Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Sci Rep ; 14(1): 20490, 2024 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227405

RESUMEN

MicroRNAs (miRNAs) are a key class of endogenous non-coding RNAs that play a pivotal role in regulating diseases. Accurately predicting the intricate relationships between miRNAs and diseases carries profound implications for disease diagnosis, treatment, and prevention. However, these prediction tasks are highly challenging due to the complexity of the underlying relationships. While numerous effective prediction models exist for validating these associations, they often encounter information distortion due to limitations in efficiently retaining information during the encoding-decoding process. Inspired by Multi-layer Heterogeneous Graph Transformer and Machine Learning XGboost classifier algorithm, this study introduces a novel computational approach based on multi-layer heterogeneous encoder-machine learning decoder structure for miRNA-disease association prediction (MHXGMDA). First, we employ the multi-view similarity matrices as the input coding for MHXGMDA. Subsequently, we utilize the multi-layer heterogeneous encoder to capture the embeddings of miRNAs and diseases, aiming to capture the maximum amount of relevant features. Finally, the information from all layers is concatenated to serve as input to the machine learning classifier, ensuring maximal preservation of encoding details. We conducted a comprehensive comparison of seven different classifier models and ultimately selected the XGBoost algorithm as the decoder. This algorithm leverages miRNA embedding features and disease embedding features to decode and predict the association scores between miRNAs and diseases. We applied MHXGMDA to predict human miRNA-disease associations on two benchmark datasets. Experimental findings demonstrate that our approach surpasses several leading methods in terms of both the area under the receiver operating characteristic curve and the area under the precision-recall curve.


Asunto(s)
Algoritmos , Biología Computacional , Aprendizaje Automático , MicroARNs , MicroARNs/genética , Humanos , Biología Computacional/métodos , Predisposición Genética a la Enfermedad
2.
Brief Bioinform ; 25(5)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39256197

RESUMEN

Unraveling the intricate network of associations among microRNAs (miRNAs), genes, and diseases is pivotal for deciphering molecular mechanisms, refining disease diagnosis, and crafting targeted therapies. Computational strategies, leveraging link prediction within biological graphs, present a cost-efficient alternative to high-cost empirical assays. However, while plenty of methods excel at predicting specific associations, such as miRNA-disease associations (MDAs), miRNA-target interactions (MTIs), and disease-gene associations (DGAs), a holistic approach harnessing diverse data sources for multifaceted association prediction remains largely unexplored. The limited availability of high-quality data, as vitro experiments to comprehensively confirm associations are often expensive and time-consuming, results in a sparse and noisy heterogeneous graph, hindering an accurate prediction of these complex associations. To address this challenge, we propose a novel framework called Global-local aware Heterogeneous Graph Contrastive Learning (GlaHGCL). GlaHGCL combines global and local contrastive learning to improve node embeddings in the heterogeneous graph. In particular, global contrastive learning enhances the robustness of node embeddings against noise by aligning global representations of the original graph and its augmented counterpart. Local contrastive learning enforces representation consistency between functionally similar or connected nodes across diverse data sources, effectively leveraging data heterogeneity and mitigating the issue of data scarcity. The refined node representations are applied to downstream tasks, such as MDA, MTI, and DGA prediction. Experiments show GlaHGCL outperforming state-of-the-art methods, and case studies further demonstrate its ability to accurately uncover new associations among miRNAs, genes, and diseases. We have made the datasets and source code publicly available at https://github.com/Sue-syx/GlaHGCL.


Asunto(s)
Biología Computacional , Redes Reguladoras de Genes , MicroARNs , MicroARNs/genética , Humanos , Biología Computacional/métodos , Aprendizaje Automático , Algoritmos , Predisposición Genética a la Enfermedad
3.
Comput Biol Med ; 181: 109068, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39208505

RESUMEN

Studying the intricate relationship between miRNAs and diseases is crucial to prevent and treat miRNA-related disorders. Existing computational methods often overlook the importance of features of different nodes and the propagation of features among heterogeneous nodes. Many prediction models focus only on the feature coding of miRNA and diseases and ignore the importance of feature aggregation. We propose a prediction method via dual-neighbourhood feature aggregation and feature fusion, which uses multiple sources of information, aggregates information on homogeneous and heterogeneous nodes and fuses learned features to predict multiple representations of disease nodes. We constructed similarity networks of multiple homogeneous nodes based on different similarity computation methods respectively, and fused the attention mechanism by using graph convolutional networks to obtain information of different levels of importance. To alleviate the problem of sparse connectivity in the dataset, we built a two-neighbourhood heterogeneous graph neural network model to integrate the homogeneous similarity network into a miRNA-disease heterogeneous network by using known miRNA-disease association information. We used the neighbourhood information associated with the nodes in the network to perform feature aggregation. In addition, we used a feature fusion module to learn the importance of different types of nodes to predict miRNA-disease associations. Our experimental results on the Human microRNA Disease Database (HMDD v3.2) show that the model demonstrates superior performance. This work demonstrates the capability of our model to identify potential miRNAs associated with diseases through a case study of two common cancers.


Asunto(s)
MicroARNs , MicroARNs/genética , Humanos , Redes Neurales de la Computación , Biología Computacional/métodos , Predisposición Genética a la Enfermedad/genética , Algoritmos
4.
Methods ; 230: 99-107, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39097178

RESUMEN

Many studies have demonstrated the importance of accurately identifying miRNA-disease associations (MDAs) for understanding disease mechanisms. However, the number of known MDAs is significantly fewer than the unknown pairs. Here, we propose RSANMDA, a subview attention network for predicting MDAs. We first extract miRNA and disease features from multiple similarity matrices. Next, using resampling techniques, we generate different subviews from known MDAs. Each subview undergoes multi-head graph attention to capture its features, followed by semantic attention to integrate features across subviews. Finally, combining raw and training features, we use a multilayer scoring perceptron for prediction. In the experimental section, we conducted comparative experiments with other advanced models on both HMDD v2.0 and HMDD v3.2 datasets. We also performed a series of ablation studies and parameter tuning exercises. Comprehensive experiments conclusively demonstrate the superiority of our model. Case studies on lung, breast, and esophageal cancers further validate our method's predictive capability for identifying disease-related miRNAs.


Asunto(s)
MicroARNs , Humanos , MicroARNs/genética , Biología Computacional/métodos , Predisposición Genética a la Enfermedad , Redes Neurales de la Computación , Neoplasias de la Mama/genética , Neoplasias Pulmonares/genética , Algoritmos , Neoplasias/genética , Neoplasias Esofágicas/genética
5.
Brief Bioinform ; 25(5)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39154195

RESUMEN

The microRNAs (miRNAs) play crucial roles in several biological processes. It is essential for a deeper insight into their functions and mechanisms by detecting their subcellular localizations. The traditional methods for determining miRNAs subcellular localizations are expensive. The computational methods are alternative ways to quickly predict miRNAs subcellular localizations. Although several computational methods have been proposed in this regard, the incomplete representations of miRNAs in these methods left the room for improvement. In this study, a novel computational method for predicting miRNA subcellular localizations, named PMiSLocMF, was developed. As lots of miRNAs have multiple subcellular localizations, this method was a multi-label classifier. Several properties of miRNA, such as miRNA sequences, miRNA functional similarity, miRNA-disease, miRNA-drug, and miRNA-mRNA associations were adopted for generating informative miRNA features. To this end, powerful algorithms [node2vec and graph attention auto-encoder (GATE)] and one newly designed scheme were adopted to process above properties, producing five feature types. All features were poured into self-attention and fully connected layers to make predictions. The cross-validation results indicated the high performance of PMiSLocMF with accuracy higher than 0.83, average area under the receiver operating characteristic curve (AUC) and area under the precision-recall curve (AUPR) exceeding 0.90 and 0.77, respectively. Such performance was better than all previous methods based on the same dataset. Further tests proved that using all feature types can improve the performance of PMiSLocMF, and GATE and self-attention layer can help enhance the performance. Finally, we deeply analyzed the influence of miRNA associations with diseases, drugs, and mRNAs on PMiSLocMF. The dataset and codes are available at https://github.com/Gu20201017/PMiSLocMF.


Asunto(s)
Algoritmos , Biología Computacional , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Biología Computacional/métodos , Humanos , Programas Informáticos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Curva ROC
6.
Bioengineering (Basel) ; 11(7)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39061762

RESUMEN

Accumulating scientific evidence highlights the pivotal role of miRNA-disease association research in elucidating disease pathogenesis and developing innovative diagnostics. Consequently, accurately identifying disease-associated miRNAs has emerged as a prominent research topic in bioinformatics. Advances in graph neural networks (GNNs) have catalyzed methodological breakthroughs in this field. However, existing methods are often plagued by data noise and struggle to effectively integrate local and global information, which hinders their predictive performance. To address this, we introduce HGTMDA, an innovative hypergraph learning framework that incorporates random walk with restart-based association masking and an enhanced GCN-Transformer model to infer miRNA-disease associations. HGTMDA starts by constructing multiple homogeneous similarity networks. A novel enhancement of our approach is the introduction of a restart-based random walk association masking strategy. By stochastically masking a subset of association data and integrating it with a GCN enhanced by an attention mechanism, this strategy enables better capture of key information, leading to improved information utilization and reduced impact of noisy data. Next, we build an miRNA-disease heterogeneous hypergraph and adopt an improved GCN-Transformer encoder to effectively solve the effective extraction of local and global information. Lastly, we utilize a combined Dice cross-entropy (DCE) loss function to guide the model training and optimize its performance. To evaluate the performance of HGTMDA, comprehensive comparisons were conducted with state-of-the-art methods. Additionally, in-depth case studies on lung cancer and colorectal cancer were performed. The results demonstrate HGTMDA's outstanding performance across various metrics and its exceptional effectiveness in real-world application scenarios, highlighting the advantages and value of this method.

7.
BMC Cancer ; 24(1): 683, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840078

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) emerge in various organisms, ranging from viruses to humans, and play crucial regulatory roles within cells, participating in a variety of biological processes. In numerous prediction methods for miRNA-disease associations, the issue of over-dependence on both similarity measurement data and the association matrix still hasn't been improved. In this paper, a miRNA-Disease association prediction model (called TP-MDA) based on tree path global feature extraction and fully connected artificial neural network (FANN) with multi-head self-attention mechanism is proposed. The TP-MDA model utilizes an association tree structure to represent the data relationships, multi-head self-attention mechanism for extracting feature vectors, and fully connected artificial neural network with 5-fold cross-validation for model training. RESULTS: The experimental results indicate that the TP-MDA model outperforms the other comparative models, AUC is 0.9714. In the case studies of miRNAs associated with colorectal cancer and lung cancer, among the top 15 miRNAs predicted by the model, 12 in colorectal cancer and 15 in lung cancer were validated respectively, the accuracy is as high as 0.9227. CONCLUSIONS: The model proposed in this paper can accurately predict the miRNA-disease association, and can serve as a valuable reference for data mining and association prediction in the fields of life sciences, biology, and disease genetics, among others.


Asunto(s)
MicroARNs , Redes Neurales de la Computación , Humanos , MicroARNs/genética , Predisposición Genética a la Enfermedad , Biología Computacional/métodos , Neoplasias Colorrectales/genética , Neoplasias Pulmonares/genética , Algoritmos
8.
J Cell Mol Med ; 28(9): e18345, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693850

RESUMEN

Identifying the association between miRNA and diseases is helpful for disease prevention, diagnosis and treatment. It is of great significance to use computational methods to predict potential human miRNA disease associations. Considering the shortcomings of existing computational methods, such as low prediction accuracy and weak generalization, we propose a new method called SCPLPA to predict miRNA-disease associations. First, a heterogeneous disease similarity network was constructed using the disease semantic similarity network and the disease Gaussian interaction spectrum kernel similarity network, while a heterogeneous miRNA similarity network was constructed using the miRNA functional similarity network and the miRNA Gaussian interaction spectrum kernel similarity network. Then, the estimated miRNA-disease association scores were evaluated by integrating the outcomes obtained by implementing label propagation algorithms in the heterogeneous disease similarity network and the heterogeneous miRNA similarity network. Finally, the spatial consistency projection algorithm of the network was used to extract miRNA disease association features to predict unverified associations between miRNA and diseases. SCPLPA was compared with four classical methods (MDHGI, NSEMDA, RFMDA and SNMFMDA), and the results of multiple evaluation metrics showed that SCPLPA exhibited the most outstanding predictive performance. Case studies have shown that SCPLPA can effectively identify miRNAs associated with colon neoplasms and kidney neoplasms. In summary, our proposed SCPLPA algorithm is easy to implement and can effectively predict miRNA disease associations, making it a reliable auxiliary tool for biomedical research.


Asunto(s)
Algoritmos , Biología Computacional , MicroARNs , MicroARNs/genética , Humanos , Biología Computacional/métodos , Predisposición Genética a la Enfermedad , Redes Reguladoras de Genes
9.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38801703

RESUMEN

Micro ribonucleic acids (miRNAs) play a pivotal role in governing the human transcriptome in various biological phenomena. Hence, the accumulation of miRNA expression dysregulation frequently assumes a noteworthy role in the initiation and progression of complex diseases. However, accurate identification of dysregulated miRNAs still faces challenges at the current stage. Several bioinformatics tools have recently emerged for forecasting the associations between miRNAs and diseases. Nonetheless, the existing reference tools mainly identify the miRNA-disease associations in a general state and fall short of pinpointing dysregulated miRNAs within a specific disease state. Additionally, no studies adequately consider miRNA-miRNA interactions (MMIs) when analyzing the miRNA-disease associations. Here, we introduced a systematic approach, called IDMIR, which enabled the identification of expression dysregulated miRNAs through an MMI network under the gene expression context, where the network's architecture was designed to implicitly connect miRNAs based on their shared biological functions within a particular disease context. The advantage of IDMIR is that it uses gene expression data for the identification of dysregulated miRNAs by analyzing variations in MMIs. We illustrated the excellent predictive power for dysregulated miRNAs of the IDMIR approach through data analysis on breast cancer and bladder urothelial cancer. IDMIR could surpass several existing miRNA-disease association prediction approaches through comparison. We believe the approach complements the deficiencies in predicting miRNA-disease association and may provide new insights and possibilities for diagnosing and treating diseases. The IDMIR approach is now available as a free R package on CRAN (https://CRAN.R-project.org/package=IDMIR).


Asunto(s)
Biología Computacional , Redes Reguladoras de Genes , MicroARNs , Neoplasias de la Vejiga Urinaria , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Biología Computacional/métodos , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Perfilación de la Expresión Génica , Femenino , Regulación Neoplásica de la Expresión Génica
10.
Comput Biol Chem ; 110: 108085, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754260

RESUMEN

Since scientific investigations have demonstrated that aberrant expression of miRNAs brings about the incidence of numerous intricate diseases, precise determination of miRNA-disease relationships greatly contributes to the advancement of human medical progress. To tackle the issue of inefficient conventional experimental approaches, numerous computational methods have been proposed to predict miRNA-disease association with enhanced accuracy. However, constructing miRNA-gene-disease heterogeneous network by incorporating gene information has been relatively under-explored in existing computational techniques. Accordingly, this paper puts forward a technique to predict miRNA-disease association by applying autoencoder and implementing random walk on miRNA-gene-disease heterogeneous network(AE-RW). Firstly, we integrate association information and similarities between miRNAs, genes, and diseases to construct a miRNA-gene-disease heterogeneous network. Subsequently, we consolidate two network feature representations extracted independently via an autoencoder and a random walk procedure. Finally, deep neural network(DNN) are utilized to conduct association prediction. The experimental results demonstrate that the AE-RW model achieved an AUC of 0.9478 through 5-fold CV on the HMDD v3.2 dataset, outperforming the five most advanced existing models. Additionally, case studies were implemented for breast and lung cancer, further validated the superior predictive capabilities of our model.


Asunto(s)
Biología Computacional , MicroARNs , MicroARNs/genética , Humanos , Neoplasias de la Mama/genética , Redes Neurales de la Computación , Neoplasias Pulmonares/genética , Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad/genética , Femenino
11.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38622356

RESUMEN

Identifying disease-associated microRNAs (miRNAs) could help understand the deep mechanism of diseases, which promotes the development of new medicine. Recently, network-based approaches have been widely proposed for inferring the potential associations between miRNAs and diseases. However, these approaches ignore the importance of different relations in meta-paths when learning the embeddings of miRNAs and diseases. Besides, they pay little attention to screening out reliable negative samples which is crucial for improving the prediction accuracy. In this study, we propose a novel approach named MGCNSS with the multi-layer graph convolution and high-quality negative sample selection strategy. Specifically, MGCNSS first constructs a comprehensive heterogeneous network by integrating miRNA and disease similarity networks coupled with their known association relationships. Then, we employ the multi-layer graph convolution to automatically capture the meta-path relations with different lengths in the heterogeneous network and learn the discriminative representations of miRNAs and diseases. After that, MGCNSS establishes a highly reliable negative sample set from the unlabeled sample set with the negative distance-based sample selection strategy. Finally, we train MGCNSS under an unsupervised learning manner and predict the potential associations between miRNAs and diseases. The experimental results fully demonstrate that MGCNSS outperforms all baseline methods on both balanced and imbalanced datasets. More importantly, we conduct case studies on colon neoplasms and esophageal neoplasms, further confirming the ability of MGCNSS to detect potential candidate miRNAs. The source code is publicly available on GitHub https://github.com/15136943622/MGCNSS/tree/master.


Asunto(s)
Neoplasias del Colon , MicroARNs , Humanos , MicroARNs/genética , Algoritmos , Biología Computacional/métodos , Programas Informáticos , Neoplasias del Colon/genética
12.
Noncoding RNA ; 10(1)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38392964

RESUMEN

Biological research has demonstrated the significance of identifying miRNA-disease associations in the context of disease prevention, diagnosis, and treatment. However, the utilization of experimental approaches involving biological subjects to infer these associations is both costly and inefficient. Consequently, there is a pressing need to devise novel approaches that offer enhanced accuracy and effectiveness. Presently, the predominant methods employed for predicting disease associations rely on Graph Convolutional Network (GCN) techniques. However, the Graph Convolutional Network algorithm, which is locally aggregated, solely incorporates information from the immediate neighboring nodes of a given node at each layer. Consequently, GCN cannot simultaneously aggregate information from multiple nodes. This constraint significantly impacts the predictive efficacy of the model. To tackle this problem, we propose a novel approach, based on HyperGCN and Sørensen-Dice loss (HGSMDA), for predicting associations between miRNAs and diseases. In the initial phase, we developed multiple networks to represent the similarity between miRNAs and diseases and employed GCNs to extract information from diverse perspectives. Subsequently, we draw into HyperGCN to construct a miRNA-disease heteromorphic hypergraph using hypernodes and train GCN on the graph to aggregate information. Finally, we utilized the Sørensen-Dice loss function to evaluate the degree of similarity between the predicted outcomes and the ground truth values, thereby enabling the prediction of associations between miRNAs and diseases. In order to assess the soundness of our methodology, an extensive series of experiments was conducted employing the Human MicroRNA Disease Database (HMDD v3.2) as the dataset. The experimental outcomes unequivocally indicate that HGSMDA exhibits remarkable efficacy when compared to alternative methodologies. Furthermore, the predictive capacity of HGSMDA was corroborated through a case study focused on colon cancer. These findings strongly imply that HGSMDA represents a dependable and valid framework, thereby offering a novel avenue for investigating the intricate association between miRNAs and diseases.

13.
J Comput Biol ; 31(3): 241-256, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38377572

RESUMEN

More and more studies have shown that microRNAs (miRNAs) play an indispensable role in the study of complex diseases in humans. Traditional biological experiments to detect miRNA-disease associations are expensive and time-consuming. Therefore, it is necessary to propose efficient and meaningful computational models to predict miRNA-disease associations. In this study, we aim to propose a miRNA-disease association prediction model based on sparse learning and multilayer random walks (SLMRWMDA). The miRNA-disease association matrix is decomposed and reconstructed by the sparse learning method to obtain richer association information, and at the same time, the initial probability matrix for the random walk with restart algorithm is obtained. The disease similarity network, miRNA similarity network, and miRNA-disease association network are used to construct heterogeneous networks, and the stable probability is obtained based on the topological structure features of diseases and miRNAs through a multilayer random walk algorithm to predict miRNA-disease potential association. The experimental results show that the prediction accuracy of this model is significantly improved compared with the previous related models. We evaluated the model using global leave-one-out cross-validation (global LOOCV) and fivefold cross-validation (5-fold CV). The area under the curve (AUC) value for the LOOCV is 0.9368. The mean AUC value for 5-fold CV is 0.9335 and the variance is 0.0004. In the case study, the results show that SLMRWMDA is effective in inferring the potential association of miRNA-disease.


Asunto(s)
MicroARNs , Humanos , MicroARNs/genética , Algoritmos , Área Bajo la Curva , Biología Computacional/métodos , Predisposición Genética a la Enfermedad
14.
Comput Biol Med ; 169: 107904, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181611

RESUMEN

miRNAs are a class of small non-coding RNA molecules that play important roles in gene regulation. They are crucial for maintaining normal cellular functions, and dysregulation or dysfunction of miRNAs which are linked to the onset and advancement of multiple human diseases. Research on miRNAs has unveiled novel avenues in the realm of the diagnosis, treatment, and prevention of human diseases. However, clinical trials pose challenges and drawbacks, such as complexity and time-consuming processes, which create obstacles for many researchers. Graph Attention Network (GAT) has shown excellent performance in handling graph-structured data for tasks such as link prediction. Some studies have successfully applied GAT to miRNA-disease association prediction. However, there are several drawbacks to existing methods. Firstly, most of the previous models rely solely on concatenation operations to merge features of miRNAs and diseases, which results in the deprivation of significant modality-specific information and even the inclusion of redundant information. Secondly, as the number of layers in GAT increases, there is a possibility of excessive smoothing in the feature extraction process, which significantly affects the prediction accuracy. To address these issues and effectively complete miRNA disease prediction tasks, we propose an innovative model called Multiplex Adaptive Modality Fusion Graph Attention Network (MAMFGAT). MAMFGAT utilizes GAT as the main structure for feature aggregation and incorporates a multi-modal adaptive fusion module to extract features from three interconnected networks: the miRNA-disease association network, the miRNA similarity network, and the disease similarity network. It employs adaptive learning and cross-modality contrastive learning to fuse more effective miRNA and disease feature embeddings as well as incorporates multi-modal residual feature fusion to tackle the problem of excessive feature smoothing in GATs. Finally, we employ a Multi-Layer Perceptron (MLP) model that takes the embeddings of miRNA and disease features as input to anticipate the presence of potential miRNA-disease associations. Extensive experimental results provide evidence of the superior performance of MAMFGAT in comparison to other state-of-the-art methods. To validate the significance of various modalities and assess the efficacy of the designed modules, we performed an ablation analysis. Furthermore, MAMFGAT shows outstanding performance in three cancer case studies, indicating that it is a reliable method for studying the association between miRNA and diseases. The implementation of MAMFGAT can be accessed at the following GitHub repository: https://github.com/zixiaojin66/MAMFGAT-master.


Asunto(s)
Aprendizaje , MicroARNs , Humanos , Redes Neurales de la Computación , Biología Computacional , Algoritmos
15.
BMC Bioinformatics ; 25(1): 22, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216907

RESUMEN

BACKGROUND: MiRNAs are involved in the occurrence and development of many diseases. Extensive literature studies have demonstrated that miRNA-disease associations are stratified and encompass ~ 20% causal associations. Computational models that predict causal miRNA-disease associations provide effective guidance in identifying novel interpretations of disease mechanisms and potential therapeutic targets. Although several predictive models for miRNA-disease associations exist, it is still challenging to discriminate causal miRNA-disease associations from non-causal ones. Hence, there is a pressing need to develop an efficient prediction model for causal miRNA-disease association prediction. RESULTS: We developed DNI-MDCAP, an improved computational model that incorporated additional miRNA similarity metrics, deep graph embedding learning-based network imputation and semi-supervised learning framework. Through extensive predictive performance evaluation, including tenfold cross-validation and independent test, DNI-MDCAP showed excellent performance in identifying causal miRNA-disease associations, achieving an area under the receiver operating characteristic curve (AUROC) of 0.896 and 0.889, respectively. Regarding the challenge of discriminating causal miRNA-disease associations from non-causal ones, DNI-MDCAP exhibited superior predictive performance compared to existing models MDCAP and LE-MDCAP, reaching an AUROC of 0.870. Wilcoxon test also indicated significantly higher prediction scores for causal associations than for non-causal ones. Finally, the potential causal miRNA-disease associations predicted by DNI-MDCAP, exemplified by diabetic nephropathies and hsa-miR-193a, have been validated by recently published literature, further supporting the reliability of the prediction model. CONCLUSIONS: DNI-MDCAP is a dedicated tool to specifically distinguish causal miRNA-disease associations with substantially improved accuracy. DNI-MDCAP is freely accessible at http://www.rnanut.net/DNIMDCAP/ .


Asunto(s)
MicroARNs , Humanos , MicroARNs/genética , Reproducibilidad de los Resultados , Predisposición Genética a la Enfermedad , Biología Computacional , Algoritmos
16.
Math Biosci Eng ; 20(12): 20553-20575, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38124565

RESUMEN

Increasing amounts of experimental studies have shown that circular RNAs (circRNAs) play important regulatory roles in human diseases through interactions with related microRNAs (miRNAs). CircRNAs have become new potential disease biomarkers and therapeutic targets. Predicting circRNA-disease association (CDA) is of great significance for exploring the pathogenesis of complex diseases, which can improve the diagnosis level of diseases and promote the targeted therapy of diseases. However, determination of CDAs through traditional clinical trials is usually time-consuming and expensive. Computational methods are now alternative ways to predict CDAs. In this study, a new computational method, named PCDA-HNMP, was designed. For obtaining informative features of circRNAs and diseases, a heterogeneous network was first constructed, which defined circRNAs, mRNAs, miRNAs and diseases as nodes and associations between them as edges. Then, a deep analysis was conducted on the heterogeneous network by extracting meta-paths connecting to circRNAs (diseases), thereby mining hidden associations between various circRNAs (diseases). These associations constituted the meta-path-induced networks for circRNAs and diseases. The features of circRNAs and diseases were derived from the aforementioned networks via mashup. On the other hand, miRNA-disease associations (mDAs) were employed to improve the model's performance. miRNA features were yielded from the meta-path-induced networks on miRNAs and circRNAs, which were constructed from the meta-paths connecting miRNAs and circRNAs in the heterogeneous network. A concatenation operation was adopted to build the features of CDAs and mDAs. Such representations of CDAs and mDAs were fed into XGBoost to set up the model. The five-fold cross-validation yielded an area under the curve (AUC) of 0.9846, which was better than those of some existing state-of-the-art methods. The employment of mDAs can really enhance the model's performance and the importance analysis on meta-path-induced networks shown that networks produced by the meta-paths containing validated CDAs provided the most important contributions.


Asunto(s)
3,4-Metilenodioxianfetamina , MicroARNs , Humanos , ARN Circular , Área Bajo la Curva , MicroARNs/genética , ARN Mensajero/genética
17.
Biomolecules ; 13(10)2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37892196

RESUMEN

A growing number of studies have shown that aberrant microRNA (miRNA) expression is closely associated with the evolution and development of various complex human diseases. These key biomarkers' identification and observation are significant for gaining a deeper understanding of disease pathogenesis and therapeutic mechanisms. Consequently, pinpointing potential miRNA-disease associations (MDA) has become a prominent bioinformatics subject, encouraging several new computational methods given the advances in graph neural networks (GNN). Nevertheless, these existing methods commonly fail to exploit the network nodes' global feature information, leaving the generation of high-quality embedding representations using graph properties as a critical unsolved issue. Addressing these challenges, we introduce the DAEMDA, a computational method designed to optimize the current models' efficacy. First, we construct similarity and heterogeneous networks involving miRNAs and diseases, relying on experimentally corroborated miRNA-disease association data and analogous information. Then, a newly-fashioned parallel dual-channel feature encoder, designed to better comprehend the global information within the heterogeneous network and generate varying embedding representations, follows this. Ultimately, employing a neural network classifier, we merge the dual-channel embedding representations and undertake association predictions between miRNA and disease nodes. The experimental results of five-fold cross-validation and case studies of major diseases based on the HMDD v3.2 database show that this method can generate high-quality embedded representations and effectively improve the accuracy of MDA prediction.


Asunto(s)
MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Algoritmos , Redes Neurales de la Computación , Biología Computacional/métodos , Bases de Datos Genéticas
18.
Comput Biol Med ; 167: 107585, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37890424

RESUMEN

There is a growing body of evidence suggesting that microRNAs (miRNAs), small biological molecules, play a crucial role in the diagnosis, treatment, and prognostic assessment of diseases. However, it is often inefficient to verify the association between miRNAs and diseases (MDA) through traditional experimental methods. Based on this situation, researchers have proposed various computational-based methods, but the existing methods often have many drawbacks in terms of predictive effectiveness and accuracy. Therefore, in order to improve the prediction performance of computational methods, we propose a transformer-based prediction model (MDformer) for multi-source feature information. Specifically, first, we consider multiple features of miRNAs and diseases from the molecular biology perspective and utilize them in a fusion. Then high-quality node feature embeddings were generated using a feature encoder based on the transformer architecture and meta-path instances. Finally, a deep neural network was built for MDA prediction. To evaluate the performance of our model, we performed multiple 5-fold cross-validations as well as comparison experiments on HMDD v3.2 and HMDD v2.0 databases, and the experimental results of the average ROC area under the curve (AUC) were higher than the comparative methods for both databases at 0.9506 and 0.9369. We conducted case studies on five highly lethal cancers (breast, lung, colorectal, gastric, and hepatocellular cancers), and the first 30 predictions for these five diseases achieved 97.3% accuracy. In conclusion, MDformer is a reliable and scientifically sound tool that can be used to accurately predict MDA. In addition, the source code is available at https://github.com/Linda908/MDformer.


Asunto(s)
Neoplasias Hepáticas , MicroARNs , Humanos , MicroARNs/genética , Biología Computacional/métodos , Algoritmos , Programas Informáticos
19.
Brief Bioinform ; 24(5)2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37529914

RESUMEN

MOTIVATION: Identifying the relationships among long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and diseases is highly valuable for diagnosing, preventing, treating and prognosing diseases. The development of effective computational prediction methods can reduce experimental costs. While numerous methods have been proposed, they often to treat the prediction of lncRNA-disease associations (LDAs), miRNA-disease associations (MDAs) and lncRNA-miRNA interactions (LMIs) as separate task. Models capable of predicting all three relationships simultaneously remain relatively scarce. Our aim is to perform multi-task predictions, which not only construct a unified framework, but also facilitate mutual complementarity of information among lncRNAs, miRNAs and diseases. RESULTS: In this work, we propose a novel unsupervised embedding method called graph contrastive learning for multi-task prediction (GCLMTP). Our approach aims to predict LDAs, MDAs and LMIs by simultaneously extracting embedding representations of lncRNAs, miRNAs and diseases. To achieve this, we first construct a triple-layer lncRNA-miRNA-disease heterogeneous graph (LMDHG) that integrates the complex relationships between these entities based on their similarities and correlations. Next, we employ an unsupervised embedding model based on graph contrastive learning to extract potential topological feature of lncRNAs, miRNAs and diseases from the LMDHG. The graph contrastive learning leverages graph convolutional network architectures to maximize the mutual information between patch representations and corresponding high-level summaries of the LMDHG. Subsequently, for the three prediction tasks, multiple classifiers are explored to predict LDA, MDA and LMI scores. Comprehensive experiments are conducted on two datasets (from older and newer versions of the database, respectively). The results show that GCLMTP outperforms other state-of-the-art methods for the disease-related lncRNA and miRNA prediction tasks. Additionally, case studies on two datasets further demonstrate the ability of GCLMTP to accurately discover new associations. To ensure reproducibility of this work, we have made the datasets and source code publicly available at https://github.com/sheng-n/GCLMTP.


Asunto(s)
MicroARNs , ARN Largo no Codificante , MicroARNs/genética , ARN Largo no Codificante/genética , Algoritmos , Reproducibilidad de los Resultados , Biología Computacional/métodos
20.
Molecules ; 28(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37446675

RESUMEN

Numerous pieces of evidence have indicated that microRNA (miRNA) plays a crucial role in a series of significant biological processes and is closely related to complex disease. However, the traditional biological experimental methods used to verify disease-related miRNAs are inefficient and expensive. Thus, it is necessary to design some excellent approaches to improve efficiency. In this work, a novel method (CFSAEMDA) is proposed for the prediction of unknown miRNA-disease associations (MDAs). Specifically, we first capture the interactive features of miRNA and disease by integrating multi-source information. Then, the stacked autoencoder is applied for obtaining the underlying feature representation. Finally, the modified cascade forest model is employed to complete the final prediction. The experimental results present that the AUC value obtained by our method is 97.67%. The performance of CFSAEMDA is superior to several of the latest methods. In addition, case studies conducted on lung neoplasms, breast neoplasms and hepatocellular carcinoma further show that the CFSAEMDA method may be regarded as a utility approach to infer unknown disease-miRNA relationships.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Pulmonares , MicroARNs , Humanos , MicroARNs/genética , Algoritmos , Neoplasias Pulmonares/genética , Biología Computacional/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA