Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Anticancer Res ; 44(9): 3885-3889, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39197890

RESUMEN

BACKGROUND/AIM: Pancreatic cancer has a very poor prognosis with a 5-year survival rate of less than 5% among patients with distant metastasis, a figure that has not improved over many decades. Only 10 to 20% patients are candidates for curative surgery at presentation due to the aggressive nature and asymptomatic progression of pancreatic cancer. Although first-line chemotherapy, such as FOLFIRINOX and gemcitabine + nab paclitaxel, improved the median survival from 8.5 to 11.1 months, more effective treatments are immediately needed. The aim of the present study was to evaluate the efficacy of methionine restriction with oral rMETase (o-rMETase) and a low-methionine diet combined with first-line chemotherapy on a patient with stage IV metastatic pancreatic cancer. CASE REPORT: A 63-year-old female was diagnosed with metastatic pancreatic cancer in October 2023. The patient started FOLFIRINOX as first-line chemotherapy in combination with methionine restriction, which comprised o-rMETase 250 units twice a day and a low-methionine diet. The patient was monitored using computed tomography and CA19-9 blood tests. After five months from the start of combination therapy, the size of the primary tumor decreased by 40% along with liver-metastasis regression. The CA19-9 blood marker decreased by 86%. The patient sustains a high performance status and continues the combination therapy without severe side effects. CONCLUSION: Methionine restriction consisting of o-rMETase and a low-methionine diet, in combination with first-line chemotherapy, was highly effective in a patient with inoperable stage IV pancreatic cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Liasas de Carbono-Azufre , Metionina , Neoplasias Pancreáticas , Humanos , Femenino , Liasas de Carbono-Azufre/administración & dosificación , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/sangre , Persona de Mediana Edad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Metionina/administración & dosificación , Estadificación de Neoplasias , Biomarcadores de Tumor/sangre , Fluorouracilo/administración & dosificación , Antígeno CA-19-9/sangre , Leucovorina/administración & dosificación , Leucovorina/uso terapéutico , Irinotecán/administración & dosificación , Irinotecán/uso terapéutico , Oxaliplatino/administración & dosificación , Oxaliplatino/uso terapéutico , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/uso terapéutico , Administración Oral
2.
Anticancer Res ; 44(9): 3785-3791, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39197928

RESUMEN

BACKGROUND/AIM: Drug resistance has been a recalcitrant problem for sarcoma patients for many decades. Trabectedin is a second-line chemotherapy for soft-tissue sarcoma that often leads to resistance and death of the patients. The objective of the present study was to address the issue of trabectedin-chemoresistance in HT1080 fibrosarcoma cells by combining recombinant methioninase (rMETase) with trabectedin and examining their efficacy on trabectedin-resistant fibrosarcoma cells in vitro. MATERIALS AND METHODS: Trabectedin-resistant HT1080 (TR-HT1080) cells were generated by subjecting HT1080 human fibrosarcoma cells to increasing trabectedin concentrations (3.3-8 nM). IC50 values for trabectedin and rMETase were compared for HT1080 and TR-HT1080 cells. TR-HT 1080 cells were placed into four groups to determine synergy of rMETase and trabectedin on TR-HT1080 cells: a control group with no treatment; a group treated with trabectedin (3.3 nM); a group treated with rMETase (0.75 U/ml); and a group treated with both trabectedin (3.3 nM) and rMETase (0.75 U/ml). RESULTS: The IC50 value of trabectedin- on TR-HT1080 cells was 42.9 nM, whereas the IC50 value of trabectedin on the parental HT1080 cells was 3.3 nM, indicating a 13-fold increase. The combination of rMETase (0.75 U/ml) and trabectedin (3.3 nM) was synergistic on TR-HT1080 cells resulting in an inhibition of 64.2% compared to trabectedin alone (5.7%) or rMETase alone (50.5%) (p<0.05). rMETase increased the efficacy of trabectedin 11-fold on trabectedin-resistant fibrosarcoma cells. CONCLUSION: The combined administration of trabectedin and rMETase was synergistic on the viability of TR-HT1080 cells in vitro. The combination of rMETase and trabectedin has promising clinical potential for overcoming chemo-resistance of soft-tissue sarcoma.


Asunto(s)
Antineoplásicos Alquilantes , Liasas de Carbono-Azufre , Dioxoles , Resistencia a Antineoplásicos , Proteínas Recombinantes , Tetrahidroisoquinolinas , Trabectedina , Humanos , Trabectedina/farmacología , Liasas de Carbono-Azufre/administración & dosificación , Liasas de Carbono-Azufre/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Tetrahidroisoquinolinas/farmacología , Tetrahidroisoquinolinas/administración & dosificación , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Dioxoles/farmacología , Dioxoles/uso terapéutico , Dioxoles/administración & dosificación , Proteínas Recombinantes/farmacología , Línea Celular Tumoral , Sarcoma/tratamiento farmacológico , Sarcoma/patología , Fibrosarcoma/tratamiento farmacológico , Fibrosarcoma/patología , Sinergismo Farmacológico
3.
Anticancer Res ; 44(9): 3777-3783, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39197933

RESUMEN

BACKGROUND/AIM: A major challenge in treating soft-tissue sarcoma is the development of drug resistance. Eribulin, an anti-tubulin agent, is used as a second-line chemotherapy for patients with unresectable or metastatic soft-tissue sarcoma. However, most patients with advanced soft-tissue sarcoma are resistant to eribulin and do not survive. Recombinant methioninase (rMETase) targets the fundamental and general hallmark of cancer, methionine addiction, termed the Hoffman Effect. The present study aimed to show how much rMETase could increase the efficacy of eribulin on eribulin-resistant fibrosarcoma cells in vitro. MATERIALS AND METHODS: HT1080 human fibrosarcoma cells were exposed to step-wise increasing concentrations of eribulin from 0.15-0.4 nM to establish eribulin-resistant HT1080 (ER-HT1080). ER-HT1080 cells were cultured in vitro and divided into four groups: untreated control; eribulin treated (0.15 nM); rMETase treated (0.75 U/ml); and eribulin (0.15 nM) plus rMETase (0.75 U/ml) treated. RESULTS: The IC50 of eribulin on ER-HT1080 cells was 0.95 nM compared to the IC50 of 0.15 nM on HT1080 cells, a 6-fold increase. The IC50 of rMETase on ER-HT1080 and HT1080 was 0.87 U/ml and 0.75 U/ml, respectively. The combination of rMETase (0.75 U/ml) and eribulin (0.15 nM) was synergistic on ER-HT1080 cells resulting in an inhibition of 80.1% compared to eribulin alone (5.0%) or rMETase alone (47.1%) (p<0.05). rMETase thus increased the efficacy of eribulin 16-fold on eribulin-resistant fibrosarcoma cells. CONCLUSION: The present study showed that the combination of eribulin and rMETase can overcome high eribulin resistance of fibrosarcoma. The present results demonstrate that combining rMETase with first- or second-line therapy for soft-tissue sarcoma has the potential to overcome the intractable clinical problem of drug-resistant soft-tissue sarcoma.


Asunto(s)
Liasas de Carbono-Azufre , Resistencia a Antineoplásicos , Fibrosarcoma , Furanos , Cetonas , Humanos , Cetonas/farmacología , Furanos/farmacología , Liasas de Carbono-Azufre/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Fibrosarcoma/tratamiento farmacológico , Fibrosarcoma/patología , Línea Celular Tumoral , Proteínas Recombinantes/farmacología , Antineoplásicos/farmacología , Sinergismo Farmacológico , Sarcoma/tratamiento farmacológico , Sarcoma/patología , Policétidos Poliéteres
4.
Anticancer Res ; 44(8): 3261-3268, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39060039

RESUMEN

BACKGROUND/AIM: Doxorubicin is first-line therapy for soft-tissue sarcoma, but patients can develop resistance which is usually fatal. As a novel therapeutic strategy, the present study aimed to determine the synergy of recombinant methioninase (rMETase) and doxorubicin against HT1080 fibrosarcoma cells compared to Hs27 normal fibroblasts, and rMETase efficacy against doxorubicin-resistant HT1080 cells in vitro. MATERIALS AND METHODS: The 50% inhibitory concentrations (IC50) of doxorubicin and rMETase, as well as their combination efficacy, against HT1080 human fibrosarcoma cells, Hs27 normal human fibroblasts and doxorubicin-resistant HT1080 (DR-HT1080) cells were determined. Dual-color HT1080 cells which expressed red fluorescent protein (RFP) in the cytoplasm and green fluorescent protein (GFP) in the nuclei were used to visualize nuclear fragmentation during treatment. Nuclear fragmentation was observed with an IX71 fluorescence microscope. RESULTS: The IC50 for doxorubicin was 3.3 µM for HT1080 cells, 12.4 µM for DR-HT1080 cells, and 7.25 µM for Hs27 cells. The IC50 for rMETase was 0.75 U/ml for HT1080 cells, 0.42 U/ml for DR-HT1080 cells, and 0.93 U/ml for Hs27 cells. The combination of rMETase and doxorubicin was synergistic against fibrosarcoma cells but not against normal fibroblasts. The combination of doxorubicin plus rMETase also caused more fragmented nuclei than either treatment alone in HT1080 cells. rMETase alone was highly effective against the DR-HT1080 cells as well as the parental HT1080 cells. CONCLUSION: The present results indicate the future clinical potential of rMETase in combination with doxorubicin for fibrosarcoma, including doxorubicin-resistant fibrosarcoma.


Asunto(s)
Liasas de Carbono-Azufre , Doxorrubicina , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Fibrosarcoma , Proteínas Recombinantes , Humanos , Doxorrubicina/farmacología , Fibrosarcoma/tratamiento farmacológico , Fibrosarcoma/patología , Fibrosarcoma/metabolismo , Liasas de Carbono-Azufre/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Línea Celular Tumoral , Proteínas Recombinantes/farmacología , Antibióticos Antineoplásicos/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo
5.
Cancer Diagn Progn ; 4(4): 402-407, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962551

RESUMEN

Background/Aim: Androgen-independent prostate cancer (AIPC) is resistant to androgen-depletion therapy and is a recalcitrant disease. Docetaxel is the first-line treatment for AIPC, but has limited efficacy and severe side-effects. All cancers are methionine-addicted, which is termed the Hoffman effect. Recombinant methioninase (rMETase) targets methionine addiction. The purpose of the present study was to determine if the combination of docetaxel and rMETase is effective for AIPC. Materials and Methods: The half-maximal inhibitory concentrations (IC50) of docetaxel and rMETase alone were determined for the human AIPC cell line PC-3 and Hs27 normal human fibroblasts in vitro. The synergistic efficacy for PC-3 and Hs27 using the combination of docetaxel and rMETase at their IC50s for PC-3 was determined. Results: The IC50 of docetaxel for PC-3 and for Hs27 was 0.72 nM and 0.94 nM, respectively. The IC50 of rMETase for PC-3 and for Hs27 was 0.67 U/ml and 0.76 U/ml, respectively. The combination of docetaxel and rMETase was synergistic for PC-3 but not Hs27 cells. Conclusion: The combination of a relatively low concentration of docetaxel and rMETase was synergistic and effective for AIPC. The present results also suggest that the effective concentration of docetaxel can be reduced by using rMETase, which may reduce toxicity. The present results also suggest the future clinical potential of the combination of docetaxel and rMETase for AIPC.

6.
Cancer Diagn Progn ; 4(4): 396-401, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962555

RESUMEN

Background/Aim: Rapamycin inhibits the mTOR protein kinase. Methioninase (rMETase), by degrading methionine, targets the methionine addiction of cancer cells and has been shown to improve the efficacy of chemotherapy drugs, reducing their effective doses. Our previous study demonstrated that rapamycin and rMETase work synergistically against colorectal-cancer cells, but not on normal cells, when administered simultaneously in vitro. In the present study, we aimed to further our previous findings by exploring whether  synergy exists between rapamycin and rMETase when used sequentially against HCT-116 colorectal-carcinoma cells, compared to simultaneous administration, in vitro. Materials and Methods: The half-maximal inhibitory concentrations (IC50) of rapamycin alone and rMETase alone against the HCT-116 human colorectal-cancer cell line were previously determined using the CCK-8 cell viability assay (11). We then examined the efficacy of rapamycin and rMETase, both at their IC50, administered simultaneously or sequentially on the HCT-116 cell line, with rapamycin administered before rMETase and vice versa. Results: The IC50 for rapamycin and rMETase, determined from previous experiments (11), was 1.38 nM and 0.39 U/ml, respectively, of HCT-116 cells. When rMETase was administered four days before rapamycin, both at the IC50, there was a 30.46% inhibition of HCT-116 cells. When rapamycin was administered four days before rMETase, both at the IC50, there was an inhibition of 41.13%. When both rapamycin and rMETase were simultaneously administered, both at the IC50, there was a 71.03% inhibition. Conclusion: Rapamycin and rMETase have synergistic efficacy against colorectal-cancer cells in vitro when administered simultaneously, but not sequentially.

7.
Cancer Genomics Proteomics ; 21(4): 395-398, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38944421

RESUMEN

BACKGROUND/AIM: It has been recently demonstrated that a methionine-restricted diet increases the response to immune checkpoint inhibitors (ICIs) via an increase in PD-L1 in a syngeneic mouse colorectal-cancer model. Our laboratory has developed recombinant methioninase (rMETase) to restrict methionine. The aim of the present study was to determine if rMETase can increase PD-L1 expression in a human colorectal cancer cell line in vitro. MATERIALS AND METHODS: We evaluated the half-maximal inhibitory concentration (IC50) value of rMETase on HCT-116 human colorectal cancer cells. HCT-116 cells were treated with rMETase at the IC50 Western immunoblotting was used to compare PD-L1 expression in HCT-116 cells treated with and without rMETase. RESULTS: The IC50 value of rMETase on HCT-116 was 0.79 U/ml. Methionine restriction using rMETase increased PD-L1 expression compared to the untreated control (p<0.05). CONCLUSION: Methionine restriction with rMETase up-regulates PD-L1 expression in human colorectal cancer cells and the combination of rMETase and ICIs may have the potential to improve immunotherapy in human colorectal cancer.


Asunto(s)
Antígeno B7-H1 , Liasas de Carbono-Azufre , Neoplasias Colorrectales , Metionina , Proteínas Recombinantes , Humanos , Liasas de Carbono-Azufre/metabolismo , Metionina/farmacología , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Proteínas Recombinantes/farmacología , Células HCT116
8.
Anticancer Res ; 44(6): 2359-2367, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821601

RESUMEN

BACKGROUND/AIM: The alkylating agent trabectedin, which binds the minor groove of DNA, is second-line therapy for soft-tissue sarcoma but has only moderate efficacy. The aim of the present study was to determine the synergistic efficacy of recombinant methioninase (rMETase) and trabectedin on fibrosarcoma cells in vitro, compared with normal fibroblasts. MATERIALS AND METHODS: HT1080 human fibrosarcoma cells expressing green fluorescent protein (GFP) in the nucleus and red fluorescent protein (RFP) in the cytoplasm and Hs27 normal human fibroblasts, were used. Each cell line was cultured in vitro and divided into four groups: no-treatment control; trabectedin treated; rMETase treated; and trabectedin plus rMETase treated. The dual-color HT1080 cells were used to quantitate nuclear fragmentation in each treatment group. RESULTS: The combination of rMETase and trabectedin was highly synergistic to decrease HT1080 cell viability. In contrast, there was no synergy on Hs27 cells. Moreover, nuclear fragmentation occurred synergistically with the combination of trabectedin and rMETase on dual-color HT1080 cells. CONCLUSION: The combination treatment of trabectedin plus rMETase was highly synergistic on fibrosarcoma cells in vitro suggesting that the combination can improve the outcome of trabectedin alone in future clinical studies. The lack of synergy of rMETase and trabectedin on normal fibroblasts suggests the combination is not toxic to normal cells. Synergy of the two drugs may be due to the high rate of nuclear fragmentation on treated HT1080 cells, and the late-S/G2 cell-cycle block of cancer cells by rMETase, which is a target for trabectedin. The results of the present study suggest the future clinical potential of the combination of rMETase and trabectedin for soft-tissue sarcoma.


Asunto(s)
Liasas de Carbono-Azufre , Supervivencia Celular , Dioxoles , Sinergismo Farmacológico , Fibroblastos , Fibrosarcoma , Tetrahidroisoquinolinas , Trabectedina , Humanos , Fibrosarcoma/tratamiento farmacológico , Fibrosarcoma/patología , Fibrosarcoma/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Trabectedina/farmacología , Liasas de Carbono-Azufre/farmacología , Liasas de Carbono-Azufre/administración & dosificación , Tetrahidroisoquinolinas/farmacología , Dioxoles/farmacología , Supervivencia Celular/efectos de los fármacos , Proteínas Recombinantes/farmacología , Línea Celular Tumoral , Antineoplásicos Alquilantes/farmacología , Núcleo Celular/metabolismo , Núcleo Celular/efectos de los fármacos
9.
Cancer Diagn Progn ; 4(3): 239-243, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38707720

RESUMEN

Background/Aim: The present study utilized the three-dimensional histoculture drug response assay (HDRA) to determine the efficacy of recombinant methioninase (rMETase) on tumor tissue resected from patients with late-stage cancer, as a functional biomarker of sensitivity to methionine restriction therapy. Patients and Methods: Resected peritoneal-metastatic cancer, including colorectal cancer, pancreatic cancer, ovarian cancer, and pseudomyxoma were placed on Gelform in RPMI 1640 medium for seven days and treated with rMETase from 2.5 U/ml to 20 U/ml. Cell viability was determined using the MTT assay. A total of 48 patients with late-stage cancer underwent testing for rMETase responsiveness using the HDRA. Results: Colorectal cancer and pseudomyxoma had the highest sensitivity to rMETase. Pancreatic and ovarian cancer also responded to rMETase, but to a lesser degree. Conclusion: Patients with tumors with at least 40% sensitivity to rMETase in the HDRA are being considered as candidates for methionine restriction therapy, which includes the use of rMETase in combination with a low-methionine diet.

10.
In Vivo ; 38(3): 1459-1464, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38688589

RESUMEN

BACKGROUND/AIM: Gliomas are the most common and recalcitrant malignant primary brain tumors. All cancer types are addicted to methionine, which is a fundamental and general hallmark of cancer known as the Hoffman effect. Particularly glioma cells exhibit methionine addiction. Because of methionine addiction, [11C]-methionine positron emission tomography (MET-PET) is widely used for glioma imaging in clinical practice, which can monitor the extent of methionine addiction. Methionine restriction including recombinant methioninase (rMETase) and a low-methionine diet, has shown high efficacy in preclinical models of gliomas, especially in combination with chemotherapy. The aim of the present study was to determine the efficacy of methionine restriction with oral rMETase (o-rMETase) and a low-methionine diet, combined with radiation and temozolomide (TMZ), on a teenage female patient with high-grade glioma. CASE REPORT: A 16-year-old girl was diagnosed with high-grade glioma. Magnetic resonance imaging (MRI) showed a left temporal-lobe tumor with compression to the left lateral ventricle and narrowing of sulci in the left temporal lobe. After the start of methionine restriction with o-rMETase and a low-methionine diet, along with TMZ combined with radiotherapy, the tumor size shrunk at least 60%, with improvement in the left lateral ventricle and sulci. The patient's condition remains stable for 19 months without severe adverse effects. CONCLUSION: Methionine restriction consisting of o-rMETase and a low-methionine diet, in combination with radiation and TMZ as first-line chemotherapy, were highly effective in a patient with high-grade glioma.


Asunto(s)
Liasas de Carbono-Azufre , Glioma , Metionina , Temozolomida , Humanos , Femenino , Glioma/patología , Glioma/tratamiento farmacológico , Glioma/terapia , Temozolomida/administración & dosificación , Temozolomida/uso terapéutico , Metionina/administración & dosificación , Adolescente , Imagen por Resonancia Magnética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/terapia , Resultado del Tratamiento , Clasificación del Tumor , Tomografía de Emisión de Positrones , Proteínas Recombinantes/administración & dosificación , Terapia Combinada
11.
Anticancer Res ; 44(4): 1499-1504, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538002

RESUMEN

BACKGROUND/AIM: Breast cancer is the most common and the deadliest cancer among women in the world. Treatment options for HER2-positive metastatic breast cancer patients are limited. Trastuzumab deruxtecan (T-DXd), an antibody-drug conjugate (ADC), has recently been introduced as second-line chemotherapy for HER2-positive metastatic breast cancer. The aim of the present study was to evaluate the efficacy of methionine restriction with oral recombinant methioninase (o-rMETase) and a low-methionine diet combined with T-DXd, on a patient with HER2-positive recurrent stage IV breast cancer. CASE REPORT: A 66-year-old female was diagnosed with HER2-positive metastatic breast cancer. Computed tomography (CT) indicated peritoneal dissemination, thickening of the sigmoid colon and splenic flexure and widespread bone metastases. The patient was previously treated with fulvestrant, trastuzumab, pertuzumab, paclitaxel and capecitabine which were ineffective. T-DXd was administered as a second-line chemotherapy. Since the patient experienced strong side effects, the dose of T-Dxd was decreased. The patient began methionine restriction using o-rMETase and a low-methionine diet along with T-DXd. After the start of the combined treatment, CA15-3 and CA27.29, tumor markers for breast cancer, decreased rapidly from a very high level. The levels of both tumor markers are currently normal. Additionally, peritoneal-dissemination nodules, ascites and the thickness of the sigmoid colon and splenic flexure are no longer detected on CT. The patient maintains a high performance status, without severe side effects of the combination treatment. CONCLUSION: Methionine restriction consisting of o-rMETase and a low-methionine diet, in combination with T-DXd as second-line chemotherapy, was highly effective in a patient with HER2-positive stage IV breast cancer.


Asunto(s)
Neoplasias de la Mama , Camptotecina/análogos & derivados , Liasas de Carbono-Azufre , Inmunoconjugados , Humanos , Femenino , Anciano , Neoplasias de la Mama/tratamiento farmacológico , Biomarcadores de Tumor , Trastuzumab/uso terapéutico , Metionina , Racemetionina , Dieta , Receptor ErbB-2
12.
Int J Biol Macromol ; 265(Pt 2): 130997, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508568

RESUMEN

Cancer remains a global health challenge, demanding novel therapeutic options due to the debilitating side effects of conventional treatments on healthy tissues. The review highlights the potential of L-methioninase, a pyridoxal-5-phosphate (PLP)-dependent enzyme, as a promising avenue in alternative cancer therapy. L-methioninase offers a unique advantage, its ability to selectively target and inhibit the growth of cancer cells without harming healthy cells. This selectivity arises because tumor cells lack an essential enzyme called methionine synthase, which healthy cells use to make the vital amino acid L-methionine. Several sources harbor L-methioninase, including bacteria, fungi, plants, and protozoa. Future research efforts can explore and exploit this diverse range of sources to improve the therapeutic potential of L-methioninase in the fight against cancer. Despite challenges, research actively explores microbial L-methioninase for its anticancer potential. This review examines the enzyme's side effects, advancements in combination therapies, recombinant technologies, polymer conjugation and novel delivery methods like nanoparticles, while highlighting the success of oral administration in preclinical trials. Beyond its promising role in cancer therapy, L-methioninase holds potential applications in food science, antioxidants, and various health concerns like diabetes, cardiovascular issues, and neurodegenerative diseases. This review provides a piece of current knowledge and future prospects of L-methioninase, exploring its diverse therapeutic potential.


Asunto(s)
Liasas de Carbono-Azufre , Neoplasias , Humanos , Liasas de Carbono-Azufre/metabolismo , Neoplasias/tratamiento farmacológico , Terapia Combinada , Hongos/metabolismo , Metionina/metabolismo , Proteínas Recombinantes/uso terapéutico
13.
Anticancer Res ; 44(3): 929-933, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38423628

RESUMEN

BACKGROUND/AIM: Rapamycin and recombinant methioninase (rMETase) have both shown efficacy to target cancer cells. Rapamycin prevents cancer-cell growth by inhibition of the mTOR protein kinase. rMETase, by degrading methionine, targets the methionine addiction of cancer and has been shown to improve the efficacy of chemotherapy drugs. In the present study, we aimed to determine if a synergy exists between rapamycin and rMETase when used in combination against a colorectal-carcinoma cell line, compared to normal fibroblasts, in vitro. MATERIALS AND METHODS: The half-maximal inhibitory concentrations (IC50) of rapamycin alone and rMETase alone against the HCT-116 human colorectal-cancer cell line and Hs-27 human fibroblasts were determined using the CCK-8 Cell Viability Assay. After calculating the IC50 of each drug, we determined the efficacy of rapamycin and rMETase combined on both HCT-116 and Hs-27. RESULTS: Hs-27 normal fibroblasts were more sensitive to rapamycin than HCT-116 colon-cancer cells (IC50=0.37 nM and IC50=1.38 nM, respectively). HCT-116 cells were more sensitive to rMETase than Hs-27 cells (IC50 0.39 U/ml and IC50 0.96 U/ml, respectively). The treatment of Hs-27 cells with the combination of rapamycin (IC50=0.37 nM) and rMETase (IC50=0.96 U/ml) showed no significant difference in their effect on Hs-27 cell viability compared to the two drugs being used separately. However, the treatment of HCT-116 cells with the combination of rapamycin (IC50=1.38 nM) and rMETase (IC50=0.39 U/ml) was able to decrease cancer-cell viability significantly more than either single-drug treatment. CONCLUSION: Rapamycin and rMETase, when used in combination against colorectal-cancer cells, but not normal fibroblasts, in vitro, have a cancer-specific synergistic effect, suggesting that the combination of these drugs can be used as an effective, targeted cancer therapy.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Humanos , Sirolimus/farmacología , Liasas de Carbono-Azufre , Neoplasias del Colon/tratamiento farmacológico , Metionina , Células HCT116 , Proteínas Recombinantes
14.
Anticancer Res ; 44(3): 921-928, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38423656

RESUMEN

BACKGROUND/AIM: The aim of the present study was to determine the synergy of recombinant methioninase (rMETase) and the anti-tubulin agent eribulin on fibrosarcoma cells, in comparison to normal fibroblasts, in vitro. MATERIALS AND METHODS: HT1080 human fibrosarcoma cells and HS27 human fibroblasts were used for in vitro experiments. Four groups were analyzed in vitro: No-treatment control; eribulin; rMETase; eribulin plus rMETase. Dual-color HT1080 cells which express red fluorescent protein (RFP) in the cytoplasm and green fluorescent protein (GFP) in the nuclei were used to visualize cytoplasmic and nuclear dynamics during treatment. RESULTS: Eribulin combined with rMETase greatly decreased the viability of HT 1080 cells. In contrast, eribulin combined with rMETase did not show synergy on Hs27 normal fibroblasts. Eribulin combined with rMETase also caused more fragmentation of the nucleus than all other treatments. CONCLUSION: The combination treatment of eribulin plus rMETase demonstrated efficacy on fibrosarcoma cells in vitro. In contrast, normal fibroblasts were resistant to this combination, indicating the potential clinical applicability of the treatment.


Asunto(s)
Liasas de Carbono-Azufre , Fibrosarcoma , Furanos , Cetonas , Policétidos Poliéteres , Humanos , Liasas de Carbono-Azufre/uso terapéutico , Línea Celular Tumoral , Fibrosarcoma/tratamiento farmacológico , Fibroblastos , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico
15.
Biochem Biophys Res Commun ; 691: 149319, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38042033

RESUMEN

Methods for targeting enzymes exhibiting anticancer properties, such as methionine γ-lyase (MGL), have not yet been sufficiently developed. Here, we present the data describing the physico-chemical properties and cytotoxic effect of fusion protein MGL-S3 - MGL from Clostridium sporogenes translationally fused to S3 domain of the viral growth factor of smallpox. MGL-S3 has methioninase activity comparable to native MGL. In solution, MGL-S3 protein primarily forms octamers, whereas native MGL, on the contrary, usually forms tetramers. MGL-S3 binds to the surface of the neuroblastoma SH-SY5Y and epidermoid carcinoma A431 cells and, unlike native MGL, remains there and retains its cytotoxic effect after media removal. In HEK293T cells lacking EGFRs, no adhesion was recorded. Confocal fluorescence microscopy confirms the preferential adhesion of MGL-S3 to tumor cells, while it avoids getting into lysosomes. Both MGL and MGL-S3 arrest cell cycle of SH-SY5Y cells mainly in the G1 phase, while only MGL-S3 retains this ability after washing the cells.


Asunto(s)
Antineoplásicos , Neuroblastoma , Humanos , Células HEK293 , Liasas de Carbono-Azufre/metabolismo , Receptores ErbB/genética , Metionina/metabolismo , Factores de Crecimiento Nervioso
16.
In Vivo ; 38(1): 253-258, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38148095

RESUMEN

BACKGROUND/AIM: Methionine addiction is a fundamental and universal hallmark of cancer, termed the Hoffman effect. Methionine addiction of cancer is greater than glucose addiction, termed the Warburg effect, as shown by the comparison of PET imaging with [11C]methionine and [18F]fluorodeoxyglucose. The aim of the present study was to determine whether [11C]methionine PET (MET-PET) images could be a biomarker of methionine addiction of cancer and potential response to methionine-restriction-based combination chemotherapy. PATIENTS AND METHODS: In the present study a patient with invasive lobular carcinoma of the breast metastatic to axillary lymph nodes was imaged by both MET-PET and [18F]fluorodeoxyglucose PET (FDG-PET) before and after combination treatment with methionine restriction, comprising a low-methionine diet and methioninase, along with first-line chemotherapy. RESULTS: MET-PET gave a much stronger and precise image of the patient's metastatic axillary lymph nodes than FDG-PET. The patient had a complete response to methionine restriction-based chemotherapy as shown by MET-PET. CONCLUSION: MET-PET imaging is a biomarker of methionine-addicted cancer and potential response to methionine-restriction-based chemotherapy.


Asunto(s)
Neoplasias de la Mama , Metionina , Humanos , Femenino , Fluorodesoxiglucosa F18 , Biomarcadores de Tumor , Tomografía de Emisión de Positrones/métodos , Racemetionina , Neoplasias de la Mama/patología , Quimioterapia Combinada , Radiofármacos
17.
Cancer Diagn Progn ; 3(6): 655-659, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37927805

RESUMEN

Background/Aim: Regorafenib is a multi-kinase inhibitor, targeting vascular endothelial growth factor receptor 2, fibroblast growth factor receptor 1 and other oncogenic kinases. Regorafenib has efficacy in metastatic colon cancer, but has severe dose-limiting toxicities which cause patients to stop taking the drug. The aim of the present study was to determine if recombinant methioninase (rMETase) could lower the effective concentration of regorafenib in vitro against a colorectal-cancer cell line. Materials and Methods: Firstly, we examined the half-maximal inhibitory concentration (IC50) of regorafenib alone and rMETase alone for the HCT-116 human colorectal-cancer cell line. After that, using the IC50 concentration of each drug, we investigated the efficacy of the combination of regorafenib and rMETase. Results: While both methioninase alone (IC50=0.61 U/ml) and regorafenib alone (IC50=2.26 U/ml) inhibited the viability of HCT-116 cells, the combination of the two agents was more than twice as effective as either alone. Addition of rMETase at 0.61 U/ml lowered the IC50 of regorafenib from 2.26 µM to 1.46 µM. Conclusion: rMETase and regorafenib are synergistic, giving rise to the possibility of lowering the effective dose of regorafenib in patients, thereby reducing its severe toxicity, allowing more cancer patients to be treated with regorafenib.

18.
Cancer Diagn Progn ; 3(6): 649-654, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37927811

RESUMEN

Background/Aim: Methionine restriction by diet and recombinant methioninase (rMETase) are effective for cancer therapy by themselves or combined with chemotherapy drugs. We previously showed that oral administration of rMETase-producing Escherichia coli JM109 (E. coli JM109-rMETase) can be installed in the mouse microbiome and inhibit colon-cancer growth in a syngeneic mouse model. In the present report, we investigated the efficacy of oral administration of E. coli JM109-rMETase in an orthotopic triple-negative breast cancer (TNBC) cell-line mouse model. Materials and Methods: First, we established orthotopic 4T1 mouse triple-negative breast cancer on an abdominal mammary gland in female athymic nu/nu nude mice aged 4-6 weeks. After tumor growth, 15 mice were divided into three groups of 5. Group 1 was administered phosphate-buffered saline (PBS) orally by gavage twice daily as a control; Group 2 was administered non-recombinant E. coli JM109 competent cells orally by gavage twice daily as a control; Group 3 was administered E. coli JM109-rMETase cells by gavage twice daily for two weeks. Tumor size was measured with calipers twice per week. On day 15, blood methionine level was examined using an HPLC method. Results: Oral administration of E. coli JM109-rMETase inhibited 4T1 TNBC growth significantly compared to the PBS and E. coli JM109 control groups. On day 15, the blood methionine level was significantly lower in the mice administered E. coli JM109-rMETase than in the PBS control. Conclusion: E. coli JM109-rMETase lowered blood methionine levels and inhibited TNBC growth in an orthotopic cell-line mouse model, suggesting future clinical potential against a highly recalcitrant cancer.

19.
Cancer Genomics Proteomics ; 20(6suppl): 679-685, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38035708

RESUMEN

BACKGROUND/AIM: The fundamental and general hallmark of cancer cells, methionine addiction, termed the Hoffman effect, is due to overuse of methionine for highly-increased transmethylation reactions. In the present study, we tested if the combination efficacy of recombinant methioninase (rMETase) and a methionine analogue, ethionine, could eradicate osteosarcoma cells and down-regulate the expression of c-MYC. MATERIALS AND METHODS: 143B osteosarcoma cells and Hs27 normal human fibroblasts were tested. The efficacy of rMETase alone and ethionine, alone and in their combination, on cell viability was determined with the WST-8 assay on 143B cells and Hs27 cells. c-MYC expression was examined with western immunoblotting and compared in 143B cells treated with/without rMETase, ethionine, or the combination of both rMETase and ethionine. RESULTS: 143B cells were more sensitive to both rMETase and ethionine than Hs 27 cells, with the following IC50s: rMETase (143B: 0.22 U/ml; Hs27: 0.82 U/ml); ethionine (143B: 0.24 mg/ml; Hs27: 0.42 mg/ml). The combination of rMETase and ethionine synergistically eradicated 143B cells, lowering the IC50 for ethionine 14-fold compared to ethionine alone (p<0.001). In contrast, Hs27 fibroblasts were relatively resistant to the combination. The expression of c-MYC was significantly down-regulated only by the combination of rMETase and ethionine in 143B cells (p<0.001). CONCLUSION: In the present study, we showed, for the first time, the synergistic combination efficacy of rMETase and ethionine on osteosarcoma cells in contrast to normal fibroblasts, which were relatively resistant. The combination of rMETase and ethionine down-regulated c-MYC expression in the cancer cells. The present results indicate the combination of rMETase and ethionine may reduce the malignancy of osteosarcoma cells and can be a potential future clinical strategy.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Neoplasias Óseas/tratamiento farmacológico , Etionina/uso terapéutico , Metionina/metabolismo , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Racemetionina , Proteínas Recombinantes/uso terapéutico
20.
Saudi J Biol Sci ; 30(12): 103870, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38020221

RESUMEN

Bioactive components derived from medicinal herbs have recently acquired popularity due to their efficacy in treating various ailments, including cancer and infectious diseases. In this study, the anticancer enzyme, L-methioninase isolated from medicinal plants endophytic fungi, then evaluated its promising therapeutic agents against different types of human cancers. L methionine was purified using column chromatography with the stationary phase of Sephadex G-200 with 6.6-fold purification, which increased the specific activity of 71.3 U/mg of protein with a recovery rate of 48.2 %. On the SDS-PAGE chromatogram, the apparent molecular mass of the isolated enzyme was 48 kDa, and its highest activity was observed at pH 8 and 35 °C. The enzyme was catalytically stable within the pH range of 6.0-9.0 and below 40 °C. This study demonstrates that isolated L-methioninase is particularly efficient against tumour cell lines in vitro. The crude and purified L-methioninase inhibited 60 and 80 % of the growth of the breast cancer cell line (MCF-7), respectively, with an estimated IC50 = 12.6 µg/ml (crude) and IC50 = 5.0 µg/ml for purified L-methioninase from isolate 8 with accession no MZ675362. Because of this, pure L-methioninase has better catalytic characteristics and significant thermal stability, which could be used as a cancer-fighting substance than the enzyme purified from other sources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA