RESUMEN
O método de difusão em ágar tem sido utilizado na avaliação da atividade antimicrobiana desde a descoberta da penicilina. Apesar disso, pouco avanço ocorreu no sentido de reduzir o tempo necessário para a determinação dos halos de inibição de crescimento. O objetivo deste projeto foi desenvolver, otimizar e validar métodos microbiológicos rápidos (MMRs) para a avaliação da potência de agentes antimicrobianos, além de identificar, quantificar e avaliar as principais fontes de incerteza associadas à determinação da potência. O projeto foi dividido em quatro etapas: 1) influência da composição do meio de cultura na formação dos halos de inibição; 2) estudo da incerteza de medição associada à determinação da potência de agentes antimicrobianos; 3) desenvolvimento, otimização e validação de métodos microbiológicos rápidos (MMRs) para determinação da potência de agentes antimicrobianos e 4) determinação dos parâmetros envolvidos na formação dos halos de inibição de crescimento e estudo dos mecanismos de difusão e crescimento microbiano. Os resultados deste projeto possibilitaram a redução do tempo necessário para a determinação do tamanho dos halos de inibição. Adicionalmente, contribuiu com a elucidação dos mecanismos de difusão e crescimento microbiano, possibilitando identificar e quantificar as principais fontes de incerteza de medição associadas à formação dos halos de inibição
Agar diffusion method has been used in the evaluation of antimicrobial activity since the discovery of penicillin. Nevertheless, little progress has occurred in order to reduce the time required for the determination of growth inhibition zones. The goal of this project was to develop, optimize and validate rapid microbiological methods (RMMs) for evaluation of potency of antimicrobials, as well as to identify, quantify and assess the main sources of uncertainty associated with potency. The project was divided into four steps: 1) influence of culture medium composition on inhibition zones; 2) study of measurement uncertainty associated with antimicrobials potencies; 3) development, optimization and validation of rapid microbiological methods (RMMs) for the determination of antimicrobials potencies and 4) determination of the parameters involved in the formation of inhibition zones and study of mechanisms of diffusion and microbial growth. The results of this project allowed the reduction of the time required for the determination of inhibition zone sizes. Additionally, it contributed to the elucidation of the mechanisms of diffusion and microbial growth, making it possible to identify and quantify the main sources of measurement uncertainty associated with formation of inhibition zone sizes
Asunto(s)
Agar/administración & dosificación , Incertidumbre , Métodos , Antiinfecciosos/análisis , Penicilinas/administración & dosificación , Crecimiento y Desarrollo , Difusión , Optimización de Procesos/clasificaciónRESUMEN
Sterility testing as described in the pharmacopoeia compendia requires a 14-day incubation period to obtain an analytical result. Alternative methods that could be applied to evaluating product sterility are especially interesting due to the possibility of reducing this incubation period and thus the associated costs. The aims of this study were to evaluate the performance of the BacT/ALERT(R) 3D system in detecting microorganisms in large-volume parenteral solutions that were intentionally contaminated and to compare this system to pharmacopoeia sterility testing using the membrane filtration method. The results indicated that there were no significant differences between the methods regarding the ability to detect microbial contamination; however, detection with the BacT/ALERT(R) 3D system was faster compared to the pharmacopoeia method. Therefore, the BacT/ALERT(R) 3D system is a viable alternative for assessing the sterility of injectable products.
Asunto(s)
Bacterias/aislamiento & purificación , Hongos/aislamiento & purificación , Técnicas Microbiológicas/métodos , Control de Calidad , Esterilización , Bacterias/crecimiento & desarrollo , Carga Bacteriana , Filtración/métodos , Hongos/crecimiento & desarrolloRESUMEN
Sterility testing as described in the pharmacopoeia compendia requires a 14-day incubation period to obtain an analytical result. Alternative methods that could be applied to evaluating product sterility are especially interesting due to the possibility of reducing this incubation period and thus the associated costs. The aims of this study were to evaluate the performance of the BacT/ALERTR 3D system in detecting microorganisms in large-volume parenteral solutions that were intentionally contaminated and to compare this system to pharmacopoeia sterility testing using the membrane filtration method. The results indicated that there were no significant differences between the methods regarding the ability to detect microbial contamination; however, detection with the BacT/ALERTR 3D system was faster compared to the pharmacopoeia method. Therefore, the BacT/ALERTR 3D system is a viable alternative for assessing the sterility of injectable products..(AU)
Asunto(s)
Bacterias/aislamiento & purificación , Hongos/aislamiento & purificación , Control de Calidad , Esterilización , Bacterias/crecimiento & desarrollo , Carga Bacteriana , Filtración/métodos , Hongos/crecimiento & desarrolloRESUMEN
Sterility testing as described in the pharmacopoeia compendia requires a 14-day incubation period to obtain an analytical result. Alternative methods that could be applied to evaluating product sterility are especially interesting due to the possibility of reducing this incubation period and thus the associated costs. The aims of this study were to evaluate the performance of the BacT/ALERTR 3D system in detecting microorganisms in large-volume parenteral solutions that were intentionally contaminated and to compare this system to pharmacopoeia sterility testing using the membrane filtration method. The results indicated that there were no significant differences between the methods regarding the ability to detect microbial contamination; however, detection with the BacT/ALERTR 3D system was faster compared to the pharmacopoeia method. Therefore, the BacT/ALERTR 3D system is a viable alternative for assessing the sterility of injectable products.
.Asunto(s)
Bacterias/aislamiento & purificación , Hongos/aislamiento & purificación , Técnicas Microbiológicas/métodos , Control de Calidad , Esterilización , Carga Bacteriana , Bacterias/crecimiento & desarrollo , Filtración/métodos , Hongos/crecimiento & desarrolloRESUMEN
Daptomycin is an important antimicrobial for clinical practice, mainly because it remains very active against Gram-positive resistant strains, such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. Development of microbiological methods for the analysis of antimicrobials is highly recommended, since they can provide important information about their biological activities, which physicochemical methods are not able to provide. Considering that there are no studies in the literature describing microbiological methods for the analysis of daptomycin, the aim of this work was to validate a microbiological method for the quantitation of daptomycin by the turbidimetric assay. Staphylococcus aureus was used as the test microorganism, and the brain heart infusion broth was used as the culture medium. The validation of the method was performed according to the ICH guidelines, and it was shown to be linear, precise, robust, accurate and selective, over a concentration range of 8.0 to 18.0 µg mL-1. Student's t-test showed the interchangeability of the proposed method with a previously-validated HPLC method. The developed turbidimetric method described in this paper is a convenient alternative for the routine quality control of daptomycin in its pharmaceutical dosage form.