Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.796
Filtrar
1.
Methods Mol Biol ; 2852: 289-309, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39235751

RESUMEN

Next-generation sequencing revolutionized food safety management these last years providing access to a huge quantity of valuable data to identify, characterize, and monitor bacterial pathogens on the food chain. Shotgun metagenomics emerged as a particularly promising approach as it enables in-depth taxonomic profiling and functional investigation of food microbial communities. In this chapter, we provide a comprehensive step-by-step bioinformatical workflow to characterize bacterial ecology and resistome composition from metagenomic short-reads obtained by shotgun sequencing.


Asunto(s)
Bacterias , Biología Computacional , Microbiología de Alimentos , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Metagenómica/métodos , Biología Computacional/métodos , Microbiología de Alimentos/métodos , Bacterias/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Metagenoma , Microbiota/genética
2.
mSystems ; : e0017124, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230264

RESUMEN

Infections caused by multidrug resistant (MDR) pathogenic bacteria are a global health threat. Bacteriophages ("phage") are increasingly used as alternative or last-resort therapeutics to treat patients infected by MDR bacteria. However, the therapeutic outcomes of phage therapy may be limited by the emergence of phage resistance during treatment and/or by physical constraints that impede phage-bacteria interactions in vivo. In this work, we evaluate the role of lung spatial structure on the efficacy of phage therapy for Pseudomonas aeruginosa infections. To do so, we developed a spatially structured metapopulation network model based on the geometry of the bronchial tree, including host innate immune responses and the emergence of phage-resistant bacterial mutants. We model the ecological interactions between bacteria, phage, and the host innate immune system at the airway (node) level. The model predicts the synergistic elimination of a P. aeruginosa infection due to the combined effects of phage and neutrophils, given the sufficient innate immune activity and efficient phage-induced lysis. The metapopulation model simulations also predict that MDR bacteria are cleared faster at distal nodes of the bronchial tree. Notably, image analysis of lung tissue time series from wild-type and lymphocyte-depleted mice revealed a concordant, statistically significant pattern: infection intensity cleared in the bottom before the top of the lungs. Overall, the combined use of simulations and image analysis of in vivo experiments further supports the use of phage therapy for treating acute lung infections caused by P. aeruginosa, while highlighting potential limits to therapy in a spatially structured environment given impaired innate immune responses and/or inefficient phage-induced lysis. IMPORTANCE: Phage therapy is increasingly employed as a compassionate treatment for severe infections caused by multidrug-resistant (MDR) bacteria. However, the mixed outcomes observed in larger clinical studies highlight a gap in understanding when phage therapy succeeds or fails. Previous research from our team, using in vivo experiments and single-compartment mathematical models, demonstrated the synergistic clearance of acute P. aeruginosa pneumonia by phage and neutrophils despite the emergence of phage-resistant bacteria. In fact, the lung environment is highly structured, prompting the question of whether immunophage synergy explains the curative treatment of P. aeruginosa when incorporating realistic physical connectivity. To address this, we developed a metapopulation network model mimicking the lung branching structure to assess phage therapy efficacy for MDR P. aeruginosa pneumonia. The model predicts the synergistic elimination of P. aeruginosa by phage and neutrophils but emphasizes potential challenges in spatially structured environments, suggesting that higher innate immune levels may be required for successful bacterial clearance. Model simulations reveal a spatial pattern in pathogen clearance where P. aeruginosa are cleared faster at distal nodes of the bronchial tree than in primary nodes. Interestingly, image analysis of infected mice reveals a concordant and statistically significant pattern: infection intensity clears in the bottom before the top of the lungs. The combined use of modeling and image analysis supports the application of phage therapy for acute P. aeruginosa pneumonia while emphasizing potential challenges to curative success in spatially structured in vivo environments, including impaired innate immune responses and reduced phage efficacy.

3.
Food Microbiol ; 124: 104617, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39244369

RESUMEN

This study aimed to assess the bacterial microbiota involved in the spoilage of pacu (Piaractus mesopotamics), patinga (female Piaractus mesopotamics x male Piaractus brachypomus), and tambacu (female Colossoma macropomum × male Piaractus mesopotamics) during ice and frozen storage. Changes in the microbiota of three fish species (N = 22) during storage were studied through 16S rRNA amplicon-based sequencing and correlated with volatile organic compounds (VOCs) and metabolites assessed by nuclear magnetic resonance (NMR). Storage conditions (time and temperature) affected the microbiota diversity in all fish samples. Fish microbiota comprised mainly of Pseudomonas sp., Brochothrix sp., Acinetobacter sp., Bacillus sp., Lactiplantibacillus sp., Kocuria sp., and Enterococcus sp. The relative abundance of Kocuria, P. fragi, L. plantarum, Enterococcus, and Acinetobacter was positively correlated with the metabolic pathways of ether lipid metabolism while B. thermosphacta and P. fragi were correlated with metabolic pathways involved in amino acid metabolism. P. fragi was the most prevalent spoilage bacteria in both storage conditions (ice and frozen), followed by B. thermosphacta. Moreover, the relative abundance of identified Bacillus strains in fish samples stored in ice was positively correlated with the production of VOCs (1-hexanol, nonanal, octenol, and 2-ethyl-1-hexanol) associated with off-flavors. 1H NMR analysis confirmed that amino acids, acetic acid, and ATP degradation products increase over (ice) storage, and therefore considered chemical spoilage index of fish fillets.


Asunto(s)
Bacterias , Peces , Almacenamiento de Alimentos , Congelación , Microbiota , ARN Ribosómico 16S , Alimentos Marinos , Compuestos Orgánicos Volátiles , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Peces/microbiología , Brasil , Alimentos Marinos/microbiología , Alimentos Marinos/análisis , ARN Ribosómico 16S/genética , Hielo , Microbiología de Alimentos , Biodiversidad , Femenino
4.
FEMS Microbiol Ecol ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277779

RESUMEN

A hydrogen (H2)-based membrane biofilm reactor (H2-MBfR) can reduce electron acceptors nitrate (NO3-), selenate (SeO42-), selenite (HSeO3-), and sulfate (SO42-), which are in wastewaters from coal mining and combustion. This work presents a model to describe a H2-driven microbial community comprised of hydrogenotrophic and heterotrophic bacteria that respire NO3-, SeO42-, HSeO3-, and SO42-. The model provides mechanistic insights into the interactions between autotrophic and heterotrophic bacteria in a microbial community that is founded on H2-based autotrophy. Simulations were carried out for a range of relevant solids retention times (0.1 to 20 days) and with adequate H2-delivery capacity to reduce all electron acceptors. Bacterial activity began at an ∼0.6-day SRT, when hydrogenotrophic denitrifiers began to accumulate. Selenate-reducing and selenite-reducing hydrogenotrophs became established next, at SRTs of ∼1.2 and 2 days, respectively. Full nitrate, selenate, and selenite reductions were complete by an SRT of ∼5 days. Sulfate reduction began at an SRT of ∼10 days and was complete by ∼15 days. The desired goal of reducing nitrate, selenate, and selenite, but not sulfate, was achievable within an SRT window of 5 to 10 days. Autotrophic hydrogenotrophs dominated the active biomass, but non-active solids were a major portion of the solids, especially for an SRT ≥ 5 days.

5.
Arch Microbiol ; 206(10): 405, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287688

RESUMEN

Gelling agents are necessary for the preparation of solid or semisolid media. For more than a hundred years, agar has been the primary gelling agent. However, a substantial body of evidence has accumulated suggesting that agar-based media inhibit the growth of many microbial species through the generation of reactive oxygen species (ROS), toxic organic contaminants, or competitive exclusion effects. In this review we have compiled the largest amount of data to date on the use of various gelling agents in microbial isolation and cultivation, with the particular emphasis on rare microbe isolation cases. Our analysis suggested that microbial-derived compounds (especially gellan gum), as gelling agents, are superior to agar in their ability to isolate and maintain either new or known microbial species. We analyzed the reasons behind this success and concluded that there are phylum-level differences in microbial responses to the changes in conditions from natural to the laboratory conditions (with respect to gelling agent usage). Consequently, we hypothesize that at least partial success of microbial-derived gelling agents lies in the recreation of the natural microenvironment conditions (which we address as the "familiarity of conditions" hypothesis). Finally, we present a list of recommendations and suggestions for further microbial ecology studies.


Asunto(s)
Agar , Bacterias , Medios de Cultivo , Polisacáridos Bacterianos , Agar/química , Medios de Cultivo/química , Polisacáridos Bacterianos/metabolismo , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Geles/química
6.
Cell Rep ; 43(9): 114729, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39264809

RESUMEN

Defining what constitutes a healthy microbiome throughout our lives remains an ongoing challenge. Understanding to what extent host and environmental factors can influence it has been the primary motivation for large population studies worldwide. Here, we describe the fecal microbiome of 3,746 individuals (0-87 years of age) in a nationwide study in the Netherlands, in association with extensive questionnaires. We validate previous findings, such as infant-adult trajectories, and explore the collective impact of our variables, which explain over 40% of the variation in microbiome composition. We identify associations with less explored factors, particularly those ethnic related, which show the largest impact on the adult microbiome composition, diversity, metabolic profiles, and CAZy (carbohydrate-active enzyme) repertoires. Understanding the sources of microbiome variability is crucial, given its potential as a modifiable target with therapeutic possibilities. With this work, we aim to serve as a foundational element for the design of health interventions and fundamental research.

7.
Front Microbiol ; 15: 1407868, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39234547

RESUMEN

Thermodynamics has predicted many different kinds of microbial metabolism by determining which pairs of electron acceptors and donors will react to produce an exergonic reaction (a negative net change in Gibbs free energy). In energy-limited environments, such as the deep subsurface, such an approach can reveal the potential for unexpected or counter-intuitive energy sources for microbial metabolism. Up until recently, these thermodynamic calculations have been carried out with the assumption that chemical species appearing on the reactant and product side of a reaction formula have a constant concentration, and thus do not count towards net concentration changes and the overall direction of the reaction. This assumption is reasonable considering microorganisms are too small (~1 µm) for any significant differences in concentration to overcome diffusion. However, recent discoveries have demonstrated that the reductive and oxidative halves of reactions can be separated by much larger distances, from millimetres to centimetres via conductive filamentous bacteria, mineral conductivity, and biofilm conductivity. This means that the concentrations of reactants and products can indeed be different, and that concentration differences can contribute to the net negative change in Gibbs free energy. It even means that the same redox reaction, simultaneously running in forward and reverse, can drive energy conservation, in an ElectroMicrobiological Concentration Cell (EMCC). This paper presents a model to investigate this phenomenon and predict under which circumstances such concentration-driven metabolism might take place. The specific cases of oxygen concentration cells, sulfide concentration cells, and hydrogen concentration cells are examined in more detail.

8.
Heliyon ; 10(16): e36362, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39258201

RESUMEN

The aim of this work was to study the diversity and spatiotemporal fluctuations of airborne fungi in the National Library of Greece after its relocation from the Vallianeio historic building in the center of Athens to entirely new premises at the Stavros Niarchos Foundation Cultural Center, and also to compare the fungal aerosol in between the two sites. The air mycobiota were studied by a volumetric culture-based method, during the year 2019 in order to assess their diversity and abundance and to compare with those previously reported in the historic building. Twenty-eight genera of filamentous fungi were recovered indoors and 17 outdoors, in addition to yeasts registered as a group. The number of fungal genera recovered was almost similar in both premises, whereas seventeen genera indoors were identical, dominated by Penicillium, Cladosporium and Aspergillus. The mean daily fungal concentration was found to be 66 CFU m-3 indoors and 927 CFU m-3 outdoors in the new location vs 293 and 428 CFU m- 3 indoors and 707 and 648 CFU m- 3 outdoors in the previous one. The mean daily concentration indoors was consistently and significantly lower (P < 0.05) in the new building than in the historic one, although it was higher outdoors. The indoor/outdoor ratio for the total fungi was 0.07 in the new vs 0.41 and 0.66 in the previous one and reveals a superior indoor air quality in the new site. Air temperature and occupancy had a statistically significant impact on the concentration of indoor fungi. The remarkably reduced concentration of the mycobiota in the new premises indicated a considerable decline in fungal burden, mainly due to technological excellency of the facility and continuous preventive measures to ensure an enhanced indoor air quality in the National Library of Greece. This case study provides a paradigm about upgrading of indoor air after re-establishment of a facility in another setting.

9.
Front Microbiol ; 15: 1404795, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39268533

RESUMEN

Milk residue and the accompanying biofilm accumulation in milking systems can compromise the microbial quality of milk and the downstream processes of cheese production. Over a six-month study, the microbial ecosystems of milk (n = 24), tap water (n = 24) and environmental swabs (n = 384) were cultured by plating decimal dilutions to obtain viable counts of total aerobic mesophilic lactose-utilizing bacteria (lactose-M17), lactic acid bacteria (MRS), yeasts and molds (Yeast, Glucose, Chloramphenicol (YGC) medium). Viable aerobic lactose-M17 plate counts of milk remained well below 4.7 log CFU/ml over five of the months, except for 1 week in November where milk at the facility exceeded 5 log CFU/ml. Swab samples of the farm milking equipment showed consistent viable counts after sanitation, while the bulk tank swabs contained the lowest counts. Viable counts from swabs of the facility were generally below the detection limit in the majority of samples with occasional residual contamination on some food contact surfaces. Extracted DNA was amplified using primers targeting the V3-V4 region of the 16S rRNA gene, and the amplicons were sequenced by MiSeq to determine the shared microbiota between the farm and the processing facility (8 genera). Culture independent analysis of bacterial taxa in milk, water and residual contamination after sanitation with swab samples revealed the shared and distinct microbiota between the sample types of both facilities. Amplicon sequence variants (ASVs) of the V3-V4 region of the 16S rRNA gene revealed that the microbiota of milk samples had lower diversity than water or environmental swabs (279 ASVs compared to 3,444 in water and 8,747 in environmental swabs). Brevibacterium and Yaniella (both Actinomycetota) were observed in all sampling types. Further studies will include whole genome sequencing of Brevibacterium spp. isolates to determine their functionality and diversity within the system.

10.
ISME J ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39236233

RESUMEN

Soil microbial communities host a large number of microbial species that support important ecological functions such as biogeochemical cycling and plant nutrition. The extent and stability of these functions are affected by inter-species interactions among soil microorganisms, yet the different mechanisms underpinning microbial interactions in the soil are not fully understood. Here, we study the extent of nutrient-based interactions among two model, plant-supporting soil microorganisms, the fungi Serendipita indica, and the bacteria Bacillus subtilis. We found that S. indica is unable to grow with nitrate - a common nitrogen source in the soil - but this inability could be rescued, and growth restored in the presence of B. subtilis. We demonstrate that this effect is due to B. subtilis utilising nitrate and releasing ammonia, which can be used by S. indica. We refer to this type of mechanism as ammonia mediated nitrogen sharing (N-sharing). Using a mathematical model, we demonstrated that the pH dependent equilibrium between ammonia (NH3) and ammonium (NH+4) results in an inherent cellular leakiness, and that reduced amonnium uptake or assimilation rates could result in higher levels of leaked ammonia. In line with this model, a mutant B. subtilis - devoid of ammonia uptake - showed higher S. indica growth support in nitrate media. These findings highlight that ammonia based N-sharing can be a previously under-appreciated mechanism underpinning interaction among soil microorganisms and could be influenced by microbial or abiotic alteration of pH in microenvironments.

11.
Plant Commun ; : 101078, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39233440

RESUMEN

The future of agriculture is uncertain under the current climate change scenario. Climate change directly and indirectly affects the biotic and abiotic elements that control agroecosystems, jeopardizing the safety of the world's food supply. A new area that focuses on characterizing the phytobiome is emerging. The phytobiome comprises plants and their immediate surroundings, involving numerous interdependent microscopic and macroscopic organisms that affect the health and productivity of plants. Phytobiome studies primarily focus on the microbial communities associated with plants, which are referred to as the plant microbiome. The development of high-throughput sequencing technologies over the past ten years has dramatically advanced the understanding of the structure, functionality, and dynamics of the phytobiome; however, comprehensive methods for using this knowledge are lacking, particularly on major crops such as rice. Taking into account the impact of rice production on world food security, gaining fresh perspectives on the interdependent and interrelated components of the rice phytobiome could enhance rice production and crop health, sustain rice ecosystem function, and combat the effects of climate change. Our review re-conceptualizes the complex dynamics of the microscopic and macroscopic components in the rice phytobiome as influenced by human interventions and changing environmental conditions driven by climate change. We also discuss the interdisciplinary and systematic approaches to decipher and reprogram the sophisticated interactions in the rice phytobiome using novel strategies and cutting-edge technology. Converging the gigantic datasets and complex information on the rice phytobiome and its application in the context of regenerative agriculture could lead to sustainable rice farming practices that are resilient to the impacts of climate change.

12.
ISME Commun ; 4(1): ycae046, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39165397

RESUMEN

Interactions between bacteria and microalgae are important for the functioning of aquatic ecosystems, yet interactions based on the biodiversity of these two taxonomic domains have been scarcely studied. Specifically, it is unclear whether a positive biodiversity-productivity relationship in phytoplankton is largely facilitated by niche partitioning among the phytoplankton organisms themselves or whether associated bacterial communities play an additional role in modifying these diversity effects. Moreover, the effects of intraspecific diversity in phytoplankton communities on bacterial community diversity have not been tested. To address these points, we factorially manipulated both species and intraspecific richness of three diatoms to test the effects of diatom species/strain diversity on biomass production and bacterial diversity in algae-bacteria communities. The results show that diatom intraspecific diversity has significant positive effects on culture biomass and the diversity of the associated free-living bacterial community (0.2-3 µm size fraction), which are comparable in magnitude to species diversity effects. However, there were little to no effects of diatom diversity on host-associated bacterial diversity (>3 µm size fraction), or of bacterial diversity on biomass production. These results suggest a decoupling of bacterial diversity from the diatom diversity-productivity relationship and provide early insights regarding the relations between diversity across domains in aquatic ecosystems.

13.
Sci Total Environ ; 950: 175381, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39122033

RESUMEN

There is considerable uncertainty regarding radiation's effects on biodiversity in natural complex ecosystems typically subjected to multiple environmental disturbances and stresses. In this study we characterised the relationships between soil microbial communities and estimated total absorbed dose rates to bacteria, grassy vegetation and trees in the Red Forest region of the Chornobyl Exclusion Zone. Samples were taken from sites of contrasting ecological histories and along burn and no burn areas following a wildfire. Estimated total absorbed dose rates to bacteria reached levels one order of magnitude higher than those known to affect bacteria in laboratory studies. Sites with harsher ecological conditions, notably acidic pH and low soil moisture, tended to have higher radiation contamination levels. No relationship between the effects of fire and radiation were observed. Microbial groups that correlated with high radiation sites were mostly classified to taxa associated with high environmental stress habitats or stress resistance traits. Distance-based linear models and co-occurrence analysis revealed that the effects of radiation on the soil microbiome were minimal. Hence, the association between high radiation sites and specific microbial groups is more likely a result of the harsher ecological conditions in these sites, rather than due to radiation itself. In this study, we provide a starting point for understanding the relationship between soil microbial communities and estimated total absorbed radiation dose rates to different components of an ecosystem highly contaminated with radiation. Our results suggest that soil microbiomes adapted to natural soil conditions are more likely to be resistant to ionising radiation than expected from laboratory studies, which demonstrates the importance of assessing the impact of ionising radiation on soil microbial communities under field conditions.


Asunto(s)
Accidente Nuclear de Chernóbil , Microbiota , Microbiología del Suelo , Contaminantes Radiactivos del Suelo , Incendios Forestales , Contaminantes Radiactivos del Suelo/análisis , Monitoreo de Radiación , Suelo/química , Bacterias/clasificación , Ucrania , Bosques
14.
PeerJ ; 12: e17900, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39157765

RESUMEN

The activities of microbiomes in river sediments play an important role in sustaining ecosystem functions by driving many biogeochemical cycles. However, river ecosystems are frequently affected by anthropogenic activities, which may lead to microbial biodiversity loss and/or changes in ecosystem functions and related services. While parts of the Atlantic Forest biome stretching along much of the eastern coast of South America are protected by governmental conservation efforts, an estimated 89% of these areas in Brazil are under threat. This adds urgency to the characterization of prokaryotic communities in this vast and highly diverse biome. Here, we present prokaryotic sediment communities in the tropical Juliana River system at three sites, an upstream site near the river source in the mountains (Source) to a site in the middle reaches (Valley) and an estuarine site near the urban center of Ituberá (Mangrove). The diversity and composition of the communities were compared at these sites, along with environmental conditions, the former by using qualitative and quantitative analyses of 16S rRNA gene amplicons. While the communities included distinct populations at each site, a suite of core taxa accounted for the majority of the populations at all sites. Prokaryote diversity was highest in the sediments of the Mangrove site and lowest at the Valley site. The highest number of genera exclusive to a given site was found at the Source site, followed by the Mangrove site, which contained some archaeal genera not present at the freshwater sites. Copper (Cu) concentrations were related to differences in communities among sites, but none of the other environmental factors we determined was found to have a significant influence. This may be partly due to an urban imprint on the Mangrove site by providing organic carbon and nutrients via domestic effluents.


Asunto(s)
Sedimentos Geológicos , ARN Ribosómico 16S , Ríos , Brasil , Ríos/microbiología , ARN Ribosómico 16S/genética , Sedimentos Geológicos/microbiología , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bosques , Estuarios , Biodiversidad , Archaea/genética , Archaea/clasificación , Archaea/aislamiento & purificación , Microbiota
15.
mSphere ; 9(8): e0038624, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39105581

RESUMEN

Arthropods harbor complex microbiota that play a pivotal role in host fitness. While multiple factors, like host species and diet, shape microbiota in arthropods, their impact on community assembly in wild insects remains largely unknown. In this study, we surveyed bacterial and fungal community assembly in nine sympatric wild insect species that share a common citrus fruit diet. Source tracking analysis suggested that these insects acquire some bacteria and fungi from the citrus fruit with varying degrees. Although sharing a common diet led to microbiota convergence, the diversity, composition, and network of both bacterial and fungal communities varied significantly among surveyed insect groups. Null model analysis indicated that stochastic processes, particularly dispersal limitation and drift, are primary drivers of structuring insect bacterial and fungal communities. Importantly, the influence of each community assembly process varied strongly depending on the host species. Thus, we proposed a speculative view that the host specificity of the microbiome and mycobiome assembly is widespread in wild insects despite sharing the same regional species pool. Overall, this research solidifies the importance of host species in shaping microbiomes and mycobiomes, providing novel insights into their assembly mechanisms in wild insects. IMPORTANCE: Since the microbiome has been shown to impact insect fitness, a mechanistic understanding of community assembly has potentially significant applications but remains largely unexplored. In this paper, we investigate bacterial and fungal community assembly in nine sympatric wild insect species that share a common diet. The main findings indicate that stochastic processes drive the divergence of microbiomes and mycobiomes in nine sympatric wild insect species. These findings offer novel insights into the assembly mechanisms of microbiomes and mycobiomes in wild insects.


Asunto(s)
Bacterias , Dieta , Hongos , Insectos , Microbiota , Procesos Estocásticos , Simpatría , Animales , Insectos/microbiología , Hongos/clasificación , Hongos/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Micobioma , Citrus/microbiología
16.
J Hazard Mater ; 479: 135574, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39197278

RESUMEN

Tire wear particles (TWPs) pollution is widely present in soil, especially in areas severely affected by traffic. Herein, regular variation of fungal biomass with TWPs was found in soils with different distances from the highway. In addition, the concentrations of benzothiazole compounds (BTHs), an important class of rubber vulcanization accelerators, were found to be positively correlated to the TWPs abundance. Sixty days' soil microcosm experiments were conducted to further confirm the adverse effect of TWPs and BTHs on soil fungi. TWPs spiking at 1000 mg/kg, a detectable level in the roadside, resulted in significant reduction of biomass and significant changes of soil fungal community structure, with Eurotium and Polyporales being the sensitive species. BTH+ 2-hydroxybenzothiazole (OHBT) (the dominant BTHs in soil) spiking at 200 ng/kg, the dose equivalent to 1000 mg/kg TWPs pollution, also caused a similar magnitude of soil fungal biomass reduction. Adonis demonstrated no significant difference of fungal community structure between TWPs and BTH+OHBT spiked soil, suggesting the adverse effect of TWPs on soil fungi may be explained by the act of BTHs. Pure culture using the representative soil fungi Eurotium and Polyporales also confirmed that BTHs were the main contributors to the adverse effect of TWPs on soil fungi.

17.
Int J Phytoremediation ; : 1-12, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150230

RESUMEN

In recent years, heavy metal pollution has become a global environmental problem and poses a great threat to the health of people and ecosystems. Therefore, strategies for the effective remediation of Cd from contaminated soil are urgently needed. In this study, ryegrass was utilized as a remediation plant, and its remediation potential was enhanced through the application of Citric Acid (CA) in conjunction with Bacillus megaterium (B. megaterium). The P3 treatment (CA + Bacillus megaterium) exhibited a significantly higher efficiency in promoting cadmium extraction by ryegrass, resulting in a 1.79-fold increase in shoot cadmium accumulation compared to the control group (CK) with no Bacillus megaterium or CA. Moreover, the P3 treatment led to an increased abundance of Actinobacteriota, Acidobacteriota, and Patescibacteria in the rhizosphere. The concentration of amino derivatives (such as betaine, sulfolithocholylglycine, N-alpha-acetyl-lysine, glycocholic acid, arginyl-threonine) showed significant upregulation following the P3 treatment. In summary, this study proposes a viable approach for phytoremediation of soil contaminated with cadmium by harnessing the mobilizing abilities of soil bacteria.


Our aim was to gain a comprehensive understanding of the mechanisms involved in phytoremediation. These findings contribute to the existing knowledge by providing insights into the mechanism of phytoremediation in Cd-contaminated soil. They are expected to serve as a theoretical foundation for further elucidation of the phytoremediation mechanisms employed in Cd-contaminated soil.

18.
Microbiologyopen ; 13(4): e1428, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39119822

RESUMEN

Interactions between phytoplankton and heterotrophic bacteria significantly influence the cycling of organic carbon in the ocean, with many of these interactions occurring at the micrometer scale. We explored potential associations between specific phytoplankton and bacteria in two size fractions, 0.8-3 µm and larger than 3 µm, at three naturally iron-fertilized stations and one high nutrient low chlorophyll station in the Southern Ocean. The composition of phytoplankton and bacterial communities was determined by sequencing the rbcL gene and 16S rRNA gene from DNA and RNA extracts, which represent presence and potential activity, respectively. Diatoms, particularly Thalassiosira, contributed significantly to the DNA sequences in the larger size fractions, while haptophytes were dominant in the smaller size fraction. Correlation analysis between the most abundant phytoplankton and bacterial operational taxonomic units revealed strong correlations between Phaeocystis and picoeukaryotes with SAR11, SAR116, Magnetospira, and Planktomarina. In contrast, most Thalassiosira operational taxonomic units showed the highest correlations with Polaribacter, Sulfitobacteria, Erythrobacter, and Sphingobium, while Fragilariopsis, Haslea, and Thalassionema were correlated with OM60, Fluviicola, and Ulvibacter. Our in-situ observations suggest distinct associations between phytoplankton and bacterial taxa, which could play crucial roles in nutrient cycling in the Southern Ocean.


Asunto(s)
Bacterias , Diatomeas , Océanos y Mares , ARN Ribosómico 16S , Agua de Mar , Diatomeas/clasificación , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Haptophyta/clasificación , Haptophyta/crecimiento & desarrollo , Fitoplancton/clasificación , Fitoplancton/crecimiento & desarrollo , Filogenia , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Estaciones del Año
19.
Water Res ; 265: 122302, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39178591

RESUMEN

Enriching microorganisms using a 0.22-µm pore size is a general pretreatment procedure in river microbiome research. However, it remains unclear the extent to which this method loses microbiome information. Here, we conducted a comparative metagenomics-based study on microbiomes with sizes over 0.22 µm (large-sized) and between 0.22 µm and 0.1 µm (small-sized) in a subtropical river. Although the absolute concentration of small-sized microbiome was about two orders of magnitude lower than that of large-sized microbiome, sequencing only large-sized microbiome resulted in a significant loss of microbiome diversity. Specifically, the microbial community was different between two sizes, and 347 genera were only detected in small-sized microbiome. Small-sized microbiome had much more diverse viral community than large-sized fraction. The viruses had abundant ecological functions and were hosted by 825 species of 169 families, including pathogen-related families. Small-sized microbiome had distinct antimicrobial resistance risks from large-sized microbiome, showing an enrichment of eight antibiotic resistance gene (ARG) types as well as the detection of 140 unique ARG subtypes and five enriched risk rank I ARGs. Draft genomes of five major resistant pathogens having diverse ecological and pollutant-degrading functions were only assembled in small-sized microbiome. These findings provide novel insights into river ecosystems, and highlight the overlooked small-sized microbiome in the environment.


Asunto(s)
Ecosistema , Microbiota , Ríos , Ríos/microbiología , Metagenómica , Bacterias/genética
20.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-39214074

RESUMEN

Physical particles can serve as critical abiotic factors that structure the ecology of microbial communities. For non-human vertebrate gut microbiomes, fecal particle size (FPS) has been known to be shaped by chewing efficiency and diet. However, little is known about what drives FPS in the human gut. Here, we analyzed FPS by laser diffraction across a total of 76 individuals and found FPS to be strongly individualized. Contrary to our initial hypothesis, a behavioral intervention with 41 volunteers designed to increase chewing efficiency did not impact FPS. Dietary patterns could also not be associated with FPS. Instead, we found evidence that human and mouse gut microbiomes shaped FPS. Fecal samples from germ-free and antibiotic-treated mice exhibited increased FPS relative to colonized mice. In humans, markers of longer transit time were correlated with smaller FPS. Gut microbiota diversity and composition were also associated with FPS. Finally, ex vivo culture experiments using human fecal microbiota from distinct donors showed that differences in microbiota community composition can drive variation in particle size. Together, our results support an ecological model in which the human gut microbiome plays a key role in reducing the size of food particles during digestion. This finding has important implications for our understanding of energy extraction and subsequent uptake in gastrointestinal tract. FPS may therefore be viewed as an informative functional readout, providing new insights into the metabolic state of the gut microbiome.


Asunto(s)
Heces , Microbioma Gastrointestinal , Tamaño de la Partícula , Humanos , Animales , Heces/microbiología , Ratones , Adulto , Masculino , Femenino , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Dieta , Adulto Joven , Ratones Endogámicos C57BL , Masticación , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA