Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
1.
J Hazard Mater ; 480: 135801, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39270585

RESUMEN

This research aims to investigate the influence of sulfate on the performance of microbial electrolysis cell-assisted anaerobic digester (MEC-AD) across varying sulfate conditions, including no sulfate and reduced COD/sulfate ratios from 20 to 1. The principal results indicate a gradual decline in methane yield in the MEC-AD from 78.7 ± 2.3 % under no sulfate conditions to 56.2 ± 2.0 % at a COD/sulfate ratio of 1, contrasting with a more substantial decrease in the control reactor (69.9 ± 3.6 % to 32.8 ± 1.5 %). The MEC-AD reactor exhibits heightened resilience to sulfide toxicity, showcasing higher specific methanogenic activities. Key findings suggest that the MEC-AD reactor maintains lower free sulfide concentrations, attributed to its higher pH and potential anodic sulfide oxidation. Additionally, the study reveals the promotion of syntrophic partnerships in the MEC-AD reactor, particularly between sulfate-reducing bacteria (SRB) such as Desulfovibrio, Desulfomicrobium, and Desulfobulbus, and other microbial groups, including hydrogenotrophic methanogens and electroactive bacteria. The integration of these mechanisms highlights the MEC-AD reactor's ability to effectively mitigate sulfate-induced challenges and enhance overall anaerobic digestion performance. This study presents a significant step forward in the development of resilient anaerobic digestion systems capable of efficiently handling sulfate stress.

2.
Environ Res ; 261: 119725, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39096988

RESUMEN

Microbial electrolysis cell-assisted anaerobic digestion represents a promising approach for enhancing methanogenesis. This study investigated the impact of varying energy levels followed by long-term open circuit on biogas recovery from food waste. The results demonstrated that a mild voltage of 0.4 V resulted in 61.7% increase in methane yield, with a methane composition reaching 78.89% vol and a remarkable reduction in digestion time by 8 days. Additionally, the facilitated effects remained after prolonged periods of open-circuit. In-depth study revealed that energization significantly enhanced organic hydrolysis, redox proteins secretion and sludge electro-activity. Microbial communities showed that the ever-present energization enriched the hydrolytic bacterium and electrophiles. Subsequent investigations also revealed the upgradation of enzyme-encoding genes associated with hydrolysis and the synthesis of flavin and its homologs (i.e. ribE, ssuE and nfrA2). These findings collectively demonstrated the enduring benefits of energization were linked to the enhanced hydrolysis and regulated mediator-mediated electron transfer pathway.


Asunto(s)
Metano , Metano/metabolismo , Anaerobiosis , Biocombustibles , Electrólisis , Aguas del Alcantarillado/microbiología , Aguas del Alcantarillado/química , Reactores Biológicos , Alimento Perdido y Desperdiciado
3.
Sci Total Environ ; 949: 175013, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39069178

RESUMEN

Combining microbial electrolytic cells with anaerobic digestion (MEC-AD) was considered as an important method for enhancing complex organic matter degradation. However, the magnetic biochar (MBC) addition would be an effective approach for enhancing biodegradation in MEC-AD. By designing orthogonal experiments, the optimal parameters of MBC-enhanced MEC-AD system for landfill leachate treatment were determined. The results indicated that the optimal conditions were identified as HRT of 72 h, electrode spacing of 2.5 cm, and applied voltage of 0.8 V. Under these conditions, the COD removal efficiency reached a maximum of 54.7 %. Additionally, the UV-vis, 3D-EEM, and GC-MS indicated the macromolecules 13-Docosenamide (Z), Bis(2-ethylhexyl) benzene-1,4-dicarboxylate and bis(2-ethylhexyl) phthalate were degraded. 13-Docosenamide (Z) was almost completely removed under the conditions of 0.8 V applied voltage, 2.5 cm electrode spacing and 24 h HRT, with a removal efficiency of 99.91 %. Significant differences were observed in the microbial core genera among the MEC-AD systems. The core genera in the anodic and cathodic biofilms were primarily fermentative and electroactive bacteria, including Soehngenia (2.2 % - 32.1 %, 3.2 % - 26.4 %) and Desulfomicrobium (1.1 % - 10.2 %, 2.0 % - 29.3 %). Fermentative bacteria, norank_f__Bacteroidetes_vadinHA17, established cooperative relationships with electroactive bacteria Acinetobacter. The enrichment of electrochemically active bacteria optimized microbial interactions, thereby synergistically enhancing the biotransformation of complex organic matter in landfill leachate.


Asunto(s)
Biodegradación Ambiental , Carbón Orgánico , Contaminantes Químicos del Agua , Carbón Orgánico/química , Contaminantes Químicos del Agua/metabolismo , Anaerobiosis , Electrólisis , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos/microbiología
4.
Microorganisms ; 12(7)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39065254

RESUMEN

One of the main barriers to MEC applicability is the bacterial anode. Usually, the bacterial anode contains non-exoelectrogenic bacteria that act as a physical barrier by settling on the anode surface and displacing the exoelectrogenic microorganisms. Those non-exoelectrogens can also compete with exoelectrogenic microorganisms for nutrients and reduce hydrogen production. In this study, the bacterial anode was encapsulated by a dialysis bag including suspended graphite particles to improve current transfer from the bacteria to the anode material. An anode encapsulated in a dialysis bag without graphite particles, and a bare anode, were used as controls. The MEC with the graphite-dialysis-bag anode was fed with artificial wastewater, leading to a current density, hydrogen production rate, and areal capacitance of 2.73 A·m-2, 134.13 F·m-2, and 7.6 × 10-2 m3·m-3·d-1, respectively. These were highest when compared to the MECs based on the dialysis-bag anode and bare anode (1.73 and 0.33 A·m-2, 82.50 and 13.75 F·m-2, 4.2 × 10-2 and 5.2 × 10-3 m3·m-3·d-1, respectively). The electrochemical impedance spectroscopy of the modified graphite-dialysis-bag anode showed the lowest charge transfer resistance of 35 Ω. The COD removal results on the 25th day were higher when the MEC based on the graphite-dialysis-bag anode was fed with Geobacter medium (53%) than when it was fed with artificial wastewater (40%). The coulombic efficiency of the MEC based on the graphite-dialysis-bag anode was 12% when was fed with Geobacter medium and 15% when was fed with artificial wastewater.

5.
Polymers (Basel) ; 16(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39065313

RESUMEN

The bacterial anode of microbial electrolysis cells (MECs) is the limiting factor in a high hydrogen evolution reaction (HER). This study focused on improving biofilm attachment to a carbon-cloth anode using an alginate hydrogel. In addition, the modified bioanode was encapsulated by a filter bag that served as a physical barrier, to overcome its low mechanical strength and alginate degradation by certain bacterial species in wastewater. The MEC based on an encapsulated alginate bioanode (alginate bioanode encapsulated by a filter bag) was compared with three controls: an MEC based on a bare bioanode (non-immobilized bioanode), an alginate bioanode, and an encapsulated bioanode (bioanode encapsulated by a filter bag). At the beginning of the operation, the Rct value for the encapsulated alginate bioanode was 240.2 Ω, which decreased over time and dropped to 9.8 Ω after three weeks of operation when the Geobacter medium was used as the carbon source. When the MECs were fed with wastewater, the encapsulated alginate bioanode led to the highest current density of 9.21 ± 0.16 A·m-2 (at 0.4 V), which was 20%, 95%, and 180% higher, compared to the alginate bioanode, bare bioanode, and encapsulated bioanode, respectively. In addition, the encapsulated alginate bioanode led to the highest reduction currents of (4.14 A·m-2) and HER of 0.39 m3·m-3·d-1. The relative bacterial distribution of Geobacter was 79%. The COD removal by all the bioanodes was between 62% and 88%. The findings of this study demonstrate that the MEC based on the encapsulated alginate bioanode exhibited notably higher bio-electroactivity compared to both bare, alginate bioanode, and an encapsulated bioanode. We hypothesize that this improvement in electron transfer rate is attributed to the preservation and the biofilm on the anode material using alginate hydrogel which was inserted into a filter bag.

6.
Water Sci Technol ; 89(10): 2716-2731, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38822610

RESUMEN

The anaerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs) is challenging due to its toxic effect on the microbes. Microbial electrolysis cells (MECs), with their excellent characteristics of anodic and cathodic biofilms, can be a viable way to enhance the biodegradation of PAHs. This work assessed different cathode materials (carbon brush and nickel foam) combined with bioaugmentation on typical PAHs-naphthalene biodegradation and analyzed the inhibition amendment mechanism of microbial biofilms in MECs. Compared with the control, the degradation efficiency of naphthalene with the nickel foam cathode supplied with bioaugmentation dosage realized a maximum removal rate of 94.5 ± 3.2%. The highest daily recovered methane yield (227 ± 2 mL/gCOD) was also found in the nickel foam cathode supplied with bioaugmentation. Moreover, the microbial analysis demonstrated the significant switch of predominant PAH-degrading microorganisms from Pseudomonas in control to norank_f_Prolixibacteraceae in MECs. Furthermore, hydrogentrophic methanogenesis prevailed in MEC reactors, which is responsible for methane production. This study proved that MEC combined with bioaugmentation could effectively alleviate the inhibition of PAH, with the nickel foam cathode obtaining the fastest recovery rate in terms of methane yield.


Asunto(s)
Biodegradación Ambiental , Electrólisis , Hidrocarburos Policíclicos Aromáticos , Aguas Residuales , Contaminantes Químicos del Agua , Hidrocarburos Policíclicos Aromáticos/metabolismo , Hidrocarburos Policíclicos Aromáticos/química , Aguas Residuales/química , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/química , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos , Bacterias/metabolismo , Electrodos , Biopelículas
7.
J Hazard Mater ; 475: 134749, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38876012

RESUMEN

Constructed wetland (CW) is considered a promising technology for the removal of emerging contaminants. However, its removal performance for antibiotic resistance genes (ARGs) is not efficient and influence of virulence factor genes (VFGs) have not been elucidated. Here, removal of intracellular and extracellular ARGs as well as VFGs by electricity-intensified CWs was comprehensively evaluated. The two electrolysis-intensified CWs can improve the removal of intracellular ARGs and MGEs to 0.96- and 0.85-logs, respectively. But cell-free extracellular ARGs (CF-eARGs) were significantly enriched with 1.8-logs in the electrolysis-intensified CW. Interestingly, adding Fe-C microelectrolysis to the electrolysis-intensified CW is conducive to the reduction of CF-eARGs. However, the detected number and relative abundances of intracellular and extracellular VFGs were increased in all of the three CWs. The biofilms attached onto the substrates and rhizosphere are also hotspots of both intracellular and particle-associated extracellular ARGs and VFGs. Structural equation models and correlation analysis indicated that ARGs and VFGs were significantly cooccurred, suggesting that VFGs may affect the dynamics of ARGs. The phenotypes of VFGs, such as biofilm, may act as protective matrix for ARGs, hindering the removal of resistance genes. Our results provide novel insights into the ecological remediation technologies to enhance the removal of ARGs.


Asunto(s)
Biopelículas , Farmacorresistencia Microbiana , Factores de Virulencia , Humedales , Factores de Virulencia/genética , Farmacorresistencia Microbiana/genética , Electricidad , Genes Bacterianos , Electrólisis , Antibacterianos/farmacología
8.
Chemosphere ; 358: 142119, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697567

RESUMEN

The CO2 bioelectromethanosynthesis via two-chamber microbial electrolysis cell (MEC) holds tremendous potential to solve the energy crisis and mitigate the greenhouse gas emissions. However, the membrane fouling is still a big challenge for CO2 bioelectromethanosynthesis owing to the poor proton diffusion across membrane and high inter-resistance. In this study, a new MEC bioreactor with biogas recirculation unit was designed in the cathode chamber to enhance secondary-dissolution of CO2 while mitigating the contaminant adhesion on membrane surface. Biogas recirculation improved CO2 re-dissolution, reduced concentration polarization, and facilitated the proton transmembrane diffusion. This resulted in a remarkable increase in the cathodic methane production rate from 0.4 mL/L·d to 8.5 mL/L·d. A robust syntrophic relationship between anodic organic-degrading bacteria (Firmicutes 5.29%, Bacteroidetes 25.90%, and Proteobacteria 6.08%) and cathodic methane-producing archaea (Methanobacterium 65.58%) enabled simultaneous organic degradation, high CO2 bioelectromethanosynthesis, and renewable energy storage.


Asunto(s)
Biocombustibles , Reactores Biológicos , Dióxido de Carbono , Metano , Dióxido de Carbono/análisis , Electrólisis , Electrodos , Fuentes de Energía Bioeléctrica , Methanobacterium/metabolismo , Membranas Artificiales , Proteobacteria/metabolismo
9.
Bioresour Technol ; 402: 130842, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750828

RESUMEN

Hydrophilic porous membranes, exemplified by polyvinylidene fluoride (PVDF) membranes, have demonstrated significant potential for replacing ion exchange membranes in microbial electrolysis cells (MECs). Membrane fouling remains a major challenge in MECs, impeding proton transport and consequently limiting hydrogen production. This study aims to investigate a synergistic antifouling strategy for PVDF membrane through the incorporation of a coating composed of polydopamine (PDA), polyethyleneimine (PEI), and silver nanoparticles (AgNPs). The PDA-PEI-Ag@PVDF membrane not only effectively mitigates fouling through steric and electrostatic repulsion forces, but also amplifies ion transport by facilitating water diffusion and electromigration. The PDA-PEI-Ag@PVDF membrane exhibited a reduced membrane resistance of 1.01 mΩ m2 and PDA-PEI-Ag modifying PVDF membrane was found to be effective in enhancing the proton transportation of PVDF membrane. Therefore, the enhanced hydrogen production rate of 2.65 ± 0.02 m3/m3/d was achieved in PDA-PEI-Ag@PVDF-MECs.


Asunto(s)
Fuentes de Energía Bioeléctrica , Incrustaciones Biológicas , Electrólisis , Hidrógeno , Indoles , Membranas Artificiales , Polivinilos , Protones , Plata , Polivinilos/química , Hidrógeno/metabolismo , Incrustaciones Biológicas/prevención & control , Plata/química , Plata/farmacología , Indoles/metabolismo , Indoles/química , Polímeros/química , Nanopartículas del Metal/química , Polietileneimina/química , Polímeros de Fluorocarbono
10.
Environ Sci Technol ; 58(21): 9272-9282, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38749055

RESUMEN

Triclocarban (TCC), as a widely used antimicrobial agent, is accumulated in waste activated sludge at a high level and inhibits the subsequent anaerobic digestion of sludge. This study, for the first time, investigated the effectiveness of microbial electrolysis cell-assisted anaerobic digestion (MEC-AD) in mitigating the inhibition of TCC to methane production. Experimental results showed that 20 mg/L TCC inhibited sludge disintegration, hydrolysis, acidogenesis, and methanogenesis processes and finally reduced methane production from traditional sludge anaerobic digestion by 19.1%. Molecular docking revealed the potential inactivation of binding of TCC to key enzymes in these processes. However, MEC-AD with 0.6 and 0.8 V external voltages achieved much higher methane production and controlled the TCC inhibition to less than 5.8%. TCC in the MEC-AD systems was adsorbed by humic substances and degraded to dichlorocarbanilide, leading to a certain detoxification effect. Methanogenic activities were increased in MEC-AD systems, accompanied by complete VFA consumption. Moreover, the applied voltage promoted cell apoptosis and sludge disintegration to release biodegradable organics. Metagenomic analysis revealed that the applied voltage increased the resistance of electrode biofilms to TCC by enriching functional microorganisms (syntrophic VFA-oxidizing and electroactive bacteria and hydrogenotrophic methanogens), acidification and methanogenesis pathways, multidrug efflux pumps, and SOS response.


Asunto(s)
Electrólisis , Anaerobiosis , Aguas del Alcantarillado/microbiología , Metano/metabolismo , Carbanilidas/farmacología
11.
Biotechnol Adv ; 73: 108372, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38714276

RESUMEN

Anaerobic digestion (AD) is an effective and applicable technology for treating organic wastes to recover bioenergy, but it is limited by various drawbacks, such as long start-up time for establishing a stable process, the toxicity of accumulated volatile fatty acids and ammonia nitrogen to methanogens resulting in extremely low biogas productivities, and a large amount of impurities in biogas for upgrading thereafter with high cost. Microbial electrolysis cell (MEC) is a device developed for electrosynthesis from organic wastes by electroactive microorganisms, but MEC alone is not practical for production at large scales. When AD is integrated with MEC, not only can biogas production be enhanced substantially, but also upgrading of the biogas product performed in situ. In this critical review, the state-of-the-art progress in developing AD-MEC systems is commented, and fundamentals underlying methanogenesis and bioelectrochemical reactions, technological innovations with electrode materials and configurations, designs and applications of AD-MEC systems, and strategies for their enhancement, such as driving the MEC device by electricity that is generated by burning the biogas to improve their energy efficiencies, are specifically addressed. Moreover, perspectives and challenges for the scale up of AD-MEC systems are highlighted for in-depth studies in the future to further improve their performance.


Asunto(s)
Fuentes de Energía Bioeléctrica , Biocombustibles , Electrólisis , Anaerobiosis , Fuentes de Energía Bioeléctrica/microbiología , Reactores Biológicos , Metano/metabolismo
12.
Microb Cell Fact ; 23(1): 102, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575972

RESUMEN

BACKGROUND: Poultry feather waste has a potential for bioenergy production because of its high protein content. This research explored the use of chicken feather hydrolysate for methane and hydrogen production via anaerobic digestion and bioelectrochemical systems, respectively. Solid state fermentation of chicken waste was conducted using a recombinant strain of Bacillus subtilis DB100 (p5.2). RESULTS: In the anaerobic digestion, feather hydrolysate produced maximally 0.67 Nm3 CH4/kg feathers and 0.85 mmol H2/day.L concomitant to COD removal of 86% and 93%, respectively. The bioelectrochemical systems used were microbial fuel and electrolysis cells. In the first using a microbial fuel cell, feather hydrolysate produced electricity with a maximum cell potential of 375 mV and a current of 0.52 mA. In the microbial electrolysis cell, the hydrolysate enhanced the hydrogen production rate to 7.5 mmol/day.L, with a current density of 11.5 A/m2 and a power density of 9.26 W/m2. CONCLUSIONS: The data indicated that the sustainable utilization of keratin hydrolysate to produce electricity and biohydrogen via bioelectrical chemical systems is feasible. Keratin hydrolysate can produce electricity and biofuels through an integrated aerobic-anaerobic fermentation system.


Asunto(s)
Pollos , Plumas , Animales , Anaerobiosis , Pollos/metabolismo , Hidrógeno/metabolismo , Queratinas/metabolismo , Metano/metabolismo , Biocombustibles , Reactores Biológicos
13.
Water Res ; 256: 121616, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657305

RESUMEN

Microbial electrolysis cells (MECs) have garnered significant attention as a promising solution for industrial wastewater treatment, enabling the simultaneous degradation of organic compounds and biohydrogen production. Developing efficient and cost-effective cathodes to drive the hydrogen evolution reaction is central to the success of MECs as a sustainable technology. While numerous lab-scale experiments have been conducted to investigate different cathode materials, the transition to pilot-scale applications remains limited, leaving the actual performance of these scaled-up cathodes largely unknown. In this study, nickel-foam and stainless-steel wool cathodes were employed as catalysts to critically assess hydrogen production in a 150 L MEC pilot plant treating sugar-based industrial wastewater. Continuous hydrogen production was achieved in the reactor for more than 80 days, with a maximum COD removal efficiency of 40 %. Nickel-foam cathodes significantly enhanced hydrogen production and energy efficiency at non-limiting substrate concentration, yielding the maximum hydrogen production ever reported at pilot-scale (19.07 ± 0.46 L H2 m-2 d-1 and 0.21 ± 0.01 m3 m-3 d-1). This is a 3.0-fold improve in hydrogen production compared to the previous stainless-steel wool cathode. On the other hand, the higher price of Ni-foam compared to stainless-steel should also be considered, which may constrain its use in real applications. By carefully analysing the energy balance of the system, this study demonstrates that MECs have the potential to be net energy producers, in addition to effectively oxidize organic matter in wastewater. While higher applied potentials led to increased energy requirements, they also resulted in enhanced hydrogen production. For our system, a conservative applied potential range from 0.9 to 1.0 V was found to be optimal. Finally, the microbial community established on the anode was found to be a syntrophic consortium of exoelectrogenic and fermentative bacteria, predominantly Geobacter and Bacteroides, which appeared to be well-suited to transform complex organic matter into hydrogen.


Asunto(s)
Electrodos , Electrólisis , Hidrógeno , Níquel , Aguas Residuales , Aguas Residuales/química , Hidrógeno/metabolismo , Níquel/química , Fuentes de Energía Bioeléctrica , Eliminación de Residuos Líquidos/métodos , Proyectos Piloto , Residuos Industriales
14.
Bioresour Bioprocess ; 11(1): 4, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38647898

RESUMEN

Lignocellulose pretreated using pyrolysis can yield clean energy (such as bioethanol) via microbial fermentation, which can significantly contribute to waste recycling, environmental protection, and energy security. However, the acids, aldehydes, and phenols present in bio-oil with inhibitory effects on microorganisms compromise the downstream utilization and conversion of lignocellulosic pyrolysates. In this study, we constructed a microbial electrolysis cell system for bio-oil detoxification and efficient ethanol production using evolved Escherichia coli to overcome the bioethanol production and utilization challenges highlighted in previous studies. In electrically treated bio-oil media, the E. coli-H strain exhibited significantly higher levoglucosan consumption and ethanol production capacities compared with the control. In undetoxified bio-oil media containing 1.0% (w/v) levoglucosan, E. coli-H produced 0.54 g ethanol/g levoglucosan, reaching 94% of the theoretical yield. Our findings will contribute to developing a practical method for bioethanol production from lignocellulosic substrates, and provide a scientific basis and technical demonstration for its industrialized application.

15.
Methods Enzymol ; 696: 287-320, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38658084

RESUMEN

Acidimicrobium sp. strain A6 is a recently discovered autotrophic bacterium that is capable of oxidizing ammonium while reducing ferric iron and is relatively common in acidic iron-rich soils. The genome of Acidimicrobium sp. strain A6 contains sequences for several reductive dehalogenases, including a gene for a previously unreported reductive dehalogenase, rdhA. Incubations of Acidimicrobium sp. strain A6 in the presence of perfluorinated substances, such as PFOA (perfluorooctanoic acid, C8HF15O2) or PFOS (perfluorooctane sulfonic acid, C8HF17O3S), have shown that fluoride, as well as shorter carbon chain PFAAs (perfluoroalkyl acids), are being produced, and the rdhA gene is expressed during these incubations. Results from initial gene knockout experiments indicate that the enzyme associated with the rdhA gene plays a key role in the PFAS defluorination by Acidimicrobium sp. strain A6. Experiments focusing on the defluorination kinetics by Acidimicrobium sp. strain A6 show that the defluorination kinetics are proportional to the amount of ammonium oxidized. To explore potential applications for PFAS bioremediation, PFAS-contaminated biosolids were augmented with Fe(III) and Acidimicrobium sp. strain A6, resulting in PFAS degradation. Since the high demand of Fe(III) makes growing Acidimicrobium sp. strain A6 in conventional rectors challenging, and since Acidimicrobium sp. strain A6 was shown to be electrogenic, it was grown in the absence of Fe(III) in microbial electrolysis cells, where it did oxidize ammonium and degraded PFAS.


Asunto(s)
Biodegradación Ambiental , Fluorocarburos , Fluorocarburos/metabolismo , Fluorocarburos/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Caprilatos/metabolismo , Halogenación , Ácidos Alcanesulfónicos/metabolismo , Ácidos Alcanesulfónicos/química , Oxidación-Reducción
16.
Bioresour Technol ; 393: 130025, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37972904

RESUMEN

Single cell protein (SCP) is a promising alternative protein source, as its production bypasses the disadvantages of animal protein production in industrial agriculture. Coupling a fast-growing hydrogen consuming organism with microbial electrolysis cells (MECs) could be a viable method for SCP production. In this study, a fast-growing and protein-rich methanogen, Methanococcus maripaludis was selected as the primary SCP source. The inoculation of M. maripaludis in MECs triggered cell synthesis with methane production. The doubling time measured was 11.2 h and the specific growth rate was 0.062 1/h. The highest SCP production rate was 13.7 mg/L/h. In the dried biomass, the weight of protein was over 60 %. Amino acid profiling of the harvested biomass demonstrated high abundance of essential amino acids. The electron flux analysis indicated that 31.3 % electrons in the electrochemical systems were directed into SCP synthesis. These results illustrated the potential for SCP production by coupling a fast-growing methanogen with MECs.


Asunto(s)
Proteínas en la Dieta , Metano , Methanococcus , Animales , Methanococcus/metabolismo , Aminoácidos/metabolismo , Hidrógeno/metabolismo , Electrólisis
17.
Bioresour Technol ; 393: 130067, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37989418

RESUMEN

Electrical assistance is an effective strategy for promoting anaerobic digestion (AD) under ammonia stress. However, the underlying mechanism of electrical assistance affecting AD is insufficiently understood. Here, electrical assistance to AD under 5 g N/L ammonia stress was provided, by employing a 0.6 V voltage to the carbon electrodes. The results demonstrated remarkable enhancements in methane production (104.6 %) and the maximal methane production rate (207.7 %). The critical segment facilitated by electro-stimulation was the microbial metabolism of propionate-to-methane, rather than ammonia removal. Proteins in extracellular polymer substances were enriched, boosting microbial resilience to ammonia intrusion. Concurrently, the promoted humic/fulvic-substances amplified the microbial electron transfer capacity. Metagenomics analysis identified the upsurge of propionate oxidation at the anode (by e.g. unclassified_c__Bacteroidia), and the stimulations of acetoclastic and direct interspecies electron transfer-dependent CO2-reducing methanogenesis at the cathode (by e.g. Methanothrix). This study provides novel insights into the effect of electrical assistance on ammonia-stressed AD.


Asunto(s)
Amoníaco , Propionatos , Propionatos/metabolismo , Anaerobiosis , Electrones , Metano/metabolismo , Reactores Biológicos
18.
Microbiol Resour Announc ; 13(2): e0107923, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38132572

RESUMEN

Geobacter sp. strain 60473 is an electrochemically active bacterium (EAB) isolated from mud taken from the shore of lake Suwa in Japan. Here, we report the complete genome sequence of strain 60473, which helps deepen our understanding of common and strain-specific genomic features of EAB affiliated with the genus Geobacter.

19.
3 Biotech ; 13(11): 382, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37920191

RESUMEN

In this study, the effects of cocaine metabolite, benzoylecgonine, commonly found in wastewater on hydrogen production were investigated using microbial electrolysis cells. Benzoylecgonine dissolved in synthetic urine and human urine containing benzoylecgonine were inoculated to evaluate hydrogen production performance in microbial electrolysis cells. Microbial electrolysis cells were inoculated with synthetic urine and human urine containing the cocaine metabolite benzoylecgonine for hydrogen gas production performance. Gas production was observed and measured daily by gas chromatography. GC-MS was used to analyze the compounds found in human urine before and after operation in microbial electrolysis cells. The metabolite's pH values and optical density in microbial electrolysis cells were analyzed spectrophotometrically. Hydrogen gas was successfully produced in microbial electrolysis cells (~ 5.5 mL) at the end of the 24th day in the presence of benzoylecgonine in synthetic urine. Human urine containing benzoylecgonine also generated hydrogen in microbial electrolysis cells. In conclusion, microbial electrolysis cells can be used to remove cocaine metabolites from contaminated wastewater generating hydrogen gas. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03805-7.

20.
Water Res ; 247: 120755, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37918197

RESUMEN

The effective hydrogen production in single-chamber microbial electrolysis cells (MECs) has been seriously challenged by various hydrogen consumers resulting in substantial hydrogen loss. In previous studies, the total ammonia nitrogen (TAN) has been used to inhibit certain hydrogen-consuming microorganisms to enhance hydrogen production in fermentation. In this study, we explored the feasibility of using source-separated urine to overcome hydrogen loss in the MEC, with the primary component responsible being TAN generated via urea hydrolysis. Experimental results revealed that the optimal TAN concentration ranged from 1.17 g N/L to 1.75 g N/L. Within this range, the hydrogen production rate substantially improved from less than 100 L/(m3·d) up to 520 L/(m3·d), and cathode recovery efficiency and energy recovery efficiency were greatly enhanced, with the hydrogen percentage achieved over 95 % of the total gas volume, while maintaining uninterrupted electroactivity in the anode. Compared to using chemically added TAN, using source separated urine as the source of ammonia also showed the effect of overcoming hydrogen loss but with lower Coulombic efficiency due to the complex organic components. Pre-adaptation of the reactor with urea enhanced hydrogen production by nearly 60 %. This study demonstrated the effectiveness of TAN and urine in suppressing hydrogen loss, and the results are highly relevant to MECs treating real wastewater with high TAN concentrations, particularly human fecal and urine wastewater.


Asunto(s)
Fuentes de Energía Bioeléctrica , Hidrógeno , Humanos , Hidrógeno/química , Aguas Residuales , Amoníaco , Electrólisis/métodos , Urea , Electrodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA