RESUMEN
INTRODUCCIÓN: El síndrome de Rett (RTT) es un trastorno neurológico progresivo caracterizado por producir una regresión del desarrollo psicomotor en niñas previamente sanas. La mayoría de los casos son causados por variantes patogénicas en el gen MECP2, que codifica para la proteína methyl CpG- binding protein 2. OBJETIVO: Describir la frecuencia y el tipo de variantes patogénicas en MECP2 en mujeres chilenas con diagnóstico clínico de RTT. PACIENTES Y MÉTODO: Se invitó a participar en este estudio a mujeres chilenas con sospecha clínica de RTT. Se reunió información clínica mediante un cuestionario. Se analizaron variantes patogénicas en MECP2 mediante el método de secuenciación de Sanger y se utilizó Multiple Ligation-dependant Probe Amplification (MLPA) para la detección de duplicaciones y deleciones. RESULTADO: El estudio incluyó 14 pacientes con sospecha de RTT, de las cuales 8 (57%) pacientes tuvieron variantes patogénicas. Las restantes permanecen sin diagnóstico molecular. CONCLUSIÓN: Variantes patogénicas en MECP2 están presentes en pacientes chilenas con RTT. Es probable que haya otros genes o diagnósticos involucrados en las pacientes sin hallazgos en MECP2. A partir de este trabajo, el diagnóstico molecular está disponible en Chile.
INTRODUCTION: Rett syndrome (RTT) is a progressive neurological disorder characterized by regres sion of psychomotor development in previously healthy girls. Most cases are due to pathogenic va riants in the MECP2 gene which encodes for the methyl CpG-binding protein 2. OBJECTIVE: To des cribe the frequency and type of pathogenic variants in the MECP2 gene in Chilean female patients with clinical diagnosis of RTT. PATIENTS AND METHOD: Chilean women with clinical suspicion of RTT were invited to participate in the study. Clinical data were collected through a questionnaire. MECP2 pathogenic variants were analyzed by Sanger sequencing method and Multiplex Ligation-dependent Probe Amplification (MLPA) was used to detect duplications or deletions. RESULTS: The study in cluded 14 patients with suspected RTT, of which eight (57%) patients had pathogenic variants. The other patients remain without molecular diagnosis. CONCLUSIONS: Pathogenic variants in MECP2 are present in Chilean patients with RTT. It is likely that there are other genes or diagnoses involved in patients without MECP2 findings. As of this study, molecular diagnosis is available in Chile.
Asunto(s)
Humanos , Femenino , Preescolar , Niño , Adolescente , Adulto , Adulto Joven , Síndrome de Rett/genética , Proteína 2 de Unión a Metil-CpG/genética , Marcadores Genéticos , Síndrome de Rett/diagnóstico , Chile , Pruebas Genéticas/métodos , Eliminación de Gen , Duplicación de GenRESUMEN
Müller cells are not only the main glial cell type in the retina but also latent progenitor/stem cells, which in pathological conditions can transdifferentiate to a neuronal phenotype and regenerate the neurons lost in a mature retina. Several signal transduction pathways can induce the dedifferentiation of mature Müller cells to a progenitor-like state, including that stimulated by glutamate. However, the precise molecular mechanisms by which terminally differentiated cells are initially primed to acquire multipotency remain unclear. In the present study, we have characterized early genetic and epigenetic events that occur immediately after glutamate-induced dedifferentiation of fully differentiated Müller cells is initiated. Using Müller cell-enriched cultures from postnatal rats, we demonstrate that glutamate triggers a rapid dedifferentiation response characterized by changes in cell morphology coupled to the induction of progenitor cell marker gene expression (e.g., nestin, lin28 and sox2) within 1h. Dedifferentiation involved the activation of N-methyl-d-aspartate and type II metabotropic glutamate receptors, as well as global DNA demethylation (evident through the decrease in methyl-CpG-binding protein 2 immunoreactivity) and an increase in gadd45-ß gene expression; although, early progenitor gene expression was only partially inhibited by pharmacological impairment of DNA methylation. Importantly, the expression of Müller glia identity genes (i.e., glutamine synthetase; cellular retinaldehyde binding protein, CRALBP) is retained through the process. Dedifferentiated Müller cells held an early neuronal differentiation potential similar to that observed in retinal progenitor-enriched cultures but, contrary to the latter, dedifferentiated Müller cells failed to further differentiate into mature photoreceptor lineages. We speculate that, in spite of the initial triggering of the dedifferentiation pathways, these cells may exhibit a certain degree of epigenetic memory that precludes them from further differentiation.
Asunto(s)
Desdiferenciación Celular/fisiología , Células Ependimogliales/fisiología , Epigénesis Genética/fisiología , Ácido Glutámico/farmacología , Fenotipo , Células Fotorreceptoras de Vertebrados/fisiología , Animales , Desdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Células Ependimogliales/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Ratas , Ratas Long-Evans , Retina/citología , Retina/efectos de los fármacos , Retina/fisiologíaRESUMEN
Learning and memory are basic functions of the brain that allowed human evolution. It is well accepted that during learning and memory formation the dynamic establishment of new active synaptic connections is crucial. Persistent synaptic activation leads to molecular events that include increased release of neurotransmitters, increased expression of receptors on the postsynaptic neuron, thus creating a positive feedback that results in the activation of distinct signaling pathways that temporally and permanently alter specific patterns of gene expression. However, the epigenetic changes that allow the establishment of long term genetic programs that control learning and memory are not completely understood. Even less is known regarding the signaling events triggered by synaptic activity that regulate these epigenetic marks. Here we review the current understanding of the molecular mechanisms controlling activity-dependent gene transcription leading synaptic plasticity and memory formation. We describe how Ca(2+) entry through N-methyl-d-aspartate-type glutamate neurotransmitter receptors result in the activation of specific signaling pathways leading to changes in gene expression, giving special emphasis to the recent data pointing out different epigenetic mechanisms (histone acetylation, methylation and phosphorylation as well as DNA methylation and hydroxymethylation) underlying learning and memory.