Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neurochem Res ; 48(3): 942-955, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36401052

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disease affecting the aging population. Particularly, long non-coding RNAs (lncRNAs) have been demonstrated to play vital roles in PD, while the role of lncRNA SNHG8 in PD remains to be further explored. C57BL/6 mice were induced by rotenone to establish a PD model in vivo, and then the dopaminergic (DA) neuronal damage and locomotor dysfunction in rotenone-treated mice were evaluated. Murine DA cell line MN9D was treated with rotenone to establish a cellular PD model in vitro. Then, the viability, apoptosis, mitochondrial dysfunction, endoplasmic reticulum stress, and autophagy in rotenone-treated MN9D cells were assessed. Expression levels of SNHG8, microRNA-421-3p (miR-421-3p), and sorting nexin 8 (SNX8) in the substantia nigra (SN) of PD mice and rotenone-treated MN9D cells were detected. The interaction between SNHG8 and miR-421-3p, and the targeting relationship between SNX8 and miR-421-3p were confirmed. SNHG8 and SNX8 expression levels were decreased while miR-421-3p expression level was increased in the SN of PD mice and rotenone-treated MN9D cells. Upregulated SNHG8 ameliorated dopaminergic neuron damage and locomotor dysfunction in PD mice. Meanwhile, upregulated SNHG8 enhanced viability, diminished apoptosis, and alleviated mitochondrial dysfunction, endoplasmic reticulum stress, and autophagy in rotenone-treated MN9D cells. Mechanistically, SNHG8 bound to miR-421-3p, and miR-421-3p targeted SNX8. Overexpressed SNHG8 downregulates miR-421-3p to alleviate rotenone-induced dopaminergic neuron injury in PD via upregulating SNX8.


Asunto(s)
MicroARNs , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/metabolismo , Neuronas Dopaminérgicas/metabolismo , Rotenona/toxicidad , Enfermedades Neurodegenerativas/metabolismo , Nexinas de Clasificación/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , MicroARNs/genética , MicroARNs/metabolismo , Sustancia Negra/metabolismo
2.
Int Immunopharmacol ; 88: 106937, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32890792

RESUMEN

OBJECTIVE: Ischemic stroke is one of the leading causes of death globally, and inflammation is considered as a vital contributor to the pathophysiology of ischemic stroke. Recently, microRNA-421-3p-derived macrophages is found to promote motor function recovery in spinal cord injury. Here, we explored whether microRNA-421-3p is involved in inflammation responses during cerebral ischemia/reperfusion (I/R) injury and its molecular mechanism. METHODS: An in vivo experimental animal model of intraluminal middle cerebral artery occlusion/reperfusion (MCAO/R) and in vitro model of microglial subjected to oxygen-glucose deprivation and reoxygenation (OGD/R) were used. The effects of microRNA-421-3p on cerebral I/R injury and its underlying mechanism were detected by quantitative real-time PCR, western blotting, immunofluorescence staining, RNA immunoprecipitation, flow cytometry, luciferase reporter assay, and bioinformatics analysis. RESULTS: We find that microRNA-421-3p is significantly decreased in cerebral I/R injury in vitro and in vivo. Furthermore, overexpression of microRNA-421-3p evidently suppresses pro-inflammatory factor expressions and inhibits NF-κB p65 protein expression and nuclear translocation in BV2 microglia cells treated with OGD/R. However, microRNA-421-3p neither promotes p65 mRNA expression, nor affects p65 mRNA or protein stability. Moreover, we find the m6A 'reader' protein YTH domain family protein 1 (YTHDF1) is the specific target of microRNA-421-3p, and YTHDF1 specifically binds to the m6a site of p65 mRNA to promote its translation. CONCLUSION: microRNA-421-3p prevents inflammatory response in cerebral ischemia/reperfusion injury through targeting YTHDF1 to inhibit p65 mRNA translation. These findings provide novel insights into understanding the molecular pathogenesis of cerebral I/R injury.


Asunto(s)
Infarto de la Arteria Cerebral Media/genética , MicroARNs , Proteínas de Unión al ARN/genética , Daño por Reperfusión/genética , Factor de Transcripción ReIA/genética , Animales , Línea Celular , Citocinas/genética , Infarto de la Arteria Cerebral Media/metabolismo , Inflamación/genética , Inflamación/metabolismo , Masculino , Metiltransferasas , Ratones Endogámicos C57BL , Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , Daño por Reperfusión/metabolismo , Factor de Transcripción ReIA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA