Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Environ Manage ; 370: 122502, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39293109

RESUMEN

The high content of recalcitrant lignocellulose in green waste (GW) makes composting and degradation challenging. Conventional GW composting typically employs single-strain microbial inoculants (MIs) with limited enzyme production capabilities, resulting in low composting efficiency and suboptimal compost product quality. In this study, Bacillus amyloliquefaciens (J1), Clonostachys rogersoniana (B2), and Streptomyces thermoviolaceus (J3) was utilized to optimize cultivation conditions and strain ratios based on enzyme activity indicators. The aim was to develop a potent three-strain lignocellulose-degrading MIs and test the hypothesis that its performance is superior to that of single-strain and two-strain MIs in terms of lignocellulose degradation and compost maturation. The results indicated that, the optimal treatment was T7, which was inoculated with a three-strain MIs composed of the spore suspensions of J1, B2, and J3 with a volume ratio of 3:3:2. Specifically, compared to the control (without MI), T7 increased the content of particle size between 0.25 and 2.00 mm and humic acid by 17% and 291%, respectively. Furthermore, T7 enhanced the degradation rates of cellulose, hemicellulose, and lignin by 197%, 145%, and 113%, respectively, and increased the activities of laccase, manganese peroxidase, lignin peroxidase, and carboxymethyl cellulase by 605%, 269%, 180%, and 228%, respectively. Additionally, T7 increased the relative abundance of bacteria (e.g. Pseudomonas) and fungi (e.g. Parascedosporium) that facilitated lignocellulose degradation, enhanced the alpha diversity index and promoted the formation of a microbial community structure characterized by prominent dominant species and greater diversity. Remarkably, the inoculation with the three-strain MI yielded high-quality compost within 32 days.

2.
J Hazard Mater ; 477: 135355, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39068883

RESUMEN

Co-composting with exogenous microbial inoculant, presents an effective approach for the harmless utilization of livestock manure and agroforestry wastes. However, the impact of inoculant application on the variations of viral and antibiotic resistance genes (ARGs) remains poorly understood, particularly under varying manure quantity (low 10 % vs. high 20 % w/w). Thus, employing virome and metagenomic sequencing, we examined the influence of Streptomyces-Bacillus Inoculants (SBI) on viral communities, phytopathogen, ARGs, mobile genetic elements, and their interrelations. Our results indicate that SBI shifted dominant bacterial species from Phenylobacterium to thermotropic Bordetella, and the quantity of manure mediates the effect of SBI on whole bacterial community. Major ARGs and genetic elements experienced substantial changes with SBI addition. There was a higher ARGs elimination rate in the composts with low (∼76 %) than those with high manure (∼70 %) application. Virus emerged as a critical factor influencing ARG dynamics. We observed a significant variation in virus community, transitioning from Gemycircularvirus- (∼95 %) to Chlamydiamicrovirus-dominance. RDA analysis revealed that Gemycircularvirus was the most influential taxon in shaping ARGs, with its abundance decreased approximately 80 % after composting. Collectively, these findings underscore the role of microbial inoculants in modulating virus communities and ARGs during biowaste co-composting.


Asunto(s)
Compostaje , Farmacorresistencia Microbiana , Estiércol , Metagenómica , Streptomyces , Estiércol/microbiología , Estiércol/virología , Streptomyces/genética , Farmacorresistencia Microbiana/genética , Viroma/genética , Bacterias/efectos de los fármacos , Bacterias/genética , Virus/efectos de los fármacos , Virus/genética , Microbiología del Suelo , Antibacterianos/farmacología , Metagenoma
3.
Microbiol Spectr ; 12(8): e0404623, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38989997

RESUMEN

Over-application of chemical fertilizers and continuous cropping obstacles seriously restrict the sustainable development of tobacco production. Localized fertilization of beneficial microbes has potential advantages in achieving higher productivity, but the underlying biological mechanisms of interactions between rhizospheric microorganisms and the related metabolic cycle remain poorly characterized. Here, an integrative analysis of microbiomes with non-targeted metabolomics was performed on 30 soil samples of rhizosphere, root surrounding, and bulk soils from flue-cured tobacco under continuous and non-continuous monocropping systems. The analysis was conducted using UPLC-MS/MS platforms and high-throughput amplicon sequencing targeting the bacterial 16S rRNA gene and fungal ITS gene. The microbial inoculant consisted of Bacillus subtilis, B. velezensis, and B. licheniformis at the ratio of 1:1:1 in effective microbial counts, improved the cured leaf yield and disease resistance of tobacco, and enhanced nicotine and nitrogen contents of tobacco leaves. The bacterial taxa Rhizobium, Pseudomonas, Sphingomonadaceae, and Burkholderiaceae of the phylum Proteobacteria accumulated in high relative abundance and were identified as biomarkers following the application of the microbial inoculant. Under continuous monocropping, metabolomics demonstrated that the application of the microbial inoculant significantly affected the soil metabolite spectrum, and the differential metabolites were significantly enriched to the synthesis and degradation of nicotine (nicotinate and nicotinamide metabolism and biosynthesis of alkaloids derived from nicotinic acid). In addition, microbes were closely related to the accumulation of metabolites through correlation analysis. The interactions between plant roots and rhizospheric microorganisms provide valuable information for understanding how these beneficial microbes affect complex biological processes and the adaption capacity of plants to environments.IMPORTANCEThis study elaborated on how the microbial fertilizer significantly changed overall community structures and metabolite spectrum of rhizospheric microbes, which provide insights into the process of rhizosphere microbial remolding in response to continuous monocropping. we verified the hypothesis that the application of the microbial inoculant in continuous cropping would lead to the selection of distinct microbiota communities by establishing models to correlate biomarkers. Through correlation analysis of the microbiome and metabolome, we proved that rhizospheric microbes were closely related to the accumulation of metabolites, including the synthesis and degradation of nicotine. The interactions between plant roots and rhizospheric microorganisms provide valuable information for understanding how these beneficial microbes affect complex biological processes and the adaption capacity of plants to environments.


Asunto(s)
Bacterias , Metaboloma , Microbiota , Nicotiana , Rizosfera , Microbiología del Suelo , Nicotiana/microbiología , Nicotiana/metabolismo , Nicotiana/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Suelo/química , Fertilizantes/análisis , ARN Ribosómico 16S/genética , Inoculantes Agrícolas/metabolismo , Hojas de la Planta/microbiología , Hojas de la Planta/metabolismo
4.
Front Microbiol ; 15: 1405564, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881654

RESUMEN

Distilled grain waste (DGW) is rich in nutrients and can be a potential resource as animal feed. However, DGW contains as much as 14% lignin, dramatically reducing the feeding value. White-rot fungi such as Pleurotus ostreatus could preferentially degrade lignin with high efficiency. However, lignin derivatives generated during alcohol distillation inhibit P. ostreatus growth. Thus, finding a new strategy to adjust the DGW properties to facilitate P. ostreatus growth is critical for animal feed preparation and DGW recycling. In this study, three dominant indigenous bacteria, including Sphingobacterium thermophilum X1, Pseudoxanthomonas byssovorax X3, and Bacillus velezensis 15F were chosen to generate single and compound microbial inoculums for DGW composting to prepare substrates for P. ostreatus growth. Compared with non-inoculated control or single microbial inoculation, all composite inoculations, especially the three-microbial compound, led to faster organic metabolism, shorter composting process, and improved physicochemical properties of DGW. P. ostreatus growth assays showed the fastest mycelial colonization (20.43 µg·g-1 ergosterol) and extension (9 mm/d), the highest ligninolytic enzyme activities (Lac, 152.68 U·g-1; Lip, 15.56 U·g-1; MnP, 0.34 U·g-1; Xylanase, 10.98 U·g-1; FPase, 0.71 U·g-1), and the highest lignin degradation ratio (30.77%) in the DGW sample after 12 h of composting with the three-microbial compound inoculation when compared to other groups. This sample was relatively abundant in bacteria playing critical roles in amino acid, carbohydrate, energy metabolism, and xenobiotic biodegradation, as suggested by metagenomic analysis. The feed value analysis revealed that P. ostreatus mycelia full colonization in composted DGW led to high fiber content retention and decreased lignin content (final ratio of 5% lignin) but elevated protein concentrations (about 130 g·kg-1 DM). An additional daily weight gain of 0.4 kg/d was shown in cattle feeding experiments by replacing 60% of regular feed with it. These findings demonstrate that compound inoculant consisting of three indigenous microorganisms is efficient to compost DGW and facilitate P. ostreatus growth. P. ostreatus decreased the lignin content of composted DGW during its mycelial growth, improving the quality of DGW for feeding cattle.

5.
World J Microbiol Biotechnol ; 40(5): 162, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613584

RESUMEN

Chemical pesticides and fertilizers are used in agricultural production worldwide to prevent damage from plant pathogenic microorganisms, insects, and nematodes, to minimize crop losses and to preserve crop quality. However, the use of chemical pesticides and fertilizers can severely pollute soil, water, and air, posing risks to the environment and human health. Consequently, developing new, alternative, environment-friendly microbial soil treatment interventions for plant protection and crop yield increase has become indispensable. Members of the filamentous fungal genus Trichoderma (Ascomycota, Sordariomycetes, Hypocreales) have long been known as efficient antagonists of plant pathogenic microorganisms based on various beneficial traits and abilities of these fungi. This minireview aims to discuss the advances in the field of Trichoderma-containing multicomponent microbiological inoculants based on recent experimental updates. Trichoderma strains can be combined with each other, with other fungi and/or with beneficial bacteria. The development and field performance of such inoculants will be addressed, focusing on the complementarity, synergy, and compatibility of their microbial components.


Asunto(s)
Inoculantes Agrícolas , Plaguicidas , Trichoderma , Humanos , Fertilizantes , Suelo
6.
J Agric Food Chem ; 72(11): 5659-5670, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38442360

RESUMEN

Nitrogen is the most limiting factor in crop production. Legumes establish a symbiotic relationship with rhizobia and enhance nitrogen fixation. We analyzed 1,624 rhizosphere 16S rRNA gene samples and 113 rhizosphere metagenomic samples from three typical legumes and three non-legumes. The rhizosphere microbial community of the legumes had low diversity and was enriched with nitrogen-cycling bacteria (Sphingomonadaceae, Xanthobacteraceae, Rhizobiaceae, and Bacillaceae). Furthermore, the rhizosphere microbiota of legumes exhibited a high abundance of nitrogen-fixing genes, reflecting a stronger nitrogen-fixing potential, and Streptomycetaceae and Nocardioidaceae were the predominant nitrogen-fixing bacteria. We also identified helper bacteria and confirmed through metadata analysis and a pot experiment that the synthesis of riboflavin by helper bacteria is the key factor in promoting nitrogen fixation. Our study emphasizes that the construction of synthetic communities of nitrogen-fixing bacteria and helper bacteria is crucial for the development of efficient nitrogen-fixing microbial fertilizers.


Asunto(s)
Fabaceae , Microbiota , Fabaceae/genética , Rizosfera , Fijación del Nitrógeno , ARN Ribosómico 16S/genética , Microbiota/genética , Verduras/genética , Bacterias/genética , Nitrógeno , Microbiología del Suelo
7.
Sci Total Environ ; 925: 171812, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38508267

RESUMEN

Salvia miltiorrhiza, a widely used medicinal herb renowned for its properties in promoting blood circulation, removing blood stasis and alleviating pain, is currently facing quality degradation due to excessive heavy metal levels, posing a threat to medication safety. In order to investigate the effects of microbial inoculant, microalgae and biochar on the growth of Salvia miltiorrhiza under copper (Cu) stress, as well as its Cu absorption, antioxidant activity, active component contents and rhizosphere microbial community, a pot experiment was conducted. Salvia miltiorrhiza plants were cultivated in the soil containing 400 mg/kg of Cu for six months and treated with microbial inoculant, microalgae and biochar, either individually or in combination. Almost all soil amendment treatments led to an increase in root biomass. Notably, co-application of microbial inoculant and microalgae had the optimal effect with a 63.07 % increase compared to the group treated solely with Cu. Moreover, when microbial inoculant was applied alone or in combination with microalgae, the Cu content in plant roots was reduced by 19.29 % and 25.37 %, respectively, whereas other treatments failed to show a decreasing trend. Intriguingly, Cu stress increased the active component contents in plant roots, and they could also be enhanced beyond non-stress levels when microbial inoculant and microalgae were applied together or in combination with biochar. Analyses of plant antioxidant activity, soil properties and rhizosphere microorganisms indicated that these amendments may alleviate Cu stress by enhancing peroxidase activity, facilitating plant nutrient absorption, and enriching beneficial microorganisms capable of promoting plant growth and mitigating heavy metal-induced damage. This study suggests that the combined application of microbial inoculant and microalgae can reduce Cu levels in Salvia miltiorrhiza while enhancing its quality under Cu stress.


Asunto(s)
Inoculantes Agrícolas , Microalgas , Salvia miltiorrhiza , Rizosfera , Antioxidantes/metabolismo , Salvia miltiorrhiza/metabolismo , Carbón Orgánico/metabolismo , Suelo , Cobre/toxicidad , Cobre/metabolismo
8.
Sci Total Environ ; 923: 171419, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38442752

RESUMEN

The incorporation of straw with decomposing inoculants into soils has been widely recommended to sustain agricultural productivity. However, comprehensive analyses assessing the effects of straw combined with decomposing inoculants on greenhouse gas (GHG) emissions, net primary production (NPP), the net ecosystem carbon budget (NECB), and the carbon footprint (CF) in farmland ecosystems are scant. Here, we carried out a 2-year field study in a wheat cropping system with six treatments: rice straw (S), a straw-decomposing Bacillus subtilis inoculant (K), a straw-decomposing Aspergillus oryzae inoculant (Q), a combination of straw and Bacillus subtilis inoculant (SK), a combination of straw and Aspergillus oryzae inoculant (SQ), and a control with no rice straw or decomposing inoculant (Control). We found that all the treatments resulted in a positive NECB ranging between 838 and 5065 kg C ha-1. Relative to the Control, the S treatment increased CO2 emissions by 16%, while considerably enhancing the NECB by 349%. This difference might be attributed to the straw C input and an increase in plant productivity (NPP, 30%). More importantly, in comparison to that in S, the NECB in SK and SQ significantly increased by 27-35% due to the positive response of NPP to the decomposing inoculants. Although the combination of straw and decomposing inoculants yielded a 3% increase in indirect GHG emissions, it also exhibited the lowest CF (0.18 kg CO2-eq kg-1 of grain). This result was attributed to the synergistic effects of straw and decomposing inoculants, which reduced direct N2O emissions and increased wheat productivity. Overall, the findings of the present study suggested that the combined amendment of straw and decomposing inoculants is an environmentally sustainable management practice in wheat cropping systems that can generate win-win scenarios through improvements in soil C stock, crop productivity, and GHG mitigation.


Asunto(s)
Carbono , Gases de Efecto Invernadero , Huella de Carbono , Ecosistema , Triticum , Dióxido de Carbono/análisis , Óxido Nitroso/análisis , Agricultura/métodos , Suelo , China
9.
Chemosphere ; 352: 141349, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38307335

RESUMEN

The adsorption characteristics and mechanism of Cd2+ on microbial inoculant (MI) mainly composed of Bacillus subtilis, Bacillus thuringiensis and Bacillus amyloliquefaciens, and its potential for remediation Cd polluted soils through batch adsorption and soil incubation experiments. It was found that the Freundlich isotherm model and the pseudo-second-order kinetics were more in line with the adsorption processes of Cd2+. The maximum adsorption capacity predicted by Langmuir isotherm model suggested that of MI was 57.38 mg g-1. Scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) images exhibited the surface structure of MI was damaged to varying degrees after adsorption, and Cd element was distributed on the surface of MI through ion exchange. X-ray diffraction (XRD) results showed that CdCO3 was formed on the surface of MI. Moreover, the functional groups (-OH, C-H, and -NH) involved in the adsorption of Cd2+ through fourier transform infrared spectroscopy (FTIR). After applying MI to Cd-contaminated soil, it was found that soil pH, conductivity (EC) and soil organic matter (SOM) increased by 0.84 %-2.43 %, 31.6 %-241.48 %, and 8.11 %-24.1 %, respectively, when compared with the control treatments. The content of DTPA-Cd in the soils was significantly (P < 0.05) reduced by 15.48 %-29.68 % in contrast with CK, and the Cd speciation was transformed into a more stable residual fraction. The activities of urease, phosphatase and sucrose were increased by 3.5 %-45.18 %, 57.00 %-134.18 % and 52.51 %-70.52 %, respectively, compared with CK. Therefore, MI could be used as an ecofriendly and sustainable material for bioremediation of Cd-contaminated soils.


Asunto(s)
Inoculantes Agrícolas , Cadmio , Cadmio/análisis , Adsorción , Granjas , Cinética , Suelo/química , Espectroscopía Infrarroja por Transformada de Fourier , Concentración de Iones de Hidrógeno
10.
Environ Sci Pollut Res Int ; 30(57): 120915-120929, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37945959

RESUMEN

Currently, there is a noticeable scarcity of applications that harness composite microbial inoculants to stimulate straw decomposition, nitrogen fixation, and crop growth. This study addresses this gap by selecting and coculturing three bacterial strains to create a composite microbial inoculant named HY-1. This innovative inoculant exhibits multifunctional capabilities, including nitrogen fixation, straw decomposition, and crop growth promotion. Furthermore, we aimed to explore its impact on soil microbial communities. The results showed that the optimal preparation conditions for the compound microbial inoculant HY-1 were 28.5 ± 0.6 °C, pH = 7.34 ± 0.40, and bacteriophage ratio 1:2:1 (Microbacterium: Streptomyces fasciatus: Bacillus amyloliquefaciens). Compared to single strains, the combination exhibited higher levels of cellulose-degrading and nitrogen-fixing enzyme activity, increased the straw degradation rate by 37.91% within 180 days, and significantly promoted the growth of corn seedlings. Under the condition of straw return, the compound bio-fungicide HY-1 effectively improved the soil microbial diversity. At that time, the soil had the highest number of unique bacterial operational taxonomic units (166), and the abundance of Proteobacteria in the soil increased by 7.24%, while that of Acidobacteriota decreased by 2.27%. The biosynthetic function of the cell wall/membrane/periplasm and the metabolic function of transporting inorganic ions were significantly enhanced. In this study, we discovered that employing coculturing techniques to produce the composite microbial inoculant HY-1 and applying it in the field effectively compensates for the limitations of single-strain inoculants, which often exhibit fewer functions and less pronounced effects. This approach demonstrates significant potential for enhancing the quality of agricultural soils.


Asunto(s)
Inoculantes Agrícolas , Microbiota , Suelo , Agricultura , Microbiología del Suelo
11.
Life (Basel) ; 13(10)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37895375

RESUMEN

Although straw is an abundant and useful agricultural byproduct, it, however, exhibits hardly any decomposition and transformation. Despite the successful application of chemical and biological substrates for accelerating straw decomposition, the co-effects and mechanisms involved are still unknown. Herein, we performed a 120 day field trial to examine the co-effects of a nitrogen fertilizer (N) and a straw-decomposing microbial inoculant (SDMI) on the straw mass, nutrient release, and the straw chemical structure of composted wheat straw in the Chaohu Lake area, East China. For this purpose, four treatments were selected with straw: S (straw only), NS (N + straw), MS (SDMI + straw), and NMS (N + SDMI + straw). Our results indicated that NMS caused a higher straw decomposition rate than S, NS, and MS (p < 0.05) after 120 days of composting. The N, P, and K discharge rates in treating with NMS were higher than other the treatments at 120 days. The A/OA ratios of the straw residues were gradually increased during the composting, but the treatment of NMS and MS was lower than the CK at the latter stage. The RDA showed that the decomposition rate, nutrient release, and the chemical structure change in the straw were cumulative, while respiration was strongly correlated with lignin peroxidase, manganese peroxidase, and neutral xylanase. In conclusion, nitrogen fertilizer or straw-decomposing microbial inoculant application can improve the decomposition rate and nutrient release with oxidase activity intensified. However, the co-application of nitrogen fertilizer and a straw-decomposing microbial inoculant promoted straw decomposition and enzyme activity better than a single application and showed a lower decomposition degree, which means more potential for further decomposing after 120 days.

12.
J Fungi (Basel) ; 9(9)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37755001

RESUMEN

Soil salinity is a limiting factor in crop productivity. Inoculating crops with microorganisms adapted to salt stress is an alternative to increasing plant salinity tolerance. Few studies have simultaneously propagated arbuscular mycorrhizal fungi (AMF) and dark septate fungi (DSF) using different sources of native inoculum from halophyte plants and evaluated their effectiveness. In alfalfa plants as trap culture, this study assessed the infectivity of 38 microbial consortia native from rhizosphere soil (19) or roots (19) from six halophyte plants, as well as their effectiveness in mitigating salinity stress. Inoculation with soil resulted in 26-56% colonization by AMF and 12-32% by DSF. Root inoculation produced 10-56% and 8-24% colonization by AMF and DSF, respectively. There was no difference in the number of spores of AMF produced with both inoculum types. The effective consortia were selected based on low Na but high P and K shoot concentrations that are variable and are relevant for plant nutrition and salt stress mitigation. This microbial consortia selection may be a novel and applicable model, which would allow the production of native microbial inoculants adapted to salinity to diminish the harmful effects of salinity stress in glycophyte plants in the context of sustainable agriculture.

13.
Microb Ecol ; 86(4): 2211-2230, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37280438

RESUMEN

Microbial catabolic activity (MCA) defined as the degrading activity of microorganisms toward various organic compounds for their growth and energy is commonly used to assess soil microbial function potential. For its measure, several methods are available including multi-substrate-induced respiration (MSIR) measurement which allow to estimate functional diversity using selected carbon substrates targeting specific biochemical pathways. In this review, the techniques used to measure soil MCA are described and compared with respect to their accuracy and practical use. Particularly the efficiency of MSIR-based approaches as soil microbial function indicators was discussed by (i) showing their sensitivity to different agricultural practices including tillage, amendments, and cropping systems and (ii) by investigating their relationship with soil enzyme activities and some soil chemical properties (pH, soil organic carbon, cation exchange capacity). We highlighted the potential of these MSIR-based MCA measurements to improve microbial inoculant composition and to determine their potential effects on soil microbial functions. Finally, we have proposed ideas for improving MCA measurement notably through the use of molecular tools and stable isotope probing which can be combined with classic MSIR methods. Graphical abstract describing the interrelation between the different parts and the concepts developed in the review.


Asunto(s)
Inoculantes Agrícolas , Suelo , Suelo/química , Carbono , Agricultura/métodos , Microbiología del Suelo
14.
J Zhejiang Univ Sci B ; 24(4): 336-344, 2023 Apr 15.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37056209

RESUMEN

Recently, returning straw to the fields has been proved as a direct and effective method to tackle soil nutrient loss and agricultural pollution. Meanwhile, the slow decomposition of straw may harm the growth of the next crop. This study aimed to determine the effects of rumen microorganisms (RMs) on straw decomposition, bacterial microbial community structure, soil properties, and soil enzyme activity. The results showed that RMs significantly enhanced the degradation rate of straw in the soil, reaching 39.52%, which was 41.37% higher than that of the control on the 30th day after straw return. After 30 d, straw degradation showed a significant slower trend in both the control and the experimental groups. According to the soil physicochemical parameters, the application of rumen fluid expedited soil matter transformation and nutrient buildup, and increased the urease, sucrase, and cellulase activity by 10%‒20%. The qualitative analysis of straw showed that the hydroxyl functional group structure of cellulose in straw was greatly damaged after the application of rumen fluid. The analysis of soil microbial community structure revealed that the addition of rumen fluid led to the proliferation of Actinobacteria with strong cellulose degradation ability, which was the main reason for the accelerated straw decomposition. Our study highlights that returning rice straw to the fields with rumen fluid inoculation can be used as an effective measure to enhance the biological value of recycled rice straw, proposing a viable solution to the problem of sluggish straw decomposition.


Asunto(s)
Microbiota , Oryza , Animales , Rumen/metabolismo , Agricultura/métodos , Suelo/química , Bacterias/metabolismo , Oryza/metabolismo , Microbiología del Suelo , Celulosa
15.
J Anim Sci Technol ; 65(1): 96-112, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37093953

RESUMEN

Rye (Secale cereale L.) is a valuable annual forage crop in Korea but there is limited information about the impact of chemical and biological additives on fermentation characteristics of the crop. This experiment was conducted to investigate fermentation dynamics of wilted forage rye treated with the following six additives; control (no additive), sodium diacetate applied at 3 g/kg wilted forage weight (SDA3), 6 g/kg wilted forage weight (SDA6), inoculations (106 CFU/g wilted forage) of Lactobacillus plantarum (LP), L. buchneri (LB), or LP+LB. The ensiled rye sampled at 1, 2, 3, 5, 10, 20, 30, and 45 days indicated that the acidification occurred fast within five days of storage than the rest of the storage period. The microbial inoculants decline the pH of ensiled forage, more rapidly than the control or SDA treated, which accompanied by the decrease of water-soluble carbohydrates and increase of lactic acid. Compared with the control silage, all treatments suppressed ammonia-nitrogen formation below to 35 g/kg DM throughout the sampling period. Suppression of total microbial counting occurred in SDA6, LP, and LP + LB. The lactic acid production rates were generally higher in microbial inoculation treatments. Acetic acid concentration was lowest in the LP-treated silage and highest in the SDA- and LB-treated silages. The in vitro dry matter (DM) digestibility and total digestible nutrients were the highest in the silage treated with SDA (6 g/kg) at day 45 of ensiling. Based on lower ammonia-nitrogen concentrations and higher feed value, ensiling forage rye treated with SDA at 6 g/kg is promising through enhanced silage quality.

16.
Microorganisms ; 11(3)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36985145

RESUMEN

Microbial inoculants can be used to restore abandoned mines because of their positive effects on plant growth and soil nutrients. Currently, soils in greenhouse pot studies are routinely sterilized to eradicate microorganisms, allowing for better inoculant colonization. Large-scale field sterilization of abandoned mining site soils for restoration is difficult, though. In addition, microbial inoculants have an impact on plants. Plants also have an impact on local microbes. The interactions among microbial inoculants, native microorganisms, and plants, however, have not been studied. We created a pot experiment utilizing the soil and microbial inoculant from a previous experiment because it promoted plant growth in that experiment. To evaluate the effects of the plants, native microorganisms, and microbial inoculants, we assessed several indicators related to soil elemental cycling and integrated them into the soil multifunctionality index. The addition of the microbial inoculant and sterilizing treatment had a significant impact on alfalfa growth. When exposed to microbial inoculant treatments, the plant and sterilization treatments displayed radically different functional characteristics, where most of the unsterilized plant treatment indices were higher than those of the others. The addition of microbial inoculant significantly increased soil multifunctionality in plant treatments, particularly in the unsterilized plant treatment, where the increase in soil multifunctionality was 260%. The effect size result shows that the positive effect of microbial inoculant on soil multifunctionality and unsterilized plant treatment had the most significant promotion effect. Plant and native microorganisms amplify the positive effects of microbial inoculant.

17.
Anim Biosci ; 36(5): 720-730, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36397704

RESUMEN

OBJECTIVE: This study investigated the effects of corn silage as a source of microbial inoculant containing antifungal and carboxylesterase-producing bacteria on fermentation, aerobic stability, and nutrient digestibility of fermented total mixed ration (FTMR) with different energy levels. METHODS: Corn silage was used as a bacterial source by ensiling for 72 d with an inoculant mixture of Lactobacillus brevis 5M2 and L. buchneri 6M1 at a 1:1 ratio. The corn silage without or with inoculant (CON vs MIX) was mixed with the other ingredients to formulate for low and high energy diets (LOW vs HIGH) for Hanwoo steers. All diets were ensiled into 20 L mini silo (5 kg) for 40 d in quadruplicate. RESULTS: The MIX diets had lower (p<0.05) acid detergent fiber with higher (p<0.05) in vitro digestibilities of dry matter and neutral detergent fiber compared to the CON diets. In terms of fermentation characteristics, the MIX diets had higher (p<0.05) acetate than the CON diets. The MIX diets had extended (p<0.05) lactic acid bacteria growth at 4 to 7 d of aerobic exposure and showed lower (p<0.05) yeast growth at 7 d of aerobic exposure than the CON diets. In terms of rumen fermentation, the MIX diets had higher (p<0.05) total fermentable fraction and total volatile fatty acid, with lower (p<0.05) pH than those of CON diets. The interaction (p = 0.036) between inoculant and diet level was only found in the immediately fermentable fraction, which inoculant was only effective on LOW diets. CONCLUSION: Application of corn silage with inoculant on FTMR presented an antifungal effect by inhibiting yeast at aerobic exposure and a carboxylesterase effect by improving nutrient digestibility. It also indicated that fermented feedstuffs could be used as microbial source for FTMR. Generally, the interaction between inoculant and diet level had less effect on this FTMR study.

18.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-982372

RESUMEN

Recently, returning straw to the fields has been proved as a direct and effective method to tackle soil nutrient loss and agricultural pollution. Meanwhile, the slow decomposition of straw may harm the growth of the next crop. This study aimed to determine the effects of rumen microorganisms (RMs) on straw decomposition, bacterial microbial community structure, soil properties, and soil enzyme activity. The results showed that RMs significantly enhanced the degradation rate of straw in the soil, reaching 39.52%, which was 41.37% higher than that of the control on the 30th day after straw return. After 30 d, straw degradation showed a significant slower trend in both the control and the experimental groups. According to the soil physicochemical parameters, the application of rumen fluid expedited soil matter transformation and nutrient buildup, and increased the urease, sucrase, and cellulase activity by 10%‒20%. The qualitative analysis of straw showed that the hydroxyl functional group structure of cellulose in straw was greatly damaged after the application of rumen fluid. The analysis of soil microbial community structure revealed that the addition of rumen fluid led to the proliferation of Actinobacteria with strong cellulose degradation ability, which was the main reason for the accelerated straw decomposition. Our study highlights that returning rice straw to the fields with rumen fluid inoculation can be used as an effective measure to enhance the biological value of recycled rice straw, proposing a viable solution to the problem of sluggish straw decomposition.


Asunto(s)
Animales , Rumen/metabolismo , Agricultura/métodos , Suelo/química , Microbiota , Bacterias/metabolismo , Oryza/metabolismo , Microbiología del Suelo , Celulosa
19.
Ying Yong Sheng Tai Xue Bao ; 34(12): 3357-3363, 2023 Dec.
Artículo en Chino | MEDLINE | ID: mdl-38511375

RESUMEN

We analyzed the particle size distribution of soil aggregates in 0-20 and 20-40 cm soil layers of rice-wheat rotation field based on a field plot test with two treatments, conventional straw returning (CK) and straw returning with the addition of straw decomposition promoting microbial inoculants (IT). We evaluated the water stability indices of soil aggregates (the number of soil water stable large aggregates R0.25, the average weight diameter MWD, and the geometric average diameter GMD), and measured the contents of soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) in the soil aggregates of <0.053, 0.053-0.25, 0.25-1, >1 mm. The results showed that: 1) The number of aggregates <0.053, 0.053-0.25, >0.25 mm in the 0-20 and 20-40 cm soil layers under IT decreased by 10.0% and 6.8%, increased by 3.0% and 5.7%, and 17.9% and 26.1% compared with CK, respectively. IT effectively increased R0.25, MWD, and GMD by 26.4%, 20.0%, 18.2% and 18.2%, 10.5%, 10.0% in 0-20 and 20-40 cm soil, respectively. 2) Compared to CK, the TP content of 0.25-1 mm aggregates in 0-20 and 20-40 cm soil under IT was significantly increased by 40.3% and 37.5%, respectively, without difference in TN and SOC contents. There was no significant difference in nutrient contents of the other aggregates between the treatments. The contents of SOC and TN in large aggregates (>0.25 mm) were higher than those in silty aggregates (<0.053 mm). Compared to CK, the cumulative contribution rates of SOC, TN and TP of <0.053 mm aggregates under IT were decreased in two soil layers. There was no significant difference in the nutrient cumulative contribution rates of 0.053-0.25 mm aggregates between treatments. The cumulative contribution rates of SOC, TN, and TP of large aggregates (>0.25 mm) under IT were 32.1%, 19.6%, 52.8% and 22.8%, 11.8%, 42.9% higher than those under CK in 0-20 and 20-40 cm soils, respectively. 3) The number of <0.053 mm aggregates was significantly negatively correlated with SOC and TP contents, while that of 0.053-0.25 mm aggregates was negatively correlated with nutrient content. The number of large aggregates (>0.25 mm) were significantly positively correlated with SOC, TN, and TP contents. In conclusion, straw returning with microbial-inoculant addition could promote the formation of soil macroaggregates (>0.25 mm), and improve the water stability of soil aggregates, increasing nutrient contents in soil macroaggregates, with the nutrients transferring from silty aggregates to macroaggregates.


Asunto(s)
Inoculantes Agrícolas , Suelo , Carbono/análisis , Nitrógeno/análisis , Nutrientes , Fósforo , Agua , Agricultura/métodos , China
20.
Plants (Basel) ; 11(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36365373

RESUMEN

Bio-formulation technologies have a limited impact on agricultural productivity in developing countries, especially those based on plant growth-promoting rhizobacteria. Thus, calcium alginate microbeads were synthesized and used for the protection and delivery of three beneficial Bacillus strains for agricultural applications. The process of encapsulation had a high yield per gram for all bacteria and the microbeads protected the Bacillus strains, allowing their survival, after 12 months of storage at room temperature. Microbead analysis was carried out by observing the rate of swelling and biodegradation of the beads and the released-establishment of bacteria in the soil. These results showed that there is an increase of around 75% in bead swelling on average, which allows for larger pores, and the effective release and subsequent establishment of the bacteria in the soil. Biodegradation of microbeads in the soil was gradual: in the first week, they increased their weight (75%), which consistently results in the swelling ratio. The co-inoculation of the encapsulated strain TRQ8 with the other two encapsulated strains showed plant growth promotion. TRQ8 + TRQ65 and TRQ8 + TE3T bacteria showed increases in different biometric parameters of wheat plants, such as stem height, root length, dry weight, and chlorophyll content. Thus, here we demonstrated that the application of alginate microbeads containing the studied strains showed a positive effect on wheat plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA