Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 243: 114168, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39190939

RESUMEN

Microalgal biomass has shown inspiring potential for the heavy metal removal from wastewater, and forming microalgal biofilm is one of the sustainable methods for the microalgal biomass production. Here we report the formation of microalgal biofilm by accelerated colonization of typical algae Chlorella on thermal sprayed aluminum (Al) coatings with biologically modified surfaces. Micro-patterning surface treatment of the Al coatings promotes the attachment of Chlorella from 6.31 % to 17.51 %. Further enhanced algae attachment is achieved through liquid flame spraying a bioactive crushed oyster shell-hydroxyapatite (CaCO3-HA) composite top layer on the micropatterned coating, reaching 46.03-49.62 % of Chlorella attachment ratio after soaking in Chlorella suspension for 5 days. The rapidly formed microalgal biofilm shows an adsorption ratio of 95.43 % and 85.23 % for low concentration Zn2+ and Cu2+ in artificial seawater respectively within 3 days. Quick interaction has been realized between heavy metal ions and the negatively-charged extracellular polymeric substances (EPS) matrix existing in the biofilm. Fourier transform infrared spectroscopy (FTIR) results indicate that both carboxyl and phosphoryl groups of biofilms are crucial in the adsorption of Cu2+ and the adsorption of Zn2+ is due to the hydroxyl and phosphate groups. Meanwhile, the biofilm could act as a barrier to protect Chlorella against the attack of the heavy metal ions with relatively low concentrations in aqueous solution. The route of quick cultivating microalgal biofilm on marine structures through constructing biological layer on their surfaces would give insight into developing new techniques for removing low concentration heavy metal ions from water for environmental bioremediation.


Asunto(s)
Aluminio , Biopelículas , Durapatita , Metales Pesados , Microalgas , Ostreidae , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Animales , Aluminio/química , Aluminio/farmacología , Durapatita/química , Microalgas/crecimiento & desarrollo , Microalgas/efectos de los fármacos , Microalgas/química , Ostreidae/microbiología , Metales Pesados/química , Metales Pesados/aislamiento & purificación , Adsorción , Propiedades de Superficie , Contaminantes Químicos del Agua/aislamiento & purificación , Contaminantes Químicos del Agua/química , Chlorella/crecimiento & desarrollo , Chlorella/química , Iones , Espectroscopía Infrarroja por Transformada de Fourier
2.
Environ Res ; 256: 119245, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810821

RESUMEN

Microalgae have been renowned as the most promising energy organism with significant potential in carbon fixation. In the large-scale cultivation of microalgae, the 3D porous substrate with higher specific surface area is favorable to microalgae adsorption and biofilm formation, whereas difficult for biofilm detachment and microalgae harvesting. To solve this contradiction, N-isopropylacrylamide, a temperature-responsive gels material, was grafted onto the inner surface of the 3D porous substrate to form temperature-controllable interface wettability. The interfacial free energy between microalgae biofilm and the substrates increased from -63.02 mJ/m2 to -31.89 mJ/m2 when temperature was lowered from 32 °C to 17 °C, weakening the adsorption capacity of cells to the surface, and making the biofilm detachment ratio increased to 50.8%. When further cooling the environmental temperature to 4 °C, the detachment capability of microalgae biofilm kept growing. 91.6% of the cells in the biofilm were harvesting from the 3D porous substrate. And the biofilm detached rate was up to 19.84 g/m2/h, realizing the temperature-controlled microalgae biofilm harvesting. But, microalgae growth results in the secretion of extracellular polymeric substances (EPS), which enhanced biofilm adhesion and made cell detachment more difficult. Thus, ultrasonic vibration was used to reinforce biofilm detachment. With the help of ultrasonic vibration, microalgae biofilm detached rate increased by 143.45% to 41.07 g/m2/h. These findings provide a solid foundation for further development of microalgae biofilm detachment and harvesting technology.


Asunto(s)
Biopelículas , Geles , Microalgas , Temperatura , Biopelículas/crecimiento & desarrollo , Microalgas/crecimiento & desarrollo , Porosidad , Geles/química , Acrilamidas/química
3.
Sci Total Environ ; 939: 173643, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38821282

RESUMEN

Mariculture effluent polishing with microalgal biofilm could realize effective nutrients removal and resolve the microalgae-water separation issue via biofilm scraping or in-situ aquatic animal grazing. Ubiquitous existence of antibiotics in mariculture effluents may affect the remediation performances and arouse ecological risks. The influence of combined antibiotics exposure at environment-relevant concentrations towards attached microalgae suitable for mariculture effluent polishing is currently lack of research. Results from suspended cultures could offer limited guidance since biofilms are richer in extracellular polymeric substances that may protect the cells from antibiotics and alter their transformation pathways. This study, therefore, explored the effects of combined antibiotics exposure at environmental concentrations towards seawater Chlorella sp. biofilm in terms of microalgal growth characteristics, nutrients removal, anti-oxidative responses, and antibiotics removal and transformations. Sulfamethoxazole (SMX), tetracycline (TL), and clarithromycin (CLA) in single, binary, and triple combinations were investigated. SMX + TL displayed toxicity synergism while TL + CLA revealed toxicity antagonism. Phosphorus removal was comparable under all conditions, while nitrogen removal was significantly higher under SMX and TL + CLA exposure. Anti-oxidative responses suggested microalgal acclimation towards SMX, while toxicity antagonism between TL and CLA generated least cellular oxidative damage. Parent antibiotics removal was in the order of TL (74.5-85.2 %) > CLA (60.8-69.5 %) > SMX (13.5-44.1 %), with higher removal efficiencies observed under combined than single antibiotic exposure. Considering the impact of residual parent antibiotics, CLA involved cultures were identified of high ecological risks, while medium risks were indicated in other cultures. Transformation products (TPs) of SMX and CLA displayed negligible aquatic toxicity, the parent antibiotics themselves deserve advanced removal. Four out of eight TPs of TL could generate chronic toxicity, and the elimination of these TPs should be prioritized for TL involved cultures. This study expands the knowledge of combined antibiotics exposure upon microalgal biofilm based mariculture effluent polishing.


Asunto(s)
Antibacterianos , Biopelículas , Chlorella , Agua de Mar , Contaminantes Químicos del Agua , Chlorella/fisiología , Chlorella/efectos de los fármacos , Biopelículas/efectos de los fármacos , Antibacterianos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Agua de Mar/química , Medición de Riesgo , Eliminación de Residuos Líquidos/métodos , Acuicultura , Microalgas/efectos de los fármacos , Microalgas/fisiología
4.
Bioresour Technol ; 399: 130561, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460558

RESUMEN

During the wastewater treatment and resource recovery process by attached microalgae, the chemical oxygen demand (COD) can cause biotic contamination in algal culture systems, which can be mitigated by adding an appropriate dosage of antibiotics. The transport of COD and additive antibiotic (chloramphenicol, CAP) in algal biofilms and their influence on algal physiology were studied. The results showed that COD (60 mg/L) affected key metabolic pathways, such as photosystem II and oxidative phosphorylation, improved biofilm autotrophic and heterotrophic metabolic intensities, increased nutrient demand, and promoted biomass accumulation by 55.9 %, which was the most suitable COD concentration for attached microalgae. CAP (5-10 mg/L) effectively stimulated photosynthetic pigment accumulation and nutrient utilization in pelagic microalgal cells. In conclusion, controlling the COD concentration (approximately 60 mg/L) in the medium and adding the appropriate CAP concentration (5-10 mg/L) are conducive to improving attached microalgal biomass production and resource recovery potential from wastewater.


Asunto(s)
Microalgas , Microalgas/metabolismo , Cloranfenicol/metabolismo , Análisis de la Demanda Biológica de Oxígeno , Aguas Residuales , Biopelículas , Biomasa , Nitrógeno/metabolismo
5.
Bioresour Technol ; 393: 130052, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37995875

RESUMEN

Microalgae coculture has the potential to promote microalgae biofilm growth. Herein, three two-species cocultured biofilms were studied by determining biomass yields and detailed microstructure parameters, including porosity, average pore length, average cluster length, etc. It was found that biomass yields could reduce by 21-53 % when biofilm porosities decreased from about 35 % to 20 %; while at similar porosities (∼20 %), biomass yields of cocultured biofilms increased by 37 % when they possessed uniform microstructure and small cell-clusters (pores and clusters of 1 âˆ¼ 10 µm accounted for 96 % and 68 %, respectively). By analyzing morphologies and surface properties of cells, it was found that cells with small size, spherical shape, and reduced surface polymers could hinder the cell-clusters formation, thereby promoting biomass yields. The study provides new insights into choosing cocultured microalgae species for improving the biomass yield of biofilm via manipulating biofilm microstructures.


Asunto(s)
Microalgas , Técnicas de Cocultivo , Biomasa , Propiedades de Superficie , Biopelículas
6.
Sci Total Environ ; 912: 169659, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38159749

RESUMEN

Microalgal biofilm is promising in simultaneous pollutants removal, CO2 fixation, and biomass resource transformation when wastewater is used as culturing medium. Nitric oxide (NO) often accumulates in microalgal cells under wastewater treatment relevant abiotic stresses such as nitrogen deficiency, heavy metals, and antibiotics. However, the influence of emerging contaminants such as microplastics (MPs) on microalgal intracellular NO is still unknown. Moreover, the investigated MPs concentrations among existing studies were mostly several magnitudes higher than in real wastewaters, which could offer limited guidance for the effects of MPs on microalgae at environment-relevant concentrations. Therefore, this study investigated three commonly observed MPs in wastewater at environment-relevant concentrations (10-10,000 µg/L) and explored their impacts on attached Chlorella sp. growth characteristics, nutrients removal, and anti-oxidative responses (including intracellular NO content). The nitrogen source NO3--N at 49 mg/L being 20 % of the nitrogen strength in classic BG-11 medium was selected for MPs exposure experiments because of least intracellular NO accumulation, so that disturbance of intracellular NO by nitrogen availability could be avoided. Under such condition, 10 µg/L polyethylene (PE) MPs displayed most significant microalgal growth inhibition comparing with polyvinyl chloride (PVC) and polyamide (PA) MPs, showing extraordinarily low chlorophyll a/b ratios, and highest superoxide dismutase (SOD) activity and intracellular NO content after 12 days of MPs exposure. PVC MPs exposed cultures displayed highest malonaldehyde (MDA) content because of the toxic characteristics of organochlorines, and most significant correlations of intracellular NO content with conventional anti-oxidative parameters of SOD, CAT (catalase), and MDA. MPs accelerated phosphorus removal, and the type rather than concentration of MPs displayed higher influences, following the trend of PE > PA > PVC. This study expanded the knowledge of microalgal biofilm under environment-relevant concentrations of MPs, and innovatively discovered the significance of intracellular NO as a more sensitive indicator than conventional anti-oxidative parameters under MPs exposure.


Asunto(s)
Chlorella , Microalgas , Microplásticos/toxicidad , Plásticos , Aguas Residuales , Óxido Nítrico , Clorofila A , Superóxido Dismutasa , Biopelículas , Nitrógeno
7.
Biofouling ; 39(8): 879-895, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965865

RESUMEN

In this study, the effects of surface properties of membrane materials on microalgae cell adhesion and biofilm formation were investigated using Chlorella vulgaris and five different types of membrane materials under hydrodynamic conditions. The results suggest that the contact angle (hydrophobicity), surface free energy, and free energy of cohesion of membrane materials alone could not sufficiently elucidate the selectivity of microalgae cell adhesion and biofilm formation on membrane materials surfaces, and membrane surface roughness played a dominant role in controlling biofilm formation rate, under tested hydrodynamic conditions. A lower level of biofilm EPS production was generally associated with a larger amount of biofilm formation. The zeta potential of membrane materials could enhance initial microalgae cell adhesion and biofilm formation through salt bridging or charge neutralization mechanisms.


Asunto(s)
Chlorella vulgaris , Microalgas , Biopelículas , Adhesión Celular , Propiedades de Superficie
8.
J Environ Manage ; 341: 118075, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37141712

RESUMEN

Microalgal biofilm cultivation is a promising method for efficient microalgae production. However, expensive, difficult-to-obtain and non-durable carriers hinder its up-scaling. This study adopted both sterilized and unsterilized rice straw (RS) as a carrier for the development of microalgal biofilm, with polymethyl methacrylate as control. The biomass production and chemical composition of Chlorella sorokiniana, as well as the microbial community composition during cultivation were examined. The physicochemical properties of RS before and after utilized as carrier were investigated. The biomass productivity of unsterilized RS biofilm exceeded that of suspended culture by 4.85 g m-2·d-1. The indigenous microorganisms, mainly fungus, could effectively fixed microalgae to the bio-carrier and enhance its biomass production. They could also degrade RS into dissolved matters for microalgal utilization, leading to the physicochemical properties change of RS in the direction which favored its energy conversion. This study showed that RS can be used effectively as a microalgal biofilm carrier, thus presenting a new possibility for the recycling of rice straw.


Asunto(s)
Chlorella , Microalgas , Oryza , Microalgas/metabolismo , Biomasa , Biopelículas
9.
J Environ Manage ; 326(Pt A): 116757, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36395642

RESUMEN

Biofilm-based microalgae culture combined with wastewater treatment is a promising biotechnology for environmental management. Light availability influences the accumulation of microalgal biomass and nutrient removal. A light attenuation model which comprehensively considered microalgal biofilm structure (density and biofilm thickness), pigments content, and extracellular polymeric substances content was developed to predict the light attenuation in biofilm according to the simplification of the radiative transfer equation. The predicted results were in good overall agreement with the experiment, with an average error of less than 9.02%. These factors (biofilm density, thickness, pigments content, and extracellular polymeric substances content) all contributed to the light intensity attenuation, but biofilm thickness caused the most dramatic attenuation under the same increment of relative change in actual culture. The scattering coefficient of the biofilm (0.433 m2/g) was less than that of the suspension (1.489 m2/g) under white incident light. It suggests that the dense structure of cells allows much light to be concentrated in the forward direction when transmitting. This model could be adopted to predict the light distribution in microalgal biofilm for the further design of efficient photobioreactors and the development of light optimization strategies.


Asunto(s)
Microalgas , Biopelículas , Fotobiorreactores , Biomasa , Biotecnología
10.
Bioresour Technol ; 356: 127306, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35569716

RESUMEN

The present work aimed to evaluate the mixotrophic growth of Chlorella pyrenoidosa in a microalgal-biofilm reactor (MBR) using waste glycerol as an organic carbon source. The biomass productivity of C. pyrenoidosa (10.14 g m-2 d-1) under the mixotrophic mode was remarkably higher than that observed during the phototrophic mode (4.16 g m-2 d-1), under similar incubation conditions. The hydraulic retention time (HRT) of 6 d was found optimal for the higher productivity of microalgae in the MBR. Notably, based on biofuel quality, mixotrophically grown microalgal biomass was noted to have better suitability for biomethane production compared to biodiesel. Besides, up to 98.09, 75.74, and 55.86% removal of phosphate, nitrate, and COD, respectively, was recorded within 6 d under mixotrophic growth. Overall, the present findings magnificently demonstrate the efficient recycling of waste glycerol for higher biomass production coupled with phycoremediation using mixotrophic MBR.


Asunto(s)
Chlorella , Microalgas , Biopelículas , Biocombustibles , Biomasa , Glicerol
11.
Bioresour Technol ; 331: 124931, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33812139

RESUMEN

A microalgal biofilm-attached-system is an alternative cultivation method, that offers potential advantages of improved biomass productivity, efficient harvesting, and water saving. These biofilm systems have been widely tested and utilized for microalgal biomass production and wastewater treatment. This research a microalgal growth model for the biofilm attached culture system has been developed and experimentally validated, both, in single and arrayed biofilm systems. It has been shown that the model has the capability to accurately describe microalgae growth. Moreover, via the model simulation, it was observed that system structural parameters, light dilution rate, and light intensity significantly affected the culture performance. The limitations, and improvement aspects of the model, are also discussed in this study. To our knowledge, this is the first time that a mathematical model for an arrayed-biofilm-attached-system has been developed and validated. This model will certainly be helpful in the design, improvement, optimization, and evaluation of the biofilm-attached-systems.


Asunto(s)
Microalgas , Biopelículas , Biomasa , Luz
12.
FEMS Microbiol Lett ; 364(24)2017 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-29069404

RESUMEN

The potential of biofilm-based photobioreactors (PBRs) for various applications has long been recognized, and various types of biofilm-based PBRs have been developed for different applications. Compared to suspension-based PBR reactors, biofilm-based systems offer several advantages, including a significantly higher biomass concentration. However, due to the immobilization of the cells, in contrast to suspension-based systems, dissolved inorganic carbon (DIC) has to be transferred into the biofilm for consumption. Thus, to ensure efficient operation of these systems under a given lighting scheme (e.g. depending on geographical location), availability of DIC should be optimized. To achieve this, the dynamics of DIC inside the various biofilm-based PBRs, as well as the operational principles of these PBRs, need to be understood. The mini-review summarizes the designs of existing biofilm-based PBRs and reviews previous studies on DIC dynamics in various biofilms. Strategies to enhance DIC availability for the immobilized cells in biofilm-based PBRs are also discussed.


Asunto(s)
Biopelículas , Carbono/metabolismo , Fotobiorreactores , Diseño de Equipo
13.
Int J Phytoremediation ; 19(10): 909-914, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28318295

RESUMEN

Eutrophication of water by nutrient pollution remains an important environmental issue. The aim of this study was to evaluate the nutrient uptake capacity of an algal biofilm as a means to treat polluted water. In addition, the study investigated the nutrient removal process. The algal biofilm was able to remove 99% of phosphorus within 24 hours of P addition, with the PO4-P concentration in inflowing water ranging from 3 to 10 mg L-1. Different patterns of phosphorus and nitrogen removal were observed. Daily quantity of removed NO3-N ranged from 2 to 25% and was highly dependent on solar irradiance. Precipitation of phosphorus during the removal process was studied using X-ray diffraction analyses and was not confirmed in the biofilm. The biofilm system we constructed has a high efficiency for phosphorus removal and, therefore, has great potential for integration into wastewater treatment processes.


Asunto(s)
Biopelículas , Nitrógeno , Fósforo , Purificación del Agua , Biodegradación Ambiental , Eliminación de Residuos Líquidos
14.
Biotechnol Bioeng ; 114(4): 769-776, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27748511

RESUMEN

The loss of carbon dioxide (CO2 ) to the environment during microalgae cultivation is undesirable for both environmental and economic reasons. In this study, a phototrophic biofilm growth model was developed and validated with the objective to maximize both CO2 utilization efficiency and production of microalgae in biofilms. The model was validated in growth experiments with CO2 as the limiting substrate. The CO2 utilization and biomass productivity were maximized by changing the gas flow rate, the number of biofilm reactors in series and gas composition. Based on simulations, the maximum CO2 utilization efficiency that was reached was 96% based on a process employing flue gas. The corresponding drop in productivity was only 2% in comparison to the non-CO2 limited reference situation. In order to achieve this, 25 biofilm reactors units, or more, must be operated in series. Based on these results, it was concluded that concentrated CO2 streams and plug flow behavior of the gaseous phase over the biofilm surface are essential for high productivity and CO2 utilization efficiency. Biotechnol. Bioeng. 2017;114: 769-776. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Biopelículas , Biomasa , Dióxido de Carbono/metabolismo , Microalgas/metabolismo , Modelos Biológicos , Fotobiorreactores , Reproducibilidad de los Resultados
15.
Water Res ; 71: 55-63, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25594825

RESUMEN

Eutrophication of surface water has been an important environmental issue for nearly half a century. High concentrations of phosphorus contribute to the process of eutrophication, resulting in the demand for effective and economic methods of phosphorus removal from treated water. The aim of this study was to evaluate the capacity for phosphorus removal of a microalgal biofilm during different light regimes. The photobioreactor was operated for nine months each year over a two-year period without interruption and without any need of re-inoculation. The algal biofilm was able to remove 97 ± 1% of total phosphorus from wastewater during 24 h of continuous artificial illumination. The average TP uptake rate in our experiments was 0.16 ± 0.008 g m(-2) d(-1). Phosphorus removal values ranged from 36 to 41% when the algal biofilm was illuminated by natural light (12 h sunlight-12 h night). The biomass production rate was 12.21 ± 10 g dry weight m(-2) d(-1) in experiments with continuous artificial light and 5.6 ± 1 g dry weight (DW) m(-2) d(-1) in experiments with natural light. These results indicate the great potential of microalgal biofilms in the tertiary treatment of wastewater.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Microalgas/metabolismo , Fósforo/metabolismo , Fotobiorreactores , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Biomasa , Microalgas/crecimiento & desarrollo , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA