Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 726
Filtrar
1.
J Environ Sci (China) ; 147: 370-381, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003055

RESUMEN

Two strains of Fe/Mn oxidizing bacteria tolerant to high concentrations of multiple heavy metal(loid)s and efficient decontamination for them were screened. The surface of the bio-Fe/Mn oxides produced by the oxidation of Fe(II) and Mn(II) by Pseudomonas taiwanensis (marked as P4) and Pseudomonas plecoglossicida (marked as G1) contains rich reactive oxygen functional groups, which play critical roles in the removal efficiency and immobilization of heavy metal(loid)s in co-contamination system. The isolated strains P4 and G1 can grow well in the following environments: pH 5-9, NaCl 0-4%, and temperature 20-30°C. The removal efficiencies of Fe, Pb, As, Zn, Cd, Cu, and Mn are effective after inoculation of the strains P4 and G1 in the simulated water system (the initial concentrations of heavy metal(loid) were 1 mg/L), approximately reaching 96%, 92%, 85%, 67%, 70%, 54% and 15%, respectively. The exchangeable and carbonate bound As, Cd, Pb and Cu are more inclined to convert to the Fe-Mn oxide bound fractions in P4 and G1 treated soil, thereby reducing the phytoavailability and bioaccessible of heavy metal(loid)s. This research provides alternatives method to treat water and soil containing high concentrations of multi-heavy metal(loid)s.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes del Suelo/metabolismo , Oxidación-Reducción , Pseudomonas/metabolismo , Manganeso , Hierro/química , Hierro/metabolismo , Suelo/química , Biodegradación Ambiental , Microbiología del Suelo
2.
J Environ Sci (China) ; 147: 62-73, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003077

RESUMEN

Non-ferrous metal smelting poses significant risks to public health. Specifically, the copper smelting process releases arsenic, a semi-volatile metalloid, which poses an emerging exposure risk to both workers and nearby residents. To comprehensively understand the internal exposure risks of metal(loid)s from copper smelting, we explored eighteen metal(loid)s and arsenic metabolites in the urine of both occupational and non-occupational populations using inductively coupled plasma mass spectrometry with high-performance liquid chromatography and compared their health risks. Results showed that zinc and copper (485.38 and 14.00 µg/L), and arsenic, lead, cadmium, vanadium, tin and antimony (46.80, 6.82, 2.17, 0.40, 0.44 and 0.23 µg/L, respectively) in workers (n=179) were significantly higher compared to controls (n=168), while Zinc, tin and antimony (412.10, 0.51 and 0.15 µg/L, respectively) of residents were significantly higher than controls. Additionally, workers had a higher monomethyl arsenic percentage (MMA%), showing lower arsenic methylation capacity. Source appointment analysis identified arsenic, lead, cadmium, antimony, tin and thallium as co-exposure metal(loid)s from copper smelting, positively relating to the age of workers. The hazard index (HI) of workers exceeded 1.0, while residents and control were approximately at 1.0. Besides, all three populations had accumulated cancer risks exceeding 1.0 × 10-4, and arsenite (AsIII) was the main contributor to the variation of workers and residents. Furthermore, residents living closer to the smelting plant had higher health risks. This study reveals arsenic exposure metabolites and multiple metals as emerging contaminants for copper smelting exposure populations, providing valuable insights for pollution control in non-ferrous metal smelting.


Asunto(s)
Metalurgia , Exposición Profesional , Humanos , Exposición Profesional/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Metales/orina , Metales/análisis , Medición de Riesgo , Arsénico/análisis , Monitoreo del Ambiente , Adulto , Contaminantes Ambientales/análisis , Persona de Mediana Edad
3.
Environ Sci Technol ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250346

RESUMEN

The presence of metalloids and heavy metals in the environment is of critical concern due to their toxicological impacts. However, not all metallic species have the same risk level. Specifically, the physical, chemical, and isotopic speciation of the metal(loids) dictate their metabolism, toxicity, and environmental fate. As such, speciation analysis is critical for environmental monitoring and risk assessment. In the past two decades, surface-enhanced Raman spectroscopy (SERS) has seen significant developments regarding trace metal(loid) sensing due to its ultrahigh sensitivity, readiness for in situ real-time applications, and cost-effectiveness. However, the speciation of metal(loid)s has not been accounted for in the design and application of SERS sensors. In this Perspective, we examine the potential of SERS for metal(loid) speciation analysis and highlight the advantages, progress, opportunities, and challenges of this application.

4.
Chemosphere ; 364: 143289, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245220

RESUMEN

The potential extractability, crop uptake, and ecotoxicity of conventional and emerging organic and metal(loid) contaminants after the application of pre-treated (composted and pyrolysed) sewage sludges to two agricultural soils were evaluated at field and laboratory scale. Metal(loid) extractability varied with sludge types and pre-treatments, though As, Cu, and Ni decreased universally. In the field, the equivalent of 5 tons per hectare of both composted and pyrolysed sludges brought winter wheat grain metal(loid) concentrations below statutory limits. Carbamazepine, diclofenac, and telmisartan were the only detected organic pollutants in crops decreasing in order of root > shoot > grains, whilst endocrine-disrupting chemicals, such as bisphenol A and perfluorochemicals were heavily reduced by composting (up to 71%) or pyrolysis (up to below detection limit) compared to raw sludges. As a consequence, no detectable concentrations were measured in soils 12 months after field application. This study highlights the potential advantages of processing sewage sludge before soil applications, especially in the context of reducing the mobility of emerging contaminants, though further studies are required on a broad range of soils and crops before land application can be considered.

5.
MethodsX ; 13: 102896, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39224449

RESUMEN

We searched for an extraction method that would allow a precise quantification of metal(loid)s in milligram-size samples using high-resolution graphite furnace atomic absorption spectrometry (HR-GFAAS). We digested biological (DORM-4, DOLT-5 and TORT-3) and sediment (MESS-4) certified reference materials (CRMs) using nitric acid in a drying oven, aqua regia in a drying oven, or nitric acid in a microwave. In addition, we digested MESS-4 using a mixture of nitric and hydrofluoric acids in a drying oven. We also evaluated the effect of sample size (100 and 200 mg) on the extraction efficiency. Nitric acid extraction in a drying oven yielded the greatest recovery rates for all metal(loid)s in all tested CRMs (80.0 %-100.0 %) compared with the other extraction methods tested (67.3 %-99.2 %). In most cases, the sample size did not have a significant effect on the extraction efficiency. Therefore, we conclude that nitric acid digestion in a drying oven is a reliable extraction method for milligram-size samples to quantify metal(loid)s with HR-GFAAS. This validated method could provide substantial benefits to environmental quality monitoring programs by significantly reducing the time and costs required for sample collection, storage, transport and preparation, as well as the amount of hazardous chemicals used during sample extraction and analysis. •Sample digestion with nitric acid in a drying oven yielded the greatest recovery rates of metal(loid)s from biological and sediment certified reference materials.•The recovery rates of metal(loid)s from biological and sediment certified reference materials using nitric acid digestion in a drying oven ranged from 73 % to 100 %.•Digestion with nitric acid in a drying oven is a simple and reliable method to extract small size environmental samples for metal(loid)s quantification by high-resolution graphite furnace atomic absorption spectrometry.

6.
Sci Total Environ ; : 176385, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39304162

RESUMEN

Microbial communities as the most important and active component of soil play a crucial role in the geochemical cycling of toxic metal(loid)s in the Pb and Zn smelting site soils. However, the relationships between soil microbial communities and the fractions of toxic metal(loid)s and the succession of soil microbial community and functions after enrichment cultivation have rarely been analyzed. In this study, the diversity and composition of microbial communities in soils before and after enrichment cultivation were investigated by high-throughput sequencing. And the co-occurrence relationships between soil microbial community after enrichment cultivation and MRGs genes were also analyzed through the BacMet database. Results showed that the dominant genus in the soils was Lactobacillus and Stenotrophomonas. The soil microbial community exhibited a notable correlation with Cd, Pb, and As, among which Cd exerted the most profound impact. Alishewanella, Pseudomonas, Massilia and Roseibacillus were significantly correlated with the fraction of Cd. After enrichment cultivation, the number of genera decrease to 96. And the dominant genus changed to Acinetobacter, Bacillus, Comamonas, Lysobacter, and Pseudoxanthomonas. High abundance of metal resistance genes (MRGs) including zntA, fpvA, zipB, cadA, czcA, czcB, czcC, zntA, arsR, pstS and pstB was found in the microbial community after enrichment cultivation. The potential host genus for MRGs was Acinetobacter, Comamonas, Lysinibacillus, Azotobacter, Bacillus, Lysobacter, Cupriavidus, Pseudoxanthomonas, and Thermomonas. Additionally, these microbial community after enrichment cultivation possessing pathways of bacterial chemotaxis and two-component systems was enabled them to adapt to the polluted environment. These observations provided potential guidance for microbe isolation and the development of strategies for the bioremediation of toxic metal(loid)s polluted soils.

7.
Sci Total Environ ; : 176359, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39306125

RESUMEN

Heavy metal(loid)s (HMs) in agricultural soils not only affect soil function and crop security, but also pose health risks to residents. However, previous concerns have typically focused on only one aspect, neglecting the other. This lack of a comprehensive approach challenges the identification of hotspots and the prioritization of factors for effective management. To address this gap, a novel method incorporating spatial bivariate analysis with random forest was proposed to identify high-risk hotspots and the key influencing factors. A large-scale dataset containing 2995 soil samples and soil HMs (As, Cd, Cr, Cu, Mn, Ni, Pb, Sb, and Zn) was obtained from across Henan province, central China. Spatial bivariate analysis of both health risk and ecological risks revealed risk hotspots. Positive matrix factorization model was initially used to investigate potential sources. Twenty-two environmental variables were selected and input into random forest to further identify the key influencing factors impacting soil accumulation. Results of local Moran's I index indicated high-high HM clusters at the western and northern margins of the province. Hotspots of high ecological and health risk were primarily observed in Xuchang and Nanyang due to the widespread township enterprises with outdated pollution control measures. As concentration and exposure frequency dominated the non-carcinogenic and carcinogenic risks. Anthropogenic activities, particularly vehicular traffic (contributing ~37.8 % of the total heavy metals accumulation), were the dominant sources of HMs in agricultural soils. Random forest modeling indicated that soil type and PM2.5 concentrations were the most influencing natural and anthropogenic variables, respectively. Based on the above findings, control measures on traffic source should be formulated and implemented provincially; in Xuchang and Nanyang, scattered township enterprises with outdated pollution control measures should be integrated and upgraded to avoid further pollution from these sources.

8.
Heliyon ; 10(17): e37496, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296153

RESUMEN

Current state of contamination and subsequent risk of contaminated sediment of a tidal river of Bangladesh was evaluated in the present study. Sediment samples were collected from five locations in the tributary of Bakkhali River estuary during summer (April) and winter (December) season, 2020. Collected samples were processed using standard protocol and the content of heavy metals (Cd, Cr, Cu, Pb and Zn) and metalloid (As), were analyzed by the Flame Atomic Absorption Spectrometer. Sediment contamination was evaluated by pollution load index (PLI), contamination factor (CF), degree of contamination (Cd), potential ecological risk index (PERI), non-carcinogenic and carcinogenic risk (CR) due to the dermal contact of the sediment. Multivariate statistical analysis such as principal component analysis (PCA) and cluster analysis (CA) were also applied to find out the possible sources of the contaminant in the sediment. Results showed the average concentration of As, Cd, Cr, Pb, Cu and Zn was 9.74 ± 3.57, 2.00 ± 0.85, 48.75 ± 8.92, 29.78 ± 8.39, 5.44 ± 2.03 and 56.94 ± 8.57 mg/kg, respectively. Concentration of Cu, Pb and Zn were within the recommended level whereas the concentration of As, Cd and Cr were suppressed the recommended level of WHO and FAO/WHO standards. PLI, CF and Cd revealed considerably low degree of contamination of the sediment. Geo-accumulation index indicated uncontaminated to moderately contaminated condition of the sediment. Although the values of enrichment factor revealed no potential enrichment for most of the metals, Cd showed a minor enrichment during the winter season. Based on the ecological risk assessment, the sediment from all of the sample locations was found to be of moderate to low risk. PCA and CA analysis revealed the origin of contaminants mainly from anthropogenic sources. Although different metals showed non-carcinogenic risk to the inhabitants, cancer risk values for dermal contact (CRderm) were much lower than 10-6 indicating no cancer risk for adult and child. However, the findings also revealed that children were more susceptible to CRderm compared to adults. The present study concluded that long term dermal contact of the sediment of Bakkhali River estuary will be contagious to the people. Therefore, regular monitoring of the estuarine environment is necessary so that contamination does not get worse.

9.
Artículo en Inglés | MEDLINE | ID: mdl-39251536

RESUMEN

In recent times, increased geogenic and human-centric activities have caused significant heavy metal(loid) (HM) contamination of soil, adversely impacting environmental, plant, and human health. Phytoremediation is an evolving, cost-effective, environment-friendly, in situ technology that employs indigenous/exotic plant species as natural purifiers to remove toxic HM(s) from deteriorated ambient soil. Interestingly, the plant's rhizomicrobiome is pivotal in promoting overall plant nutrition, health, and phytoremediation. Certain secondary metabolites produced by plant growth-promoting rhizobacteria (PGPR) directly participate in HM bioremediation through chelation/mobilization/sequestration/bioadsorption/bioaccumulation, thus altering metal(loid) bioavailability for their uptake, accumulation, and translocation by plants. Moreover, the metallotolerance of the PGPR and the host plant is another critical factor for the successful phytoremediation of metal(loid)-polluted soil. Among the phytotechniques available for HM remediation, phytoextraction/phytoaccumulation (HM mobilization, uptake, and accumulation within the different plant tissues) and phytosequestration/phytostabilization (HM immobilization within the soil) have gained momentum in recent years. Natural metal(loid)-hyperaccumulating plants have the potential to assimilate increased levels of metal(loid)s, and several such species have already been identified as potential candidates for HM phytoremediation. Furthermore, the development of transgenic rhizobacterial and/or plant strains with enhanced environmental adaptability and metal(loid) uptake ability using genetic engineering might open new avenues in PGPR-assisted phytoremediation technologies. With the use of the Geographic Information System (GIS) for identifying metal(loid)-impacted lands and an appropriate combination of normal/transgenic (hyper)accumulator plant(s) and rhizobacterial inoculant(s), it is possible to develop efficient integrated phytobial remediation strategies in boosting the clean-up process over vast regions of HM-contaminated sites and eventually restore ecosystem health.

10.
Environ Res ; 262(Pt 2): 119937, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39243840

RESUMEN

The contamination of trace elements and heavy metal(loid)s in water bodies has emerged as a global environmental concern due to their high toxicity at low concentrations to both biota and humans. This study aimed to evaluate the ecological risk associated with the occurrence and spatial distribution of Mn, Fe, Co, Cd, Ni, Zn, Sb, As, Tl, Cu, Pb, U, and V in the heavily polluted waters of an important river-reservoir system (Atoyac River Basin) in central Mexico, using two-level tired probabilistic approaches: Risk Quotient based on Species Sensitivity Distribution (RQSSD) and Joint Probability Curves (JPCs). The concentrations of these elements varied widely, ranging from 0.055 µg L-1 to 9200 µg L-1 and from 0.056 µg L-1 to 660 µg L-1, in both total and dissolved fractions, respectively. Although geogenic and anthropogenic sources contribute to the presence of these elements in waters, the discharge of untreated or poorly treated industrial wastewater is the main source of contamination. In this regard, the RQSSD results indicated high ecological risk for Mn, Fe, Co, Ni, Zn, and Sb, and medium or low ecological risk for As, Tl, U, and V at almost all sampling sites. The highest RQSSD values were found downstream of a large industrial corridor for Co, Zn, Tl, Pb, and V, with Tl, Pb, and V escalating to higher risk levels, highlighting the negative impact of industrial contamination on biota. The JPC results for these elements are consistent with the RQSSD approach, indicating an ecological risk to species from Mn, Fe, Co, Ni, Zn, and Sb in waters of the Atoyac River Basin. Therefore, the results of this study offer a thorough assessment of pollution risk, providing valuable insights for legislators on managing and mitigating exposure.

11.
J Hazard Mater ; 480: 135750, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39276730

RESUMEN

Non-ferrous mine waste dumps globally generate soil pollution characterized by low pH and high metal(loid)s content. In this study, the steel slag (SS), gypsum (G), and coal gangue (CG) combined with functional bacteria consortium (FB23) were used for immobilizing metal(loid)s in the soil. The result shown that FB23 can effectively decrease As, Pb, and Zn concentrations within 10 d in an aqueous medium experiment. In a 310-day field column experiment, solid waste including SS, G, and CG combined with FB23 decreased As, Cd, Cu, and Pb concentrations in the aqueous phase. Optimized treatment was obtained by combining FB23 with 1% SS, 1% G, and 1.5% CG. Furthermore, the application of solid waste (SS, G, and CG) increased the top 20 functional bacterial consortium (FB23) abundance at the genus level from 1% to 21% over 50 days in the soil waste dump. Moreover, dissolved organic carbon (DOC) and pH were identified as the main factors influencing the reduction in bioavailable As, Cd, Cu, and Pb in the combination remediation. Additionally, the reduction of Fe and sulfur S was crucial for decreasing the mobilization of the metal(loid)s. This study provides valuable insights into the remediation of metal contamination on a larger scale.

12.
Sci Total Environ ; 953: 176106, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260486

RESUMEN

Iron (Fe) plaque, which forms on the surface of rice roots, plays a crucial role in immobilizing heavy metal(loids), thus reducing their accumulation in rice plants. However, the principal factors influencing Fe plaque formation and its adsorption capacity for heavy metal(loid)s throughout the rice plant's lifecycle remain poorly understood. Thus, this study investigated the dynamics of Fe plaque formation and its ability to adsorb cadmium (Cd) and arsenic (As) across different growth stages, aiming to identify the key drivers behind these processes. The findings reveal that the rate of radial oxygen loss (ROL) and the abundance of plaque-associated microbes are the primary drivers of Fe plaque formation, with their relative importance ranging from 1.4% to 81%. Similarly, the adsorption of As by Fe plaque is principally determined by the rate of ROL and the quantity of Fe plaque, with subsequent effects from the total Fe in rhizospheric soil, arsenate-reducing bacteria, and organic matter-degrading bacteria. The relative importance of these factors ranges from 6.0% to 11.7%. By contrast, the adsorption of Cd onto Fe plaque is primarily affected by competition for adsorption sites with ammonium in soils and the presence of organic matter-degrading bacteria, contributing 25.5% and 23.5% to the adsorption process, respectively. These findings provide significant insights into the development of Fe plaque and its absorption of heavy metal(loid)s throughout the lifecycle of rice plants.

13.
Chemosphere ; 365: 143332, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39271075

RESUMEN

Groundwater is an essential source of drinking water and agricultural irrigation water, and its protection has become a global goal for public health. However, knowledge about heavy metal(loid) resistance genes (MRGs) in groundwater and the potential co-selection of antibiotic resistance genes (ARGs) have seldom been developed. Here, during the wet and dry seasons, we collected 66 groundwater samples (total dissolved solids = 93.9-9530 mg/L) adjacent to Baiyangdian Lake in Northern China, which presented the few metal(loid) and antibiotic contamination. We identified 160 MRGs whose composition exhibited significant seasonal variation, and dissolved metal(loid)s (particularly Ba) played a determinative role in promoting the MRGs proliferation though with relatively low concentrations, suggesting the relatively vulnerable groundwater ecosystems. Moreover, 27.4% of MRG-carrying metagenome-assembled genomes (MAGs) simultaneously carried ARGs, with the most frequently detected MRG types of Cu, Hg, and As, and ARG types of multidrug and bacitracin. Physicochemical variables, variables related to total dissolved solids, metal(loid)s, and antibiotics synthetically shaped the variation of MRG-ARG hosts in groundwater. We found that the increase of MRG-ARG hosts was critically responsible for the spread of MRGs and ARGs in groundwater. Our findings revealed the widespread co-occurrence of MRGs and ARGs in few-contaminated groundwater and highlighted the crucial roles of salinity in their propagation and transmission.

14.
Sci Total Environ ; 954: 176266, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278495

RESUMEN

Soil pollution caused by metal(loid)s is increasingly serious and poses unexpected risks to terrestrial organisms. Establishing soil quality standards is essential for assessing ecological risks of metal(loid)s and protecting soil ecosystems. However, the limited availability of metal(loid) ecotoxicological data has hampered the development of soil quality standards due to financial and practical constraints on toxicity testing. This study collected 77 normalization equations and 58 cross-species extrapolation equations to calculate the normalized EC10 (the added concentration causing a 10 % inhibition effect) of metal(loid)s under a representative scenario. A set of quantitative ion character-activity relationship (QICAR) models were then constructed using normalized EC10 and nine critical ionic characters (AR, AR/AW, BP, MP, Z/r2, Z/r, Xm, σp, and |Log(KOH)|). Subsequently, these QICAR models were employed to predict ecotoxicological EC10 of 17 metal(loid)s to 12 soil species and coupled with species sensitivity distribution (SSD) to determine Predicted No Effect Concentration (PNEC). The results demonstrated the coupled QICAR-SSD model could effectively derive terrestrial PNEC for data-poor metal(loid)s, with errors between the predicted PNEC and reported soil standards (excluding soil background levels) from different countries mostly <0.3 orders of magnitude. Finally, soil ecological criteria (SEC) for 17 metal(loid)s were calculated using an added risk approach based on PNEC and national soil background concentration. Overall, the coupled model proposed here can provide a valuable supplement to the development of soil quality standards for numerous metal(loid)s in soil components.

15.
Artículo en Inglés | MEDLINE | ID: mdl-39217584

RESUMEN

Wastewaters often contain an array of economically valuable elements, including elements considered critical raw materials and elements for fertilizer production. Plant-based treatment approaches in constructed wetlands, open ponds, or hydroponic systems represent an eco-friendly and economical way to remove potentially toxic metal(loid)s from wastewater (phytoextraction). Concomitantly, the element-enriched biomass represents an important secondary raw material for bioenergy generation and the recovery of raw materials from the harvested plant biomass (phytomining). At present, phytoextraction in constructed wetlands is still considered a nascent technology that still requires more fundamental and applied research before it can be commercially applied. This chapter discusses the different roles of plants in constructed wetlands during the phytoextraction of economically valuable elements. It sheds light on the utilization of plant biomass in the recovery of raw materials from wastewater streams. Here, we consider phytoextraction of the commonly studied water pollutants (N, P, Zn, Cd, Pb, Cr) and expand this concept to a group of rather exotic metal(loid)s (Ge, REE, PGM) highlighting the role of phytoextraction in the face of climate change and finite resources of high-tech metals.

16.
Chemosphere ; 364: 143150, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39181458

RESUMEN

Agricultural soils are currently at risk of pollution from toxic heavy metal(loid)s (HMs) due to human activities, resulting in the excessive accumulation of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), manganese (Mn), lead (Pb) and zinc (Zn) in food plants. This poses significant risks to human health. Exogenous selenium (Se) has been proposed as a potential solution to reduce HMs accumulation in plants. However, there is currently a lack of comprehensive quantitative overview regarding its influence on the accumulation of HMs in plants. This study utilized meta-analysis to consolidate the existing knowledge on the impact of Se amendments on plant HMs accumulation from contaminated soil media. The present study conducted a comprehensive meta-analysis on literature published prior to December 2023, investigating the effects of different factors on HMs accumulation by meta-subgroup analysis and meta-regression model. Se application showed an inhibitory effect on plant uptake of Hg (28.9%), Cr (25.5%), Cd (25.2%), Pb (22.0%), As (18.3%) and Cu (6.00%) concentration. There was a significant difference in the levels of HMs between treatments with Se application and those without Se application in various plant organs. The percentage changes in the HMs contents of the organs varied from -13.0% to -22.0%. Compared with alkaline soil (pH > 8), Se application can reduce more HMs contents in plants in acidic soil (pH < 5.5) and neutral soil (pH = 5.5-8). For daily food plants(e.g. rice, wheat and corn), Se application can reduce HMs contents in Oryza sp., Triticum sp. and Zea sp., ranging from 14.0-20.0%. Our study emphasizes that the impact of Se on reducing HMs depends on the single or combined effects of Se concentration, plant organs, plant genera and soil pH condition.

17.
Front Endocrinol (Lausanne) ; 15: 1380047, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39184142

RESUMEN

The estrogen receptor alpha (ERα) plays a central role in the etiology, progression, and treatment of breast cancers. Constitutively activating somatic mutations Y537S and D538G, in the ligand binding domain (LBD) of ESR1, are associated with acquired resistance to endocrine therapies. We have previously shown that the metalloestrogen calcium activates ERα through an interaction with the LBD of the receptor. This study shows that cadmium activates ERα through a mechanism similar to calcium and contributes to, and further increases, the constitutive activity of the ERα mutants Y537S and D538G. Mutational analysis identified C381, N532A, H516A/N519A/E523A, and E542/D545A on the solvent accessible surface of the LBD as possible calcium/metal interaction sites. In contrast to estradiol, which did not increase the activity of the Y537S and D538G mutants, cadmium increased the activity of the constitutive mutants. Mutation of the calcium/metal interaction sites in Y537S and D538G mutants resulted in a significant decrease in constitutive activity and cadmium induced activity. Mutation of calcium/metal interaction sites in wtERα diminished binding of the receptor to the enhancer of estrogen responsive genes and the binding of nuclear receptor coactivator 1 and RNA polymerase II. In contrast to wtERα, mutation of the calcium/metal interaction sites in the Y537S and D538G mutants did not diminish binding to DNA but prevented a stable interaction with the coactivator and polymerase. Growth assays further revealed that calcium channel blockers and chelators significantly decreased the growth of MCF7 cells expressing these constitutively active mutants. Taken together, the results suggest that exposure to cadmium plays a role in the etiology, progression, and response to treatment of breast cancer due, in part, to its ability to activate ERα.


Asunto(s)
Cadmio , Receptor alfa de Estrógeno , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/genética , Humanos , Mutación , Células MCF-7 , Femenino , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/tratamiento farmacológico , Calcio/metabolismo
18.
Ecol Evol ; 14(8): e70212, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39184569

RESUMEN

Understanding how plant functional traits respond to mining activities and impact metal(loid)s accumulation in dominant species is crucial for exploring the driving mechanisms behind plant community succession and predicting the ecological restoration potential of these plants. In this study, we investigated four dominant herbaceous species (Artemisia argyi, Miscanthus sinensis, Ficus tikoua, and Ageratina adenophora) growing on antimony (Sb) mining sites (MS) with high Sb and arsenic (As) levels, as well as non-mining sites (NMS). The aim was to analyze the variations in functional traits and their contribution to Sb and As concentrations in plants. Our results indicate that mining activities enhanced soil nitrogen (N) limitation and phosphorus (P) enrichment, while significantly reducing the plant height of three species, except for F. tikoua. The four species absorbed more calcium (Ca) to ensure higher tolerance to Sb and As levels, which is related to the activation of Ca signaling pathways and defense mechanisms. Furthermore, plant Sb and As concentrations were dependent on soil metal(loid) levels and plant element stoichiometry. Overall, these findings highlight the regulatory role of plant element traits in metal(loid) concentrations, warranting widespread attention and further study in the future.

19.
Sci Total Environ ; 951: 175426, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39137842

RESUMEN

The presence of various contaminants in airborne dusts from metal mining sites poses obvious risks to human health and the environment. Yet, few studies have thoroughly investigated the properties of airborne particles in terms of their morphology, size distribution and chemical composition, that are associated with health effects around mining activities. This review presents the most recent knowledge on the sources, physicochemical characteristics, and health and environmental risks associated with airborne dusts from various mining and smelting operations. The literature reviewed found only one research on atmospheric dust associated with hydrometallurgical plants compared to a larger number of pyrometallurgical processes/smelters studies. In addition, there are relatively few works comparing the distribution of metals between the fine and coarse size fractions around mining sites. Our analysis suggests that (i) exposure pathways of metal(loid)s to the human body are defined by linking concentration data in human biosamples and contaminated samples such as soils, drinking water and food, and (ii) chitosan and its derivatives may serve as an environmentally friendly and cost-effective method for soil remediation, with removal rates for metal(loid)s around 70-95 % at pH 6-8, and as dust suppressants for unpaved roads around mining sites. The specific limit values for PM and metal(loid)s at mining sites are not well documented. Despite the health risks associated with fine particles around mining areas, regulations have tended to focus on coarse particles. While some air quality agencies have issued regulations for occupational health and safety, there is no global alignment or common regulatory framework for enforcement. Future research priorities should focus on investigating PM and secondary inorganic aerosols associated with hydrometallurgical processes and dust monitoring, using online metal(loid)s analysers to identify the driving parameters in the deposition and resuspension process.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Metales , Minería , Contaminantes Atmosféricos/análisis , Metales/análisis , Polvo/análisis , Material Particulado/análisis , Humanos
20.
Artículo en Inglés | MEDLINE | ID: mdl-39200616

RESUMEN

This article investigates the extent of heavy metal pollution in both urban and rural gardens in Pavlodar, which cultivate potatoes and tomatoes. As a city of industrialization, Pavlodar is exposed to emissions from industrial enterprises, transport and stove heating. The city also has the highest incidence of environmental diseases among the population. This study examines the accumulation of heavy metals and metalloid in the snow, their migration into the soil and their accumulation in plants, and assesses the non-cancer and cancer health risks of consuming these vegetables. The results show that the concentrations of trace elements in the solid phase of snow decrease in the following order: Fe (26,000) > Mn (592.5) > Cr (371.3) > Zn (338.8) > Pb (161.9) > Cu (142.5) > Ni (30.9) > As (15.1) > Co (12.1) > Cd (2.6). In soils, the concentrations of elements decrease in the following order: Mn (22,125) > Fe (20,375) > Zn (246.9) > Cr (109.5) > Cu (39.3) > Pb (25.6) > Ni (22.4) > As (9) > Co (6.6) > Cd (0.2). In urban gardens, the snow pollution coefficient was the highest. In rural gardens, the contamination index varied from 0.3 (Cr) to 5.3 (Cd). Magnesium in the soil exceeds the maximum allowable concentration (MPC) by 28.6-35.7 times, and zinc by 1.6-10.9 times. Only zinc and copper exceed the MPC for vegetables. Nickel in potatoes exceeds MPC by a factor of 6 and in tomatoes by a factor of 4.4. The cobalt content in tomatoes exceeds the background value by 2.2 times, with a maximum value of 5.3 times. The risk assessment showed that the non-carcinogenic and carcinogenic risks associated with potato and tomato consumption were low. However, these risks are higher in urban areas than in rural areas.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Medición de Riesgo , Humanos , Kazajstán , Nieve/química , Jardines , Monitoreo del Ambiente , Suelo/química , Ciudades , Solanum lycopersicum/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA