Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Toxics ; 12(7)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39058127

RESUMEN

Micro- and nano-plastics (MNPs) are ubiquitously distributed in the environment, infiltrate organisms through multiple pathways, and accumulate, thus posing potential threats to human health. MNP exposure elicits changes in microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), thereby precipitating immune, neurological, and other toxic effects. The investigation of MNP exposure and its effect on miRNA expression has garnered increasing attention. Following MNP exposure, circRNAs serve as miRNA sponges by modulating gene expression, while lncRNAs function as competing endogenous RNAs (ceRNAs) by fine-tuning target gene expression and consequently impacting protein translation and physiological processes in cells. Dysregulated miRNA expression mediates mitochondrial dysfunction, inflammation, and oxidative stress, thereby increasing the risk of neurodegenerative diseases, cardiovascular diseases, and cancer. This tract, blood, urine, feces, placenta, and review delves into the biotoxicity arising from dysregulated miRNA expression due to MNP exposure and addresses the challenges encountered in this field. This study provides novel insights into the connections between MNPs and disease risk.

2.
Sci Total Environ ; 931: 172952, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38703841

RESUMEN

Aquatic environments serve as critical repositories for pollutants and have significantly accumulated micro- and nanoplastics (MNPs) due to the extensive production and application of plastic products. While the disease resistance and immunity of fish are closely linked to the condition of their aquatic habitats, the specific effects of nanoplastics (NPs) and microplastics (MPs) within these environments on fish immune functions are still not fully understood. The present study utilized zebrafish (Danio rerio) embryos and larvae as model organisms to examine the impacts of polystyrene NPs (100 nm) and MPs (5 µm) on fish immune responses. Our findings reveal that NPs and MPs tend to accumulate on the surfaces of embryos and within the intestines of larvae, triggering oxidative stress and significantly increasing susceptibility to Edwardsiella piscicida infection in zebrafish larvae. Transmission electron microscopy examined that both NPs and MPs inflicted damage to the kidney, an essential immune organ, with NPs predominantly inducing endoplasmic reticulum stress and MPs causing lipid accumulation. Transcriptomic analysis further demonstrated that both NPs and MPs significantly suppress the expression of key innate immune pathways, notably the C-type lectin receptor signaling pathway and the cytosolic DNA-sensing pathway. Within these pathways, the immune factor interleukin-1 beta (il1b) was consistently downregulated in both exposure groups. Furthermore, exposure to E. piscicida resulted in restricted upregulation of il1b mRNA and protein levels, likely contributing to diminished disease resistance in zebrafish larvae exposed to MNPs. Our findings suggest that NPs and MPs similarly impair the innate immune function of zebrafish larvae and weaken their disease resistance, highlighting the significant environmental threat posed by these pollutants.


Asunto(s)
Inmunidad Innata , Larva , Microplásticos , Contaminantes Químicos del Agua , Pez Cebra , Animales , Inmunidad Innata/efectos de los fármacos , Microplásticos/toxicidad , Larva/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Riñón/efectos de los fármacos , Nanopartículas/toxicidad , Enfermedades de los Peces/inducido químicamente , Enfermedades de los Peces/inmunología , Edwardsiella/fisiología
3.
Ecotoxicol Environ Saf ; 278: 116426, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38718727

RESUMEN

The increase of micro- and nano-plastics (MNPs) in aquatic environments has become a significant concern due to their potential toxicological effects on ecosystems, food web dynamics, and human health. These plastic particles emerge from a range of sources, such as the breakdown of larger plastic waste, consumer products, and industrial outputs. This review provides a detailed report of the transmission and dangers of MNPs in aquatic ecosystems, environmental behavior, and interactions within aquatic food webs, emphasizing their toxic impact on marine life. It explores the relationship between particle size and toxicity, their distribution in different tissues, and the process of trophic transfer through the food web. MNPs, once consumed, can be found in various organs, including the digestive system, gills, and liver. Their consumption by lower trophic level organisms facilitates their progression up the food chain, potentially leading to bioaccumulation and biomagnification, thereby posing substantial risks to the health, reproduction, and behavior of aquatic species. This work also explores how MNPs, through their persistence and bioaccumulation, pose risks to aquatic biodiversity and disrupt trophic relationships. The review also addresses the implications of MNPs for human health, particularly through the consumption of contaminated seafood, highlighting the direct and indirect pathways through which humans are exposed to these pollutants. Furthermore, the review highlights the recommendations for future research directions, emphasizing the integration of ecological, toxicological, and human health studies to inform risk assessments and develop mitigation strategies to address the global challenge of plastic pollution in aquatic environments.


Asunto(s)
Ecosistema , Microplásticos , Plásticos , Contaminantes Químicos del Agua , Animales , Humanos , Organismos Acuáticos/efectos de los fármacos , Bioacumulación , Monitoreo del Ambiente , Cadena Alimentaria , Microplásticos/toxicidad , Nanopartículas/toxicidad , Plásticos/toxicidad , Medición de Riesgo , Contaminantes Químicos del Agua/toxicidad
4.
Environ Pollut ; 348: 123850, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38548148

RESUMEN

As emerging pollutants in the aquatic environments, micro- and nano-plastics (MNPs) aroused widespread environmental concerns for their potential threats to the ecological health. Previous research has proved that microalgae growth could recover from the MNPs toxicities, in which the extracellular polymeric substances (EPS) might play the key role. In order to comprehensively investigate the recovery process of microalgae from MNPs stress and the effecting mechanisms of EPS therein, this study conducted a series of experiments by employing two sizes (0.1 and 1 µm) of polystyrene (PS) MNPs and the marine model diatom Thalassiosira pseudonana during 14 days. The results indicated: the pigments accumulations and photosynthetic recovery of T. pseudonana under MPs exposure showed in the early stage (4-5 days), while the elevation of reactive oxygen species (ROS) and EPS contents lasted longer time period (7-8 days). EPS was aggregated with MNPs particles and microalgal cells, corresponding to the increased settlement rates. More increase of soluble (SL)-EPS contents was found than bound (B)-EPS under MNPs exposure, in which the increase of the protein proportion and humic acid-like substances in SL-EPS was found, thus facilitating aggregates formation. ROS was the signaling molecule mediating the overproduction of EPS. The transcriptional results further proved the enhanced EPS biosynthesis on the molecular level. Therefore, this study elucidated the recovery pattern of microalgae from MNPs stress and linked "ROS-EPS production changes-aggregation formation" together during the growth recovery process, with important scientific and environmental significance.


Asunto(s)
Diatomeas , Microalgas , Contaminantes Químicos del Agua , Poliestirenos/toxicidad , Especies Reactivas de Oxígeno , Microplásticos/toxicidad , Matriz Extracelular de Sustancias Poliméricas , Contaminantes Químicos del Agua/toxicidad , Plásticos
5.
Sci Total Environ ; 902: 166045, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37544454

RESUMEN

Waste plastics enter the environment (water, soil, and atmosphere) and degrade into micro- and nano-plastics (MNPs) through physical, chemical, or biological processes. MNPs are ubiquitous in the environment and inevitably interact with terrestrial plants. Terrestrial plants have become important potential sinks, and subsequently, the sources of MNPs. At present, many studies have reported the effects of MNPs on plant physiology, biochemistry, and their phototoxicity. However, the source, detection method, and the absorption process of MNPs in terrestrial plants have not been systematically studied. In order to better understand the continuous process of MNPs entering terrestrial plants, this review introduces the sources and analysis methods of MNPs in terrestrial plants. The uptake pathways of MNPs in terrestrial plants and their influencing factors were systematically summarized. Meanwhile, the transport pathways and the accumulation of MNPs in different plant organs (roots, stems, leaves, calyxes, and fruits) were explored. Finally, the transfer of MNPs through food chains to humans and their health risks were discussed. The aim of this work is to provide significant theoretical knowledge to understand the uptake, transport, and accumulation of MNPs in terrestrial plants and the potential health risks associated with their transfer to humans through food chain.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Humanos , Plásticos/metabolismo , Cadena Alimentaria , Microplásticos/metabolismo , Plantas/metabolismo , Suelo , Contaminantes Químicos del Agua/metabolismo
6.
Sci Total Environ ; 881: 163222, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37019231

RESUMEN

Micro- and nano-plastic (MNP) pollution has attracted public concerns. Currently, most environmental researches focus on large microplastics (MPs), while small MNPs that have great impacts on marine ecosystems are rarely reported. Understanding the pollution levels and distribution patterns of small MNPs could help assess their potential impacts on the ecosystem. Polystyrene (PS) MNPs were often used as models to assess their toxicity, hence, we collected 21 sites in a Chinese sea area (the Bohai Sea) to analyze their pollution level and horizontal distribution in surface water samples, and vertical distributions in five sites with the water depth >25 m. Samples were filtered by glass membranes (1 µm) to trap MPs, which were frozen, ground, dried, and detected by pyrolysis-gas chromatography-mass spectrometry (pyGC-MS); while the nanoplastics (NPs) in the filtrate were captured with alkylated ferroferric oxide (Fe3O4) to form aggregates, which were separated by glass membrane (300 nm) filtration for pyGC-MS determination. Small PS MPs (1-100 µm) and NPs (<1 µm) were detected in 18 samples with the mass concentrations ranging from <0.015 to 0.41 µg/L, indicating that PS MNPs are widely present in Bohai Sea. Our study contributes to understanding the pollution levels and distribution patterns of MNPs (<100 µm) in the marine system and provides valuable data for their further risk assessment.

7.
Environ Res ; 216(Pt 1): 114466, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36228686

RESUMEN

A new environmental problem is represented by the huge transformation of plastic waste released into the environment into small fragments, the so called micro- and nano-plastics, due to atmospheric phenomena. The smaller the size of the plastic fragments, the more their spreading into environmental compartments. The aim of this study is to test encapsulation into asphalt mastics of waste plastic material (WPM) as sustainable strategy to obtain road flexible pavements and to evaluate the potential release in water of micro and nano plastics. A new mastic mixing method was developed to blend the WPM with the bitumen contained into a bitumen emulsion (BE60/40) by adopting low mixing temperatures. Three different WPM contents, equal to 5, 10 and 20% by the weight of the bitumen contained in the BE60/40, were adopted to produce the mastics; the mastics' rheological properties, obtained by frequency sweep and multiple stress creep and recovery tests, were compared to those of a traditional asphalt mastic containing limestone filler. The aging of asphalt mastics was analyzed by soaking them in water and gradually lowering and raising temperature between -10 and 60 °C at predefined intervals. The addition of WPM improved greatly the asphalt mastic performance; in particular, for a WPM content of 10%, the rheological response in terms of stiffness remained unchanged after the mastic underwent thermal excursions in water. Encapsulation of micro and nano plastics into mastics reduced of more than 99% their potential water release.


Asunto(s)
Hidrocarburos , Microplásticos , Carbonato de Calcio , Agua
8.
Water Res ; 209: 117886, 2021 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-34861437

RESUMEN

Global production and use of plastics have resulted in the wide dissemination of micro- and nano-plastics (MNPs) to the natural environment. Potentially acting as a vector, the role of MNPs on the fate and transport of environmental pollutants (e.g., antibiotics such as chlortetracycline hydrochloride; CTC) has garnered global concern recently. Herein, the cotransport of MNPs and CTC in columns packed with uncoated sand or soil colloid-coated sand (SCCS) under different degrees of physicochemical heterogeneity and ionic strength was systematically explored. Our results show that MNPs and CTC inhibit the transport of each other when they coexist. The adsorption of CTC onto sand grains, soil colloids, and MNPs, as well as the aggregation of MNPs in the presence of CTC could be the major contributors to the enhanced retention of CTC and MNPs. In SCCS with different degrees of soil colloid coating, the adsorption of CTC on soil colloids is critical to influence the transport of CTC, and the nonlinear retention of MNPs to soil colloids is mainly attributed to the alteration of collector surface roughness by soil colloids. High ionic strength slightly facilitates CTC transport due to the competition for adsorption sites and the formation of CTC macromolecules, but significantly inhibits MNPs transport by suppressing the electrostatic double layers based on colloid stability theory. Consequently, the cotransport of MNPs and CTC is governed by the coupled interplay of collector surface roughness and chemical heterogeneity, due to the soil colloid coatings and the adsorbed CTC on the surfaces associated with solution chemistries such as ionic strength. Increased cotransport of MNPs and CTC occurred under a higher concentration of MNPs due to a larger number of adsorption sites for CTC. Our findings advance the current understanding of the complex cotransport of MNPs and antibiotics in the environment. This information is valuable for understanding contaminant fate and formulating strategies for environmental remediation due to the contamination of MNPs and co-occurring contaminants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA