Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 14(8)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924450

RESUMEN

Composites based on Mg2Ni with 5% activated carbon from apricot stones (ACAP) have been prepared by ball milling and subsequent annealing in hydrogen atmosphere. The purpose of the primary metal (Mg, Ni, and V) milling was to reduce the particle size and achieve a good contact between them, without forming intermetallic compounds. During hydriding/dehydriding at 300 °C the amount of the Mg2Ni phase progressively increased, and after 10 cycles about 50% Mg2(Ni,V) was achieved. The hydrogenation produced mainly Mg2NiH4, but small amounts of MgH2 and VHx were also detected in the powder mixture. Relatively high hydrogen storage capacity and fast hydriding/dehydriding kinetics of the Mg2.1Ni0.7V0.3-5 wt.% ACAP composite were determined both from hydrogen gas phase and electrochemically.

2.
Materials (Basel) ; 13(18)2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32916910

RESUMEN

Magnesium hydride and selected magnesium-based ternary hydride (Mg2FeH6, Mg2NiH4, and Mg2CoH5) syntheses and modification methods, as well as the properties of the obtained materials, which are modified mostly by mechanical synthesis or milling, are reviewed in this work. The roles of selected additives (oxides, halides, and intermetallics), nanostructurization, polymorphic transformations, and cyclic stability are described. Despite the many years of investigations related to these hydrides and the significant number of different additives used, there are still many unknown factors that affect their hydrogen storage properties, reaction yield, and stability. The described compounds seem to be extremely interesting from a theoretical point of view. However, their practical application still remains debatable.

3.
Front Chem ; 8: 293, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32351943

RESUMEN

A series of CeH2.73/CeO2 composites with different ratios of hydride and oxide phases are prepared from the pure cerium hydride via oxidation treatments in the air at room temperature, and they are subsequently doped into Mg2NiH4 by ball milling. The desorption properties of the as-prepared Mg2NiH4+CeH2.73/CeO2 composites are studied by thermogravimetry and differential scanning calorimetery. Microstructures are studied by scanning electron microscopy and transmission electron microscopy, and the phase transitions during dehydrogenation are analyzed through in situ X-ray diffraction. Results show that the initial dehydrogenation temperature and activation energy of Mg2NiH4 are maximally reduced by doping the CeH2.73/CeO2 composite with the same molar ratio of cerium hydride and oxide. In this case, the CeH2.73/CeO2 composite has the largest density of interface among them, and the hydrogen release effect at the interface between cerium hydride and oxide plays an efficient catalytic role in enhancing the hydrogen desorption properties of Mg2NiH4.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA