Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Ann Biomed Eng ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316307

RESUMEN

This paper reports the first telemetric ureteral stent compatible with common placement procedure, enabling wireless sensing and detection of ureteral obstruction and resultant kidney swelling known as hydronephrosis at an early stage. This sensor-integrated "intelligent" ureteral stent is prototyped via the design and fabrication approaches that raise the practicality of the device and tested in a harvested swine kidney-ureter model ex vivo. Leveraging a polymeric double-J stent and micro-electro-mechanical systems technology, the intelligent stent is built by embedding micro pressure sensors and a radiofrequency antenna, forming a resonant circuit that enables wireless kidney pressure monitoring in an operating frequency of 40-50 MHz. The stent device is entirely packaged with Parylene-C for both biocompatibility and electrical insulation of the device in order to function in the real environment including urine, an electrically conductive liquid. A comparison between the results measured in in-vitro and ex-vivo settings show a good match in the sensitivity to applied pressure. In particular, the ex-vivo test in the kidney-ureter model pressurized with artificial urine in a cycled manner demonstrates wireless pressure tracking with a response of 1.3 kHz/mmHg, over pressures up to 37 mmHg that well covers a range of pressure increase known for chronic obstruction. This testing is enabled by the prototype placement into the ex-vivo model using the standard stenting technique and tools without noticeable functional degradation or failures, showing potential compatibility of the device with today's clinical need as a ureteral stent.

2.
Sensors (Basel) ; 24(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38894266

RESUMEN

This paper describes the design, fabrication, integration, characterization, and demonstration of a novel flexible double-sided curvature sensor array for use in soft robotics. The paper explores the performance and potential applications of a piezoresistive sensor array consisting of four gold strain gauges on a flexible polyimide (PI) substrate arranged in a Wheatstone bridge configuration. Multiple sensor strips were arranged like the fingers of a hand. Integrating Shape Memory Alloy (SMA) foils alongside the fingers was explored to mimic a human hand-gripping motion controlled with temperature, while curvature sensor array strips measure the resulting finger shapes. Moreover, object sensing in a flexible granular material gripper was demonstrated. The sensors were embedded within Polydimethylsiloxane (PDMS) to enhance their tactile feel and adhesive properties. The findings of this study are promising for future applications, particularly in robotics and prosthetics, as the ability to accurately mimic human hand movements and reconstruct sensor surfaces paves the way for robotic hand functionality.

3.
Small ; 19(48): e2303976, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37530208

RESUMEN

Micro-hotplate structures are increasingly being investigated for use in a host of applications ranging from broadband infra-red sources within absorption-based gas sensors to in situ heater stages for ultra-high-resolution imaging. With devices usually fabricated from a conductive electrode placed on top of a freestanding radiator element, coefficient of thermal expansion (CTE) mismatches between layers and electro-migration within the heating element typically lead to failure upon exceeding temperatures of 1600 K. In an attempt to mitigate such issues, a series of hotplates of varying geometry have been fabricated from a single layer of mechanically robust, high thermal conductivity, and low CTE boron-doped polycrystalline diamond. Upon testing under high vacuum conditions and characterization of the emission spectra, the resulting devices are shown to exhibit a grey-body like emission response and reach temperatures vastly in excess of conventional geometries of up to 2731 K at applied powers of ⩽100 mW. Characterization of the thermalization time meanwhile demonstrates rapid millisecond response times, while Raman spectroscopy reveals the performance of the devices is dictated by cumulative graphitization at elevated temperatures. As such, both diamond and sp2 carbon are shown to be promising materials for the fabrication of next-generation micro-hotplates.

4.
Sci Prog ; 106(3): 368504231191657, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37533330

RESUMEN

The developments in the field of artificial intelligence (AI) and decision making systems are identified as virtuous models for banking and finance sector (BFS) applications. Even though AI provides great advantage in application changes it is essential to remodel the system using explainable artificial intelligence (XAI) design system. Also the standard sensing models provides appropriate monitoring values but huge size of sensors is considered as a major drawback. Thus two diverse problems are addressed in this research work where XAI has been integrated with micro electro-mechanical systems (MEMS) for solving the problems related to BFS applications. Further the data security has been enhanced as XAI is implemented with conviction managements and real time experiments are carried out by developing a unique application by integrating new mathematical designs. To validate the effectiveness of BFS application the developed model is tested with five scenarios which includes multiple parametric arrangements with interpretability process. The tested and compared outcomes with existing models indicates that XAI and MEMS provides inordinate improvements in terms of data impairments thus increasing the transparency of the projected system to an average 96%.

5.
Adv Sci (Weinh) ; 10(26): e2302614, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37400367

RESUMEN

In this manuscript, a simple method combining atomic layer deposition and magnetron sputtering is developed to fabricate high-performance Pd/SnO2 film patterns applied for micro-electro-mechanical systems (MEMS) H2 sensing chips. SnO2 film is first accurately deposited in the central areas of MEMS micro hotplate arrays by a mask-assistant method, leading the patterns with wafer-level high consistency in thickness. The grain size and density of Pd nanoparticles modified on the surface of the SnO2 film are further regulated to obtain an optimized sensing performance. The resulting MEMS H2 sensing chips show a wide detection range from 0.5 to 500 ppm, high resolution, and good repeatability. Based on the experiments and density functional theory calculations, a sensing enhancement mechanism is also proposed: a certain amount of Pd nanoparticles modified on the SnO2 surface could bring stronger H2 adsorption followed by dissociation, diffusion, and reaction with surface adsorbed oxygen species. Obviously, the method provided here is quite simple and effective for the manufacturing of MEMS H2 sensing chips with high consistency and optimized performance, which may also find broad applications in other MEMS chip technologies.

6.
Sensors (Basel) ; 23(14)2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37514546

RESUMEN

Micro electro-mechanical systems (MEMS) combining sensing and microfluidics functionalities, as are common in Lab-on-Chip (LoC) devices, are increasingly based on polymers. Benefits of polymers include tunable material properties, the possibility of surface functionalization, compatibility with many micro and nano patterning techniques, and optical transparency. Often, additional materials, such as metals, ceramics, or silicon, are needed for functional or auxiliary purposes, e.g., as electrodes. Hybrid patterning and integration of material composites require an increasing range of fabrication approaches, which must often be newly developed or at least adapted and optimized. Here, a microfabrication process concept is developed that allows one to implement attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and electrochemistry on an LoC device. It is designed to spatially resolve chemical sensitivity and selectivity, which are instrumental for the detection of chemical distributions, e.g., during on-flow chemical and biological reaction chemistry. The processing sequence involves (i) direct-write and soft-contact UV lithography in SUEX dry resist and replication in polydimethylsiloxane (PDMS) elastomers as the fluidic structure; (ii) surface functionalization of PDMS with oxygen plasma, 3-aminopropyl-triethoxysilane (APTES), and a UV-curable glue (NOA 73) for bonding the fluidic structure to the substrate; (iii) double-sided patterning of silicon nitride-coated silicon wafers serving as the ATR-FTIR-active internal reflection element (IRE) on one side and the electrode-covered substrate for microfluidics on the back side with lift-off and sputter-based patterning of gold electrodes; and (iv) a custom-designed active vacuum positioning and alignment setup. Fluidic channels of 100 µm height and 600 µm width in 5 mm thick PDMS were fabricated on 2" and 4" demonstrators. Electrochemistry on-chip functionality was demonstrated by cyclic voltammetry (CV) of redox reactions involving iron cyanides in different oxidation states. Further, ATR-FTIR measurements of laminar co-flows of H2O and D2O demonstrated the chemical mapping capabilities of the modular fabrication concept of the LoC devices.

7.
Membranes (Basel) ; 13(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37367777

RESUMEN

According to the latest literature, it is difficult to measure the multiple important physical parameters inside a proton battery stack accurately and simultaneously. The present bottleneck is external or single measurements, and the multiple important physical parameters (oxygen, clamping pressure, hydrogen, voltage, current, temperature, flow, and humidity) are interrelated, and have a significant impact on the performance, life, and safety of the proton battery stack. Therefore, this study used micro-electro-mechanical systems (MEMS) technology to develop a micro oxygen sensor and a micro clamping pressure sensor, which were integrated into the 6-in-1 microsensor developed by this research team. In order to improve the output and operability of microsensors, an incremental mask was redesigned to integrate the back end of the microsensor in combination with a flexible printed circuit. Consequently, a flexible 8-in-1 (oxygen, clamping pressure, hydrogen, voltage, current, temperature, flow, and humidity) microsensor was developed and embedded in a proton battery stack for real-time microscopic measurement. Multiple micro-electro-mechanical systems technologies were used many times in the process of developing the flexible 8-in-1 microsensor in this study, including physical vapor deposition (PVD), lithography, lift-off, and wet etching. The substrate was a 50 µm-thick polyimide (PI) film, characterized by good tensile strength, high temperature resistance, and chemical resistance. The microsensor electrode used Au as the main electrode and Ti as the adhesion layer.

8.
Materials (Basel) ; 16(9)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37176390

RESUMEN

The proton battery has facilitated a new research direction for technologies related to fuel cells and energy storage. Our R&D team has developed a prototype of a proton battery stack, but there are still problems to be solved, such as leakage and unstable power generation. Moreover, it is unlikely that the multiple important physical parameters inside the proton battery stack can be measured accurately and simultaneously. At present, external or single measurements represent the bottleneck, yet the multiple important physical parameters (oxygen, hydrogen, voltage, current, temperature, flow, and humidity) are interrelated and have a significant impact on the performance, life, and safety of the proton battery stack. This research uses micro-electro-mechanical systems (MEMS) technology to develop a micro oxygen sensor and integrates the six-in-one microsensor that our R&D team previously developed in order to improve sensor output and facilitate overall operation by redesigning the incremental mask and having this co-operate with a flexible board for sensor back-end integration, completing the development of a flexible seven-in-one (oxygen, hydrogen, voltage, current, temperature, flow, and humidity) microsensor.

9.
Materials (Basel) ; 16(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37241429

RESUMEN

The objective of this review is to investigate the potential of functionalized magnetic polymer composites for use in electromagnetic micro-electro-mechanical systems (MEMS) for biomedical applications. The properties that make magnetic polymer composites particularly interesting for application in the biomedical field are their biocompatibility, their adjustable mechanical, chemical, and magnetic properties, as well as their manufacturing versatility, e.g., by 3D printing or by integration in cleanroom microfabrication processes, which makes them accessible for large-scale production to reach the general public. The review first examines recent advancements in magnetic polymer composites that possess unique features such as self-healing capabilities, shape-memory, and biodegradability. This analysis includes an exploration of the materials and fabrication processes involved in the production of these composites, as well as their potential applications. Subsequently, the review focuses on electromagnetic MEMS for biomedical applications (bioMEMS), including microactuators, micropumps, miniaturized drug delivery systems, microvalves, micromixers, and sensors. The analysis encompasses an examination of the materials and manufacturing processes involved and the specific fields of application for each of these biomedical MEMS devices. Finally, the review discusses missed opportunities and possible synergies in the development of next-generation composite materials and bioMEMS sensors and actuators based on magnetic polymer composites.

10.
Sensors (Basel) ; 23(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37112300

RESUMEN

The use of inertial devices in sport has become increasingly common. The aim of this study was to examine the validity and reliability of multiple devices for measuring jump height in volleyball. The search was carried out in four databases (PubMed, Scopus, Web of Sciences and SPORTDiscus) using keywords and Boolean operators. Twenty-one studies were selected that met the established selection criteria. The studies focused on determining the validity and reliability of IMUs (52.38%), on controlling and quantifying external load (28.57%) and on describing differences between playing positions (19.05%). Indoor volleyball was the modality in which IMUs have been used the most. The most evaluated population was elite, adult and senior athletes. The IMUs were used both in training and in competition, evaluating mainly the amount of jump, the height of the jumps and some biomechanical aspects. Criteria and good validity values for jump counting are established. The reliability of the devices and the evidence is contradictory. IMUs are devices used in volleyball to count and measure vertical displacements and/or compare these measurements with the playing position, training or to determine the external load of the athletes. It has good validity measures, although inter-measurement reliability needs to be improved. Further studies are suggested to position IMUs as measuring instruments to analyze jumping and sport performance of players and teams.


Asunto(s)
Rendimiento Atlético , Voleibol , Adulto , Humanos , Reproducibilidad de los Resultados , Atletas , Movimiento , Bibliometría
11.
Sensors (Basel) ; 23(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36991824

RESUMEN

Measurement performance evaluation of real and virtual automotive light detection and ranging (LiDAR) sensors is an active area of research. However, no commonly accepted automotive standards, metrics, or criteria exist to evaluate their measurement performance. ASTM International released the ASTM E3125-17 standard for the operational performance evaluation of 3D imaging systems commonly referred to as terrestrial laser scanners (TLS). This standard defines the specifications and static test procedures to evaluate the 3D imaging and point-to-point distance measurement performance of TLS. In this work, we have assessed the 3D imaging and point-to-point distance estimation performance of a commercial micro-electro-mechanical system (MEMS)-based automotive LiDAR sensor and its simulation model according to the test procedures defined in this standard. The static tests were performed in a laboratory environment. In addition, a subset of static tests was also performed at the proving ground in natural environmental conditions to determine the 3D imaging and point-to-point distance measurement performance of the real LiDAR sensor. In addition, real scenarios and environmental conditions were replicated in the virtual environment of a commercial software to verify the LiDAR model's working performance. The evaluation results show that the LiDAR sensor and its simulation model under analysis pass all the tests specified in the ASTM E3125-17 standard. This standard helps to understand whether sensor measurement errors are due to internal or external influences. We have also shown that the 3D imaging and point-to-point distance estimation performance of LiDAR sensors significantly impacts the working performance of the object recognition algorithm. That is why this standard can be beneficial in validating automotive real and virtual LiDAR sensors, at least in the early stage of development. Furthermore, the simulation and real measurements show good agreement on the point cloud and object recognition levels.

12.
Sensors (Basel) ; 23(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36991993

RESUMEN

This paper describes an original adaptive multispectral LED light source that utilizes miniature spectrometer to control its flux in real time. Current measurement of the flux spectrum is necessary in high-stability LED sources. In such cases, it is important the spectrometer work effectively with the system that controls the source and the whole system. Therefore, as important as flux stabilization is the integration of the integrating sphere-based design with the electronic module and power subsystem. Since the problem is interdisciplinary, the paper mainly focuses on presenting the solution of the flux measurement circuit. In particular, the proprietary way of operating the MEMS optical sensor as a real-time spectrometer was proposed. Then, the implementation of the sensor handling circuit, which determines the spectral measurements accuracy and thus the output flux quality, is described. Also presented is the custom method of coupling the analog part of the flux measurement path with the analog-to-digital conversion system and the control system based on the FPGA. The description of the conceptual solutions was supported by the results of simulation and laboratory tests at selected points of the measurement path. The presented concept allows to build adaptive LED light sources in the spectral range from 340 nm to 780 nm with adjustable spectrum and flux value, with electrical power up to 100 W, with adjustable flux value in the range of 100 dB, operating in constant current or pulsed mode.

13.
Materials (Basel) ; 16(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36903182

RESUMEN

In our recently published paper (Y.-Y. Wang et al., High performance LaNiO3-buffered, (001)-oriented PZT piezoelectric films integrated on (111) Si, Appl. Phys. Lett. 121, 182902, 2022), highly (001)-oriented PZT films with a large transverse piezoelectric coefficient e31,f prepared on (111) Si substrates were reported. This work is beneficial for the development of piezoelectric micro-electro-mechanical systems (Piezo-MEMS) because of (111) Si's isotropic mechanical properties and desirable etching characteristics. However, the underlying mechanism for the achievement of a high piezoelectric performance in these PZT films going through a rapid thermal annealing process has not been thoroughly analyzed. In this work, we present complete sets of data in microstructure (XRD, SEM and TEM) and electrical properties (ferroelectric, dielectric and piezoelectric) for these films with typical annealing times of 2, 5, 10 and 15 min. Through data analyses, we revealed competing effects in tuning the electrical properties of these PZT films, i.e., the removal of residual PbO and proliferation of nanopores with an increasing annealing time. The latter turned out to be the dominating factor for a deteriorated piezoelectric performance. Therefore, the PZT film with the shortest annealing time of 2 min showed the largest e31,f piezoelectric coefficient. Furthermore, the performance degradation occurred in the PZT film annealed for 10 min can be explained by a film morphology change, which involved not only the change in grain shape, but also the generation of a large amount of nanopores near its bottom interface.

14.
Photoacoustics ; 26: 100364, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35574189

RESUMEN

In most multispectral optical-resolution photoacoustic microscopy (OR-PAM), spatial scanning is repeated for each excitation wavelength, which decreases throughput and causes motion artifacts during spectral processing. This study proposes a new spectroscopic OR-PAM technique to acquire information on the photoacoustic signal intensity and excitation wavelength from single spatial scans. The technique involves irradiating an imaging target with two broadband optical pulses with and without wavelength-dependent time delays. The excitation wavelength of the sample is then calculated by measuring the time delay between the photoacoustic signals generated by the two optical pulses. This technique is validated by measuring the excitation wavelengths of dyes in tubes. Furthermore, we demonstrate the three-dimensional spectroscopic OR-PAM of cells stained with suitable dyes. Although the tradeoff between excitation efficiency and excitation bandwidth must be adjusted based on the application, combining the proposed technique with fast spatial scanning methods can significantly contribute to recent OR-PAM applications, such as monitoring quick biological events and microscale tracking of moving materials.

15.
J Synchrotron Radiat ; 29(Pt 2): 431-438, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35254306

RESUMEN

To improve the understanding of catalysts, and ultimately the ability to design better materials, it is crucial to study them during their catalytic active states. Using in situ or operando conditions allows insights into structure-property relationships, which might not be observable by ex situ characterization. Spatially resolved X-ray fluorescence, X-ray diffraction and X-ray absorption near-edge spectroscopy are powerful tools to determine structural and electronic properties, and the spatial resolutions now achievable at hard X-ray nanoprobe beamlines make them an ideal complement to high-resolution transmission electron microscopy studies in a multi-length-scale analysis approach. The development of a system to enable the use of a commercially available gas-cell chip assembly within an X-ray nanoprobe beamline is reported here. The novel in situ capability is demonstrated by an investigation of the redox behaviour of supported Pt nanoparticles on ceria under typical lean and rich diesel-exhaust conditions; however, the system has broader application to a wide range of solid-gas reactions. In addition the setup allows complimentary in situ transmission electron microscopy and X-ray nanoprobe studies under identical conditions, with the major advantage compared with other systems that the exact same cell can be used and easily transferred between instruments. This offers the exciting possibility of studying the same particles under identical conditions (gas flow, pressure, temperature) using multiple techniques.

16.
Math Biosci Eng ; 19(2): 2120-2146, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35135244

RESUMEN

This paper investigates a left-hand circularly polarized (LHCP) antenna and a right-hand circularly polarized (RHCP) antenna on LEO Satellite, which is based on the phase-tuning metasurface. We overcome its inherent limitations in size, weight and power, and designed a high-gain, ultra-lightweight, scalable antenna for small satellite communications. The antenna can generate continuous and large tunability of subwavelength, with low-Q resonators. The simulated and experimental results verify that different capacitance and inductance modes can be effectively generated by rotating the spiral arms of single-arm spiral antennas with corresponding degrees, which greatly simplify the feeding network. The maximum gain of the normal position within the angle of the uplink and downlink is 4~9 dBi higher than that of the ordinary polarized antenna. In addition, the design method proposed to this article is superior to the reference system in terms of impedance bandwidth, axial ratio bandwidth, and operation frequency. The performance achievements of this paper are implemented within the bandwidth of 3 MHz of uplink and downlink, such as impedance bandwidth is 3 MHz with impedance of 50, axial ratio bandwidth is 2.5 MHz, operation frequency of uplink is 240-243 MHz, downlink is 320 MHz and 401 MHz, and the voltage standing wave ratio (VSWR) is less than 2 dB which is so called S parameter, the above parameters can meet the performance index design requirements.

17.
Small ; 18(15): e2106221, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35195352

RESUMEN

In contrast to microfluidic devices, bulky syringe pumps are widely used to deliver a small amount of solution with high accuracy. Miniaturizing the syringe pump is difficult due to the scale effect in the microscale where the friction of the piston-cylinder is dominant and there are few high-power microactuators. To solve these problems, an on-chip microsyringe pump without mechanical sliding parts and with high power sources is proposed. The microsyringe pump utilizes the interface between water and oil (electro-conjugate fluid, ECF) instead of a piston and an electrohydrodynamic (EHD) flow driven by ECF in place of a linear actuator. ECF as a functional fluid has two capabilities: a) making the water-oil interface in microchannels and b) generating an active ECF flow at an applied voltage to withdraw and infuse aqueous solution by the interface. To control the flow direction, ECF-driven leakless on/off microvalves are also integrated. It is demonstrated that the proposed ECF microsyringe pump synchronized with the ECF on/off microvalves can control the withdrawing and infusing of aqueous solution with high resolution and precision. The experiments prove the feasibility of the microsyringe pump to be embedded as a module for the precise and linear control of flow rates in microfluidic devices.


Asunto(s)
Dispositivos Laboratorio en un Chip , Jeringas , Agua
18.
Membranes (Basel) ; 13(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36676856

RESUMEN

The latest document indicates that the hydrogen/vanadium redox flow battery has better energy density and efficiency than the vanadium redox flow battery, as well as being low-cost and light-weight. In addition, the hydrogen, electrical conductivity, voltage, current, temperature, electrolyte flow, and runner pressure inside the hydrogen/vanadium redox flow battery can influence its performance and life. Therefore, this plan will try to step into the hydrogen/vanadium redox flow battery stack and improve the vanadium redox flow battery of this R&D team, whereof the electrolyte is likely to leak during assembling, and the strong acid corrosion environment is likely to age or fail the vanadium redox flow battery and microsensors. Micro-electro-mechanical systems (MEMS) are used, which are integrated with the flexible 7-in-1 microsensor, which is embedded in the hydrogen/vanadium redox flow battery for internal real-time microscopic sensing and diagnosis.

19.
Small Methods ; 5(12): e2101194, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34928009

RESUMEN

In the frontier resistive micro-nano gas sensors, the change rate reliability between the measured quantity and output signals has long been puzzled by the ineluctable device-to-device and run-to-run disparities. Here, a neotype sensing data interpretation method to circumvent these signal inconsistencies is reported. The method is based on discovery of a strong linear relation between the initial resistance in air (Ra ) and the absolute change in resistance after exposure to target gas (Ra -Rg ). Metal oxide gas sensors based on a micro-hot-plate are employed as the model system. The study finds that such correlation has a wide universality, even for devices incorporated with different sensing materials or under different gas atmosphere. Furthermore, this rule can also be extensible to graphene-based interdigital microelectrode. In situ probe scanning analyses illuminate that the linear dependence is closely related to work function matching level between metal electrode and sensitive layer. The Schottky barrier at metal-semiconductor junctions is the prominent parameter, whose height (ϕB ) can fundamentally impact material/electrode contact resistance, thereby further affecting the realistic nature expression of sensing materials. Using this correlation, a calibration procedure is proposed and embed in a fully integrated pocket-size sensor prototype, whose response outcomes demonstrated high credibility as compared to commercial apparatus.

20.
Micromachines (Basel) ; 12(10)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34683266

RESUMEN

The proton battery is a very novel emerging research area with practicability. The proton battery has charging and discharging functions. It not only electrolyzes water: the electrolyzed protons can be stored but also released, which are combined with oxygen to generate electricity, and the hydrogen is not required; the hydrogen ions will be released from the battery. According to the latest document, the multiple important physical parameters (e.g., hydrogen, voltage, current, temperature, humidity, and flow) inside the proton battery are unlikely to be obtained accurately and the multiple important physical parameters mutually influence the data; they have critical effects on the performance, life, and health status of the proton battery. At present, the proton battery is measured only from the outside to indirectly diagnose the health status of battery; the actual situation inside the proton battery cannot be obtained instantly and accurately. This study uses micro-electro-mechanical systems (MEMS) technology to develop a low-temperature micro hydrogen sensor, which is used for monitoring the internal condition of the proton battery and judging whether or not there is hydrogen leakage, so as to enhance the safety.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA