguish the tumor, and its accumulation was significantly higher than that of MccJ25(GIGT)GtoK without the binding motif for integrin αvß3. Furthermore, MccJ25(RGDF)GtoK enabled visualization of only U87MG tumors but not MCF-7 tumors with low integrin αvß3 expression in double tumor-bearing mice. In ex vivo biodistribution analysis, the integrin αvß3 non-specific accumulation of [64Cu]Cu-MccJ25(RGDF)GtoK was significantly lower in various tissues, except for the kidneys, as compared to the control probe ([64Cu]Cu-cyclic RGD peptide). These results of the present study indicate that 64Cu-labeling methods are appropriate for the synthesis of MccJ25-based PET probes, and [64Cu]Cu-MccJ25 variants are useful tools for cancer molecular imaging.


Asunto(s)
Integrina alfaVbeta3 , Sondas Moleculares , Neoplasias , Tomografía de Emisión de Positrones , Animales , Ratones , Escherichia coli , Integrina alfaVbeta3/metabolismo , Lisina/genética , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Distribución Tisular
4.
Int J Food Microbiol ; 383: 109958, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36240604

RESUMEN

In the present study, bacterial-derived antimicrobial agents included 5 mM reuterin combined with either 103.91 mM lactic acid (RL) or 0.08 µM microcin J25 (RJ) were evaluated for their effects on the microbiota and sensory attributes of raw chicken legs. Peracetic acid (13.67 mM), a conventional chemical commonly used in the poultry industry, was used as a positive control to compare efficacy. The chicken legs were sprayed with antimicrobial solutions and aerobically stored at 4 °C for 10 days. The RL treatment maintained the total viable count below the limit of 7 log CFU/g until the 8th day. Therefore, compared to the nontreated group, shelf-life was extended by 3 days in the RL treated group. The RJ treatment extended the shelf-life to 7 days, which is similar to what was achieved with the use of peracetic acid. Based on culture-independent amplicon sequencing, the RL and RJ treatments affected the microbial community on the chicken legs, inducing a delay in the increase of Pseudomonas, Psychrobacter and Carnobacterium while decreasing of Shigella. Significant decreases in sensory scores occurred in the nontreated group, while slight changes occurred in the combinations treated groups over the same period. Overall, sensory property scores for chicken legs treated with RL and RJ remained higher (P < 0.05) than those treated with peracetic acid or without antimicrobial agents. The antimicrobial combinations delayed the deterioration of sensory attributes throughout the storage period. These results suggest that RL and RJ provide a promising natural-sourced antimicrobial approach to control the growth of spoilage microorganisms on chicken legs.


Asunto(s)
Desinfectantes , Microbiota , Animales , Pollos/microbiología , Conservación de Alimentos/métodos , Ácido Peracético/farmacología , Bacterias , Desinfectantes/farmacología , Ácido Láctico/farmacología , Recuento de Colonia Microbiana , Carne/microbiología
5.
Front Microbiol ; 13: 930392, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992668

RESUMEN

The increased prevalence of Salmonella spp. resistance in swine spurs the search for alternatives to antibiotics. Microcin J25 (MccJ25), a bacteriocin produced by Escherichia coli, is a potent inhibitor of several pathogenic bacteria including Salmonella enterica. In this study, we aimed to evaluate in vitro the impact of MccJ25 on the composition and the metabolic activity of the swine colonic microbiota. The PolyFermS in vitro continuous fermentation model was used here with modified Macfarlane medium to simulate the porcine proximal colon. During 35 days of fermentation, a first-stage reactor containing immobilized swine fecal microbiota fed two second-stage control and test reactors operated in parallel and used to test the effects of MccJ25 on the composition and the metabolic activity of the microbiota. Reuterin, a broad-spectrum antimicrobial compound produced by Limosilactobacillus reuteri, a lactic acid bacterium naturally present in the gastro-intestinal tract of human and animals, and the antibiotic rifampicin were tested for comparison. Sequencing of 16S rRNA was performed using the Illumina MiSeq technology to evaluate microbial diversity, and liquid chromatography coupled to mass spectrometry (LC-MS) followed by multivariate analysis was used to assess the bacteriocin/antibiotic degradation products and to monitor changes in the swine colonic microbiota metabolome. The results show that MccJ25 or reuterin treatments only induce subtle changes of both the microbial diversity and the metabolome of the swine colon microbiota, while rifampicin induces significant modification in amino acid levels. Although these findings need being validated in vivo, this study affords a first proof of concept for considering MccJ25 as a possible alternative to antibiotics for veterinary and farming applications, taking into account its pathogen-selective and potent inhibitory activity.

6.
J Anim Sci Biotechnol ; 13(1): 34, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35246239

RESUMEN

BACKGROUND: Since the overuse of antibiotics in animal production has led to a selection of antibiotic-resistant pathogens that affect humans and animals as well. Scientists are therefore searching for novel natural alternatives to antibiotics. In this study Lactobacillus reuteri and a combination of reuterin and microcin J25 (RJ) were evaluated as promoters of growth and modulators of the cecal microbiota and metabolite profiles in broiler chickens. One-day-old Cobb 500 male broilers were distributed to 8 treatments: negative control (without antibiotic), positive control (bacitracin), three concentrations of RJ and three doses of L. reuteri plus glycerol. The birds (2176, 34 per pen, 8 pens per treatment) were reared for 35 d. RESULTS: The body weight of the bacitracin and 5 mmol/L reuterin combined with 0.08 µmol/L microcin J25 (10RJ) treatment group was significantly higher than that of the negative control group (P < 0.05). L. reuteri had no significant effect on broiler growth. MiSeq high-throughput sequencing of 16S rRNA showed clustering of cecal microbial operational taxonomic unit diversity according to treatment. The influence of bacitracin and 10RJ on bacterial community overall structure was similar. They promoted Ruminococcaceae, Lachnospiraceae and Lactobacillaceae, increased the relative abundance of Faecalibacterium and decreased the abundance of Bacteroides and Alistipes, while the negative control condition favored Bacteroidaceae and Rikenellaceae. Furthermore, 10RJ increased the concentration of short-chain fatty acid in the cecum and changed the metabolome overall. CONCLUSIONS: These overall suggest that 10RJ can promote a host-friendly gut environment by changing the cecal microbiome and metabolome. This combination of natural antimicrobial agents in the drinking water had a positive effect on broiler growth and may be suitable as an alternative to antibiotic growth promoters.

7.
Front Immunol ; 13: 811378, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250983

RESUMEN

Multidrug resistant (MDR) bacterial infection has emerged, raising concerns about untreatable infections, and posing the highest health risks. Antimicrobial peptides (AMPs) are thought to be the best remedy for this problem. Here, we showed biosynthetic microcin J25 (MccJ25) exhibited excellent bactericidal activity against standard and clinically relevant veterinary MDR strains with high stability, no cytotoxicity, and no increase in drug resistance. Analysis of antimicrobial mechanism possessed by sensitive enterotoxigenic Escherichia coli (ETEC) based on electron microscopy and Sytox Green methods was carried out. Results showed excellent activity against ETEC was due to permeabilizing bacterial membranes and strong affinity. MccJ25 exhibited high endotoxin-neutralizing activity in both in vivo and in vitro environments, and mice exposed to lipopolysaccharide (LPS) showed decreased plasma LPS levels and improved survival after administration of MccJ25. In an LPS-treated mouse septicemia model, MccJ25 treatment significantly alleviated inflammatory responses by inhibiting proinflammatory factor secretion and expression. In a mouse E. coli infection model, administration of MccJ25 effectively improved host defense against clinically source cocktail of multidrug-resistant E. coli strains induced intestinal inflammation and bacteria dissemination. Results of studies on anti-inflammatory mechanisms showed that MccJ25 downregulated nuclear factor kappa B kinase and mitogen-activated protein kinase, thereby reducing the production of toll-like receptor 4, myeloid differentiation factor 88 and decreasing the key proinflammatory cytokines. These findings clarify MccJ25 may be an ideal antibacterial/antiendotoxic drug candidate that has the potential to further guide the development of anti-inflammatory and/or antimicrobial agents in the war against MDR bacterial infection.


Asunto(s)
Antiinfecciosos , Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antiinflamatorios/farmacología , Bacterias , Bacteriocinas , Resistencia a Medicamentos , Infecciones por Escherichia coli/tratamiento farmacológico , Lipopolisacáridos/farmacología , Ratones
8.
ChemMedChem ; 17(10): e202200075, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35201676

RESUMEN

The use of synergistic antibiotic combinations has emerged as a viable approach to contain the rapid spread of antibiotic-resistant pathogens. Here we report the discovery of a new strongly synergistic pair - microcin J25 and sulfamonomethoxine. The former is a lasso peptide that inhibits the function of RNA polymerase and the latter is a sulfonamide antibacterial agent that disrupts the folate pathway. Key to our discovery was a screening strategy that focuses on an antibiotic (microcin J25) that targets a hub (transcription) in the densely interconnected network of cellular pathways. The rationale was that disrupting such a hub likely weakens the entire network, generating weak links that potentiate the growth inhibitory effect of other antibiotics. We found that MccJ25 potentiates five other antibiotics as well. These results showcase the merit of taking a more targeted approach in the search and study of synergistic antibiotic pairs.


Asunto(s)
Bacteriocinas , Infecciones por Escherichia coli , Antibacterianos/química , Bacteriocinas/química , Bacteriocinas/metabolismo , Bacteriocinas/farmacología , Escherichia coli , Ácido Fólico/farmacología , Humanos , Péptidos/farmacología
9.
Int J Mol Sci ; 22(24)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34948377

RESUMEN

For food quality and safety issues, the emergence of foodborne pathogenic bacteria has further accelerated the spread of antibiotic residues and drug resistance genes. To alleviate the harm caused by bacterial infections, it is necessary to seek novel antimicrobial agents as biopreservatives to prevent microbial spoilage. Nanoantimicrobials have been widely used in the direct treatment of bacterial infections. CNMs, formed by chitosan nanoparticles and peptides, are promising antibiotic alternatives for use as excellent new antibacterial drugs against pathogenic bacteria. Herein, the current study evaluated the function of CNMs in the protection of foodborne pathogen Escherichia coli (E. coli) O157 infection using an intestinal epithelial cell model. Antibacterial activity assays indicated that CNMs exerted excellent bactericidal activity against E. coli O157. Assessment of the cytotoxicity risks toward cells demonstrated that 0.0125-0.02% of CNMs did not cause toxicity, but 0.4% of CNMs caused cytotoxicity. Additionally, CNMs did not induced genotoxicity either. CNMs protected against E. coli O157-induced barrier dysfunction by increasing transepithelial electrical resistance, decreasing lactate dehydrogenase and promoting the protein expression of occludin. CNMs were further found to ameliorate inflammation via modulation of tumor factor α, toll-like receptor 4 and nuclear factor κB (NF-κB) expression via inhibition of mitogen-activated protein kinase and NF-κB activation and improved antioxidant activity. Taken together, CNMs could protect the host against E. coli O157-induced intestinal barrier damage and inflammation, showing that CNMs have great advantages and potential application as novel antimicrobial polymers in the food industry as food biopreservatives, bringing new hope for the treatment of bacterial infections.


Asunto(s)
Antibacterianos/farmacología , Infecciones por Escherichia coli/prevención & control , Escherichia coli O157/efectos de los fármacos , Conservantes de Alimentos/farmacología , Enfermedades Transmitidas por los Alimentos/prevención & control , Péptidos/farmacología , Animales , Antibacterianos/química , Línea Celular , Quitosano/química , Quitosano/farmacología , Infecciones por Escherichia coli/patología , Escherichia coli O157/fisiología , Conservantes de Alimentos/química , Enfermedades Transmitidas por los Alimentos/patología , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Nanopartículas/química , Péptidos/química , Porcinos
10.
Vet Res ; 52(1): 83, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112244

RESUMEN

Mannheimia haemolytica-induced bovine respiratory disease causes loss of millions of dollars to Canadian cattle industry. Current antimicrobials are proving to be ineffective and leave residues in meat. Antimicrobial peptides (AMPs) may be effective against M. haemolytica while minimizing the risk of drug residues. Cationic AMPs can kill bacteria through interactions with the anionic bacterial membrane. Human ß-Defensin 3 (HBD3) and microcin J25 (MccJ25) are AMPs with potent activity against many Gram-negative bacteria. We tested the microbicidal activity of wild-type HBD3, three HBD3 peptide analogues (28 amino acid, 20AA, and 10AA) derived from the sequence of natural HBD3, and MccJ25 in vitro against M. haemolytica. Three C-terminal analogues of HBD3 with all cysteines replaced with valines were manually synthesized using solid phase peptide synthesis. Since AMPs can act as chemoattractant we tested the chemotactic effect of HBD3, 28AA, 20AA, and 10AA peptides on bovine neutrophils in Boyden chamber. Minimum bactericidal concentration (MBC) assay showed that M. haemolytica was intermediately sensitive to HBD3, 28AA and 20AA analogues with an MBC of 50 µg/mL. The 10AA analogue had MBC 6.3 µg/mL which is likely a result of lower final inoculum size. MccJ25 didn't have significant bactericidal effect below an MBC < 100 µg/mL. Bovine neutrophils showed chemotaxis towards HBD3 and 20AA peptides (P < 0.05) but not towards 28AA analogue. Co-incubation of neutrophils with any of the peptides did not affect their chemotaxis towards N-formyl-L-methionyl-L-leucyl-phenylalanine (fMLP). The data show that these peptides are effective against M. haemolytica and are chemotactic for neutrophils in vitro.


Asunto(s)
Bacteriocinas/farmacología , Mannheimia haemolytica/efectos de los fármacos , Neutrófilos/efectos de los fármacos , beta-Defensinas/genética , beta-Defensinas/farmacología , Animales , Bacteriocinas/genética , Bacteriocinas/metabolismo , Bovinos , Mannheimia haemolytica/fisiología , Neutrófilos/fisiología , Ingeniería de Proteínas , beta-Defensinas/metabolismo
11.
Front Microbiol ; 12: 656956, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995320

RESUMEN

The currently most utilized antimicrobial agent in poultry processing facilities is peracetic acid, a chemical increasingly recognized as hazardous to human health. We evaluated the efficacy of mixtures of natural antimicrobial compounds, namely reuterin, microcin J25, and lactic acid, for reducing the viability of Salmonella enterica and total aerobes on broiler chicken carcasses. The compounds were compared singly and in combination with water and 0.1% peracetic acid. The minimum inhibitory concentrations of reuterin, lactic acid, and microcin J25 against S. enterica serovar Enteritidis were respectively 2 mM, 0.31%, and 0.03 µM. In vitro, the combinations of reuterin + lactic acid and reuterin + microcin J25 were synergic, making these compounds effective at four times lower concentrations than those used alone. Salmonella viable counts fell to zero within 10 min of contact with reuterin + lactic acid at 10 times the concentrations used in combination, compared to 18 h in the case of reuterin + microcin J25. Sprayed onto chilled chicken carcasses, this reuterin + lactic acid mixture reduced Salmonella spp. counts by 2.02 Log CFU/g, whereas reuterin + microcin J25 and peracetic acid reduced them by respectively 0.83 and 1.13 Log CFU/g. The synergy of reuterin with lactic acid or microcin J25 as inhibitors of bacterial growth was significant. Applied as post-chill spray, these mixtures could contribute to food safety by decreasing Salmonella counts on chicken carcasses.

12.
Biomed Pharmacother ; 139: 111127, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33819810

RESUMEN

Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is rising constantly all over the world. However, current medical treatments are not universally practical. Microcin J25 (MccJ25), a member of the lasso peptides class, has excellent antimicrobial activity both in vitro and in vivo. Here, we assessed the anti-inflammatory effects of MccJ25 through DSS-induced UC mouse model. MccJ25 significantly ameliorated the UC-associated parameters such as decreased body weight, increased disease activity index (DAI) and shortened colon length. MccJ25 also provides barrier protection by preserving structural integrity and reducing inflammatory infiltrates of colon epithelium. The underlying mechanism may be associated with gut microbiota. To test this uncertainty, co-housing experiment was performed, and results indicate homogenized microbiota could relief the inflammatory. Meanwhile, we also proved the prominent role of the possible targets of MccJ25, namely genus Lactobacillus, Bacteroides and Akkermansia (as well as the possible strains related to the important OTUs) in inflammation status through comprehensive analysis. In conclusion, MccJ25 effectively attenuates inflammation and improves disrupted barrier function, and the MccJ25-modified gut microbiota plays a central role in this process.


Asunto(s)
Antiinflamatorios/uso terapéutico , Bacteriocinas/uso terapéutico , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Proteínas Recombinantes/uso terapéutico , Animales , Colitis Ulcerosa/inducido químicamente , Colon/enzimología , Colon/patología , Sulfato de Dextran , Femenino , Mucosa Intestinal/enzimología , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Citotóxicas Formadoras de Poros
13.
J Biomol Struct Dyn ; 39(7): 2585-2594, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32241226

RESUMEN

Microcins are low-molecular weight, highly stable, ribosomally produced, bacterial inhibitory molecules involved in competitive research. Microcin J25 consists of 21 amino acids and has a lasso-like structure. The first step is bacteria binding to the ion receptor of FhuA on the bacterial surface. In this study, molecular dynamics simulation was implemented to study the binding mechanism of MJ25 and three mutants, to find the changing of individual amino acids in the ß-hair region of MJ25. The binding-free energy calculation was subjected to MJ25 and FhuA. In addition, computational mutation analysis was revealed for association between MJ25 and FhuA. However, we found that the mutating 12th amino acid of the ß-hair region into histidine is extremely important for the binding of MJ25 to FhuA. In addition, the number of hydrogen bonds is essential for binding of MJ25 to FhuA. The overall results show that the key guiding significance is improving the sterilizing efficiency of MJ25 and the drug design of MJ25.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de la Membrana Bacteriana Externa , Bacteriocinas , Escherichia coli , Simulación de Dinámica Molecular
14.
Carbohydr Polym ; 253: 117309, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33278958

RESUMEN

Bacterial resistance to antibiotics is a critical public health concern. Alternatives of antibiotics are needed urgently. Herein, we designed and engineered a new nano-antimicrobial, chitosan nanoparticles (CNs)-antimicrobial peptide microcin J25 (MccJ25) conjugates (CNMs). The engineered CNMs proved to be highly active against Gram-negative and Gram-positive bacteria, and the activity of CNMs and CNs was stable in various thermal and pH environments. Escherichia coli K88 strain treated with CNMs did not acquire resistance in serial passage assays over a period of 18 days. Risk assessment with cell lines showed that CNMs did not cause toxicity. Additionally, CNMs did not reduce the lifespan of C. elegans. In summary, this study demonstrated that CNMs can serve as an excellent novel antimicrobial agent against multi-drug resistance pathogens.


Asunto(s)
Antibacterianos/química , Bacteriocinas/química , Quitosano/química , Nanopartículas/química , Proteínas Citotóxicas Formadoras de Poros/química , Animales , Células CACO-2 , Caenorhabditis elegans/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Longevidad/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Medición de Riesgo , Temperatura
15.
Int J Mol Sci ; 21(18)2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32899529

RESUMEN

Bacterial resistance leads to severe public health and safety issues worldwide. Alternatives to antibiotics are currently needed. A promising lasso peptide, microcin J25 (MccJ25), is considered to be the best potential substitute for antibiotics to treat pathogen infection, including enterotoxigenic Escherichia coli (ETEC). This study evaluated the efficacy of MccJ25 in the prevention of ETEC infection. Forty-five female BALB/c mice of clean grade (aged seven weeks, approximately 16.15 g) were randomly divided into three experimental groups as follows: (i) control group (uninfected); (ii) ETEC infection group; (iii) MccJ25 + ETEC group. Fifteen mice per group in five cages, three mice/cage. MccJ25 conferred effective protection against ETEC-induced body weight loss, decrease in rectal temperature and increase in diarrhea scores in mice. Moreover, in ETEC-challenged mice model, MccJ25 significantly improved intestinal morphology, decreased intestinal histopathological scores and attenuated intestinal inflammation by decreasing proinflammatory cytokines and intestinal permeability, including reducing serum diamine oxidase and D-lactate levels. MccJ25 enhanced epithelial barrier function by increasing occludin expression in the colon and claudin-1 expression in the jejunum, ultimately improving intestinal health of host. MccJ25 was further found to alleviate gut inflammatory responses by decreasing inflammatory cytokine production and expression via the activation of the mitogen-activated protein kinase and nuclear factor κB signaling pathways. Taken together, the results indicated that MccJ25 protects against ETEC-induced intestinal injury and intestinal inflammatory responses, suggesting the potential application of MccJ25 as an excellent antimicrobial or anti-inflammation agent against pathogen infections.


Asunto(s)
Bacteriocinas/farmacología , Infecciones por Escherichia coli/tratamiento farmacológico , Mucosa Intestinal/efectos de los fármacos , Animales , Antibacterianos/farmacología , Bacteriocinas/metabolismo , Claudina-1/metabolismo , Citocinas/metabolismo , Diarrea/metabolismo , Escherichia coli Enterotoxigénica/efectos de los fármacos , Escherichia coli Enterotoxigénica/patogenicidad , Infecciones por Escherichia coli/prevención & control , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Inflamación/metabolismo , Enfermedades Intestinales/metabolismo , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos BALB C , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Ocludina/metabolismo
16.
Front Microbiol ; 11: 988, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528437

RESUMEN

Microcin J25 (MccJ25), a 21-amino acid bacteriocin produced by Escherichia coli (E. coli), is a potent inhibitor of Enterobacteriaceae, including pathogenic E. coli, Salmonella, and Shigella. Its lasso structure makes it highly stable and therefore of interest as a possible antimicrobial agent in foods or as an alternative to antibiotics in livestock production. In the present study, we aimed to evaluate in vitro the inhibitory activity of MccJ25 against Salmonella enterica subsp. enterica serovar Newport ATCC 6962 (Salmonella Newport) used as a model pathogen under conditions simulating those of the swine proximal colon. The growth inhibition activity of MccJ25 against Salmonella Newport was examined in lysogeny broth (LB) and in modified MacFarlane medium that allows miming the swine colonic conditions. The MccJ25 activity was further determined using the Polyfermentor intestinal model (PolyFermS), an in vitro continuous fermentation model that permits deciphering the activity of any antimicrobial molecule in real colon fermentation conditions using selected microbiota. It was set up here to simulate the porcine proximal colon fermentation. In these conditions, the inhibition activity of MccJ25 was compared to those of two antimicrobial agents, reuterin and rifampicin. The minimal inhibitory concentration (MIC) of MccJ25 was determined at 0.03 µM in LB medium, compared to 1,079 and 38 µM for reuterin and rifampicin, respectively, showing a significantly higher potency of MccJ25. Total inhibition of Salmonella Newport was observed in LB medium over 24 h of incubation at concentrations starting from the MIC. In the PolyFermS model, MccJ25 induced a significantly stronger inhibition of Salmonella Newport growth than reuterin or rifampicin. A specific and sensitive LC-MS method allowed to detect and quantify MccJ25 in the PolyFermS fermentation system, showing that MccJ25 remains stable and active against Salmonella in conditions mimicking those found in swine colon. This study paves the way for further exploring the potential of this bacteriocin as an alternative to antibiotics in livestock.

17.
Animals (Basel) ; 10(2)2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32098236

RESUMEN

The purpose of this study was to investigate the effects of antimicrobial peptide microcin J25 (MccJ25) on growth performance, immune regulation, and intestinal microbiota in broilers. A total of 3120 one-day-old male Arbor Acres (AA) broilers were randomly allocated to five groups (12 replicates, 52 chickens per replicate). The treatments were control, challenge (0 mg/kg MccJ25), different dosages of antimicrobial peptide (AMP) (0.5 and 1mg/kg MccJ25), and antibiotic groups (20 mg/kg colistin sulfate). The MccJ25 groups increased the body weight gain (starter and overall) that was reduced in the challenge group. The overall (day 1 to day 42) feed-to-gain ratio (G:F) was significantly decreased in AMP groups compared with the challenge group. Birds fed AMP had a decreased population of total anaerobic bacteria (day 21 and day 42) and E. coli (day 21 and day 42) in feces, as well as a lower Salmonella infection rate (day 21 and day 42) compared with birds in the challenge group. The villus height of the duodenum, jejunum, and ileum, as well as the villus height/crypt depth of the duodenum and jejunum were greater in AMP groups than birds in the challenge group. Moreover, MccJ25 linearly improved the villus height of the duodenum and jejunum. The addition of MccJ25 decreased the concentration of TNF-α, IL-1ß, and IL-6 compared with challenge group. At d 21, MccJ25 linearly reduced the level of IL-6. In conclusion, dietary supplemented MccJ25 effectively improved performance, systematic inflammation, and improved fecal microbiota composition of the broilers.

18.
Int J Mol Sci ; 20(20)2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31627419

RESUMEN

In this study, microcin J25, a potent antimicrobial lasso peptide that acts on Gram-negative bacteria, was subjected to a harsh treatment with a base in order to interrogate its stability and mechanism of action and explore its structure-activity relationship. Despite the high stability reported for this lasso peptide, the chemical treatment led to the detection of a new product. Structural studies revealed that this product retained the lasso topology, but showed no antimicrobial activity due to the epimerization of a key residue for the activity. Further microbiological assays also demonstrated that it showed a high synergistic effect with colistin.


Asunto(s)
Antiinfecciosos/química , Bacteriocinas/química , Antiinfecciosos/farmacología , Bacteriocinas/farmacología , Colistina/química , Colistina/farmacología , Sinergismo Farmacológico , Pruebas de Sensibilidad Microbiana , Estabilidad Proteica
19.
Front Microbiol ; 10: 1954, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31507565

RESUMEN

Natural microcin J25 (MccJ25) represent promising alternatives to traditional antibiotics for the treatment of drug-resistant infections. However, little is known about the antibacterial activity of recombinant MccJ25 against foodborne pathogens. Here, the activity of recombinant MccJ25 was examined using a matrix of conditions in order to assess the efficacy of recombinant MccJ25 as a mitigation against foodborne pathogens, such as Salmonella species and Escherichia coli (E. coli) O157:H7. Results showed that recombinant MccJ25 displayed excellent antimicrobial activity against these foodborne pathogens, including clinical isolates of Salmonella and E. coli, as well as clinical antibiotic-resistant Salmonella and E. coli isolates with different minimal inhibitory concentrations. In addition, antimicrobial activity curves and Live/Dead assay evidenced that recombinant MccJ25 harbors strong bactericidal activity against Salmonella and E. coli O157:H7. Notably, recombinant MccJ25 also had great potency and induced fast mortality against different growth phase of Salmonella and E. coli. The stability analysis results showed that the activity of recombinant MccJ25 was not influenced by temperatures as high as 121°C. Varying the pH from 2.0 to 9.0 did not appear to affect the activity of recombinant MccJ25. Under the challenge of several proteases, simulated gastrointestinal fluids and serum, recombinant MccJ25 still maintained exceptionally strong antimicrobial activity. Significant reductions in Salmonella Pullorum levels were also achieved in food biological environments, such as milk, egg and meat. Moreover, we demonstrated that recombinant MccJ25 appeared to act by inducing membrane breaks, thinning, and disintegration in the Salmonella Pullorum cytoplasmic membrane. Taken together, these results indicated that recombinant MccJ25 could be an effective alternative for mitigating and prevention of Salmonella and E. coli infection in food, animal and agriculture applications.

20.
Proc Natl Acad Sci U S A ; 116(4): 1273-1278, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30626643

RESUMEN

We report crystal structures of the antibacterial lasso peptides microcin J25 (MccJ25) and capistruin (Cap) bound to their natural enzymatic target, the bacterial RNA polymerase (RNAP). Both peptides bind within the RNAP secondary channel, through which NTP substrates enter the RNAP active site, and sterically block trigger-loop folding, which is essential for efficient catalysis by the RNAP. MccJ25 binds deep within the secondary channel in a manner expected to interfere with NTP substrate binding, explaining the partial competitive mechanism of inhibition with respect to NTPs found previously [Mukhopadhyay J, Sineva E, Knight J, Levy RM, Ebright RH (2004) Mol Cell 14:739-751]. The Cap binding determinant on RNAP overlaps, but is not identical to, that of MccJ25. Cap binds further from the RNAP active site and does not sterically interfere with NTP binding, and we show that Cap inhibition is partially noncompetitive with respect to NTPs. This work lays the groundwork for structure determination of other lasso peptides that target the bacterial RNAP and provides a structural foundation to guide lasso peptide antimicrobial engineering approaches.


Asunto(s)
Bacteriocinas/química , Péptidos/química , Transcripción Genética/efectos de los fármacos , Antibacterianos/química , Bacterias/efectos de los fármacos , Dominio Catalítico , ARN Polimerasas Dirigidas por ADN/química , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA