Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.388
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(38): e2318692121, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39250667

RESUMEN

Modern life requires many different metal ions, which enable diverse biochemical functions. It is commonly assumed that metal ions' environmental availabilities controlled the evolution of early life. We argue that evolution can only explore the chemistry that life encounters, and fortuitous chemical interactions between metal ions and biological compounds can only be selected for if they first occur sufficiently frequently. We calculated maximal transition metal ion concentrations in the ancient ocean, determining that the amounts of biologically important transition metal ions were orders of magnitude lower than ferrous iron. Under such conditions, primitive bioligands would predominantly interact with Fe(II). While interactions with other metals in certain environments may have provided evolutionary opportunities, the biochemical capacities of Fe(II), Fe-S clusters, or the plentiful magnesium and calcium could have satisfied all functions needed by early life. Primitive organisms could have used Fe(II) exclusively for their transition metal ion requirements.


Asunto(s)
Hierro , Hierro/química , Elementos de Transición/química , Magnesio/química
2.
J Fluoresc ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287722

RESUMEN

In this research, CNDs were prepared by a green and cost effective method using Cinnamomum Tamala (bay leaf) as carbon sources. TEM, UV, FTIR, ZETA Potential, PL and Fluorescence methods were used to characterize the produced CNDs and the average particle size is 3.42 nm. This research was conducted on the development of fluorescent sensors for various metal ions, including Fe3+, Cu2+, Zn2+, Ni2+, Pb2+, Cr3+, Mg2+, Na+ 1 and Cd2+. The CNDs demonstrated selective sensing of biologically important Fe+ 3 and Cu+ 2 metal ions. The CNDs antioxidant assay was tasked with DPPH• radical scavenging properties. CNDs made from Cinnamomum Tamala had the highest DPPH free radical scavenging activity at 100 mg/L (42.06%) with the IC50 of 130.68 mg/L. The outcome implies that Indian spices are among the best materials for optical metal ion detection and sensing, and they also have therapeutic benefits.

3.
Chemosphere ; : 143336, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277039

RESUMEN

Photoelectrochemical (PEC) detection technology is key for fighting pollution, leveraging the photoelectric conversion of the photoelectrode material. A specialized photoelectrode was developed to detect Hg2+ ions with exceptional sensitivity, utilizing an anodic PEC sensor composed of Er3NbO7/P@g-C3N4/SnS2 ternary nanocomposite. Rare earth metal niobates (RENs) were chosen due to their underexplored potential, whose performance was enhanced through bandgap engineering and surface modification, facilitated by P@g-C3N4 as an immobilization matrix and SnS2, belonging to the I-IV semiconductors category fostering hybrid heterojunction formation for boasting optical properties and suitable redox potentials. Introducing Hg2+ into the system, a specific amalgamation reaction occurs between reduced Hg and Sn. This reaction obstructs electron transfer to the FTO electrode surface, leading to the recombination of charges. The proposed PEC sensor exhibited remarkable analytical performance for Hg2+ detection, high sensitivity, a detection limit of 0.019 pM, excellent selectivity, and a detectable concentration range of 0.002 to 0.15 nM. Additionally, it demonstrated good recovery and low relative standard deviation when analyzing Hg2+ in water samples, highlighting the potential application of the heterostructure in detecting heavy metal ions via PEC technology.

4.
Small ; : e2407525, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39268778

RESUMEN

Covalent organic frameworks (COFs) are viewed as promising organic electrode materials for metal-ion batteries due to their structural diversity and tailoring capabilities. In this work, firstly using the monomers N,N,N',N'-tetrakis(4-aminophenyl)-1,4-phenylenediamine (TPDA) and terephthaldehyde (TA), p-type phenylenediamine-based imine-linked TPDA-TA-COF is synthesized. To construct a bipolar redox-active, porous and highly crystalline polyimide-linked COF, i.e., TPDA-NDI-COF, n-type 1,4,5,8-naphthalene tetracarboxylic dianhydride (NDA) molecules are incorporated into p-type TPDA-TA-COF structure via postsynthetic linker exchange method. This tailored COF demonstrated a wide potential window (1.03.6 V vs Na+/Na) with dual redox-active centers, positioning it as a favorable cathode material for sodium-ion batteries (SIBs). Owing to the inheritance of multiple redox functionalities, TPDA-NDI-COF can deliver a specific capacity of 67 mAh g-1 at 0.05 A g-1, which is double the capacity of TPDA-TA-COF (28 mAh g-1). The incorporation of carbon nanotube (CNT) into the TPDA-NDI-COF matrix resulted in an enhancement of specific capacity to 120 mAh g-1 at 0.02 A g-1. TPDA-NDI-50%CNT demonstrated robust cyclic stability and retained a capacity of 92 mAh g-1 even after 10 000 cycles at 1.0 A g-1. Furthermore, the COF cathode exhibited an average discharge voltage of 2.1 V, surpassing the performance of most reported COF as a host material.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39226423

RESUMEN

Two new two-dimensional (2D) coordination polymers (CPs), namely, poly[diaqua[µ4-2,2'-(1,3,5,7-tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]isoindole-2,6-diyl)diacetato-κ4O:O':O'':O''']cadmium(II)], [Cd(C14H6N2O8)(H2O)2]n (1), and poly[[tetraaqua[µ4-2,2'-(1,3,5,7-tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]isoindole-2,6-diyl)diacetato-κ4O:O':O'':O'''][µ2-2,2'-(1,3,5,7-tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]isoindole-2,6-diyl)diacetato-κ2O:O']dizinc(II)] dihydrate], {[Zn(C14H6N2O8(H2O)2]·H2O}n (2), have been synthesized by the microwave-irradiated reaction of Cd(CH3COO)2·2H2O and Zn(CH3COO)2·2H2O, respectively, with N,N'-bis(glycinyl)pyromellitic diimide {BGPD, namely, 2,2'-(1,3,5,7-tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]isoindole-2,6-diyl)diacetic acid, H2L}. In the crystal structure of 1, the CdII ion is six-coordinated by four carboxylate O atoms from four symmetry-related L2- dianions and two coordinated water molecules, furnishing an octahedral coordination geometry. The bridging L2- dianion links four symmetry-related CdII cations into a 2D layer-like structure with a 3,4-connected bex topology. In the crystal structure of 2, the ZnII ion is five-coordinated by three carboxylate O atoms from three different L2- dianions and two coordination water molecules, furnishing a trigonal bipyramidal coordination geometry. Two crystallographically independent ligands serve as µ4- and µ2-bridges, respectively, to connect the ZnII ions, thereby forming a 2D layer with a 3,3-connected hcb topology. Crystal structure analysis reveals the presence of n→π* interactions between two carbonyl groups of the pyromellitic diimide moieties in 1 and 2. CP 1 exhibits an enhanced fluorescence emission compared with free H2L. The framework of 2 decomposes from 720 K, indicating its high thermal stability. A comparative analysis of a series of structures based on the BGPD ligand indicates that the metal-ion size has a great influence on the connection modes of the metal ions due to different steric effects, which, in turn, affects the structures of the SBUs (secondary building units) and frameworks.

6.
Chemosphere ; 364: 143234, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39222692

RESUMEN

The influences of the positive Fe3+ and the negative Cr2O72- on the tetracycline (TC) photodegradation by N-doped dissolved black carbon (NDBC) have been investigated in this work. A series of samples (NDBC300, NDBC400 and NDBC500) have been extracted from the corresponding biochar. NDBC400 has the best photodegradation performance (79%) for TC under visible light irradiation. Adding Cr2O72- and Fe3+ can reduces TC photodegradation efficiency into 37% and 53%, respectively. This maybe from that Cr2O72- has stronger interaction with NDBC400 than Fe3+ since it can quench more fluorescence intensity of NDBC400 than Fe3+. Furthermore, Cr2O72- can reduce the steady-state concentration of 3NDBC400*, 1O2 and •OH, whereas Fe3+can just reduce the steady-state concentration of 3NDBC400* and increase the concentration of •OH. This may explain why Cr2O72- has stronger inhibit performance of TC photodegradation by NDBC400 than Fe3+. The band structures of NDBC400, NDBC400-Fe3+ and NDBC400-Cr2O72- are constructed. And the VB of NDBC400-Fe3+ has a stronger ability to produce •OH than NDBC400. In summary, coupling interaction and band structure characterization of NDBC400, NDBC400-Fe3+ and NDBC400-Cr2O72- can explain well why Cr2O72 has stronger inhibition effect than Fe3+ and Fe3+ can increase the concentration of •OH. This work provides a deep insight for the photochemical behavior of dissolved black carbon and the transformation behavior of the co-existed metal ions and antibiotics.

7.
Biomark Res ; 12(1): 94, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218897

RESUMEN

Ferroptosis is a novel form of programmed cell death caused by damage to lipid membranes due to the accumulation of lipid peroxides in response to various stimuli, such as high levels of iron, oxidative stress, metabolic disturbance, etc. Sugar, lipid, amino acid, and iron metabolism are crucial in regulating ferroptosis. The solute carrier transporters (SLCs) family, known as the "metabolic gating" of cells, is responsible for transporting intracellular nutrients and metabolites. Recent studies have highlighted the significant role of SLCs family members in ferroptosis by controlling the transport of various nutrients. Here, we summarized the function and mechanism of SLCs in ferroptosis regulated by ion, metabolic control of nutrients, and multiple signaling pathways, with a focus on SLC-related transporters that primarily transport five significant components: glucose, amino acid, lipid, trace metal ion, and other ion. Furthermore, the potential clinical applications of targeting SLCs with ferroptosis inducers for various diseases, including tumors, are discussed. Overall, this paper delves into the novel roles of the SLCs family in ferroptosis, aiming to enhance our understanding of the regulatory mechanisms of ferroptosis and identify new therapeutic targets for clinical applications.

8.
Sci Rep ; 14(1): 20383, 2024 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223199

RESUMEN

Metal ion-DNA interactions play a crucial role in modulating the structure and function of genetic material in the natural environment. In this study, we report on the favorable electrochemical activity of holmium(III) (Ho3+) on a glassy carbon electrode (GCE) and its interaction with double-stranded DNA. The interaction between DNA and Ho3+ was investigated for the first time using cyclic voltammetry and differential pulse voltammetry. The electrochemical behavior of Ho3+ ions on a GCE exhibited a reversible electron transfer process, indicative of its redox activity. A linear correlation between the peak current and the square root of the scan rate was observed, suggesting a diffusion-controlled kinetic regime for the electrochemical process. Additionally, fluorescence and absorption spectroscopy were employed to confirm the binding of Ho3+ to DNA. Our findings demonstrate that, at pH 7.2, specific DNA bases and phosphate groups can interact with Ho3+ ions. Moreover, electrochemical measurements suggest that Ho3+ ions bind to DNA via a groove binding mode, with a calculated binding ratio of 1:1 between Ho3+ and DNA. Notably, under optimal conditions, an increase in the amount of DNA leads to a significant reduction in the current intensity of Ho3+ ions.


Asunto(s)
ADN , Técnicas Electroquímicas , Electrodos , Holmio , Holmio/química , ADN/química , Iones/química , Oxidación-Reducción , Carbono/química , Espectrometría de Fluorescencia
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125034, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39217954

RESUMEN

The biological capacities of Schiff Base complexes such as anti-cancer, anti-microbial and anti-oxidant properties have been widely studied in the scientific community. However, the effect of central metal ion in the occurrence of their biological properties should be paid more attention. With this aim, novel 2-(hydroxyimino)-1-phenylpropylidene)benzohydrazide (HIPB) Schiff base ligand, and C1/palladium(II), C2/platinum(II), and C3/zinc(II) complexes derived from it were synthesized and characterized. Theoretical studies showed that C2 is more reactive and also has a higher pharmacological affinity than C1 and C3. Experimental investigations were done to compare some biological properties of the complexes. The anticancer assay showed that C1-C3 have the ability to inhibit the growth of HCT116 colon cancer cell lines, but C2 shows a relatively better effect than other. Antioxidant studies using •DPPH (2,2-diphenyl-1-picrylhydrazyl) assay presented the following trend: C2 > C1 > C3 > HIPB. Considering the importance of the antioxidant enzyme catalase in removing reactive oxygen species (ROS), the interaction of C1-C3 with Bovine Liver Catalase (BLC) was evaluated. Kinetic studies showed that C1-C3 can inhibit the catalytic performance of BLC by a similar mechanism, i.e. mixed-type inhibition. Among them, C1 was the strongest inhibitor (Activity inhibition% = 82.2). The C1-C3 quenched the BLC fluorescence emission with dynamic quenching mechanism. The binding affinity to BLC was higher for C1 and C2 than C3. The most important forces in the interaction of C1-C3 with BLC were hydrophobic interactions, which was strongly confirmed by molecular docking data. Tracking the structural changes of catalase showed that BLC undergoes structural changes in the presence of C1 more than C2 and C3.

10.
Small ; : e2404193, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189537

RESUMEN

2D transitional metal selenide heterostructures are promising electrode materials for potassium-ion batteries (PIBs) owing to the large surface area, high mechanical strength, and short diffusion pathways. However, the cycling performance remains a significant challenge, particularly concerning the electrochemical conversion reaction. Herein, 2D Se-rich ZnSe/CoSe2@C heterostructured composite is fabricated via a convenient hydrothermal approach followed by selenization process, and then applied as high-performance anodes for PIBs. For example, the capacity delivered by the heterostructured composite is mainly contributed to the synergistic effect of conversion and alloy/de-alloy processes aroused by K+, where K+ may highly insert or de-insert into Se-rich ZnSe/CoSe2@C. The obtained electrode delivers an outstanding reversible charge capacity of 214 mA h g-1 at 1 A g-1 after 4000 cycles for PIBs, and achieves 262 mAh g-1 when coupled with a PTCDA cathode in the full cell. The electrochemical conversion mechanism of the optimized electrode during cycling is investigated through in situ XRD, Raman, and ex situ HRTEM. In addition, the heterostructured composite as anodes also displays excellent electrochemical performances for sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs). This work opens up a new window for investigating novel electrode materials with excellent capacity and long durability.

11.
ACS Appl Mater Interfaces ; 16(33): 43752-43761, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39106976

RESUMEN

Reconfiguration of chemical sensors, intended as the capacity of the sensor to adapt to novel operational scenarios, e.g., new target analytes, is potentially game changing and would enable rapid and cost-effective reaction to dynamic changes occurring at healthcare, environmental, and industrial levels. Yet, it is still a challenge, and rare examples of sensor reconfiguration have been reported to date. Here, we report on a reconfigurable label-free optical sensor leveraging the versatile immobilization of metal ions through a chelating agent on a nanostructured porous silica (PSiO2) optical transducer for the detection of different biomolecules. First, we show the reversible grafting of different metal ions on the PSiO2 surface, namely, Ni2+, Cu2+, Zn2+, and Fe3+, which can mediate the interaction with different biomolecules and be switched under mild conditions. Then, we demonstrate reconfiguration of the sensor at two levels: 1) switching of the metal ions on the PSiO2 surface from Cu2+ to Zn2+ and testing the ability of Cu2+-functionalized and Zn2+-reconfigured devices for the sensing of the dipeptide carnosine (CAR), leveraging the well-known chelating ability of CAR toward divalent metal ions; and 2) reconfiguration of the Cu2+-functionalized PSiO2 sensor for a different target analyte, namely, the nucleotide adenosine triphosphate (ATP), switching Cu2+ with Fe3+ ions to exploit the interaction with ATP through phosphate groups. The Cu2+-functionalized and Zn2+-reconfigured sensors show effective sensing performance in CAR detection, also evaluated in tissue samples from murine brain, and so does the Fe3+-reconfigured sensor toward ATP, thus demonstrating effective reconfiguration of the sensor with the proposed surface chemistry.


Asunto(s)
Técnicas Biosensibles , Dióxido de Silicio , Animales , Ratones , Dióxido de Silicio/química , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Nanoestructuras/química , Porosidad , Adenosina Trifosfato/análisis , Adenosina Trifosfato/química , Cobre/química , Metales/química
12.
Molecules ; 29(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39124943

RESUMEN

Cancer is the second leading cause of death in the world following cardiovascular disease. Its treatment, including radiation therapy and surgical removal of the tumour, is based on pharmacotherapy, which prompts a constant search for new and more effective drugs. There are high costs associated with designing, synthesising, and marketing new substances. Drug repositioning is an attractive solution. Fluoroquinolones make up a group of synthetic antibiotics with a broad spectrum of activity in bacterial diseases. Moreover, those compounds are of particular interest to researchers as a result of reports of their antiproliferative effects on the cells of the most lethal cancers. This article presents the current progress in the development of new fluoroquinolone derivatives with potential anticancer and cytotoxic activity, as well as structure-activity relationships, along with possible directions for further development.


Asunto(s)
Antineoplásicos , Fluoroquinolonas , Fluoroquinolonas/química , Fluoroquinolonas/farmacología , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Estructura-Actividad , Neoplasias/tratamiento farmacológico , Animales , Antibacterianos/farmacología , Antibacterianos/química , Reposicionamiento de Medicamentos , Proliferación Celular/efectos de los fármacos
13.
Small ; : e2400483, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092666

RESUMEN

The development of high-energy-density cathode materials is regarded as the ultimate goal of alkali metal-ion batteries energy storage. However, the strategy of regulating specific capacity is limited by the theoretical capacity, and meanwhile focusing on improving capacity will lead to structural destructions. Herein, a novel perspective is proposed that tuning the electronic band structure by introducing highly electronegative fluoride atoms in NaxTMO2-yFy (0 < x < 1, 0 < y < 2) model compounds to improve redox potential for developing high-energy-density layered oxides. Highly electronegative fluoride atoms is introduced into P2-type Na0.67Fe0.5Mn0.5O2 (NFM), and the thus fluoride NFM (F-NFM) cathode achieved high redox potential (3.0 V) and high energy density (446 Wh kg-1). Proved by structural characterizations, fluorine atoms are successfully incorporated into oxygen sites in NFM lattice. Ultraviolet photoelectron spectroscopy is applied to quantitatively analyze the improved redox potential of F-NFM, which is achieved by the decreased valence band energy in electronic band structure due to the strongly electrophilic fluoride ions. Moreover, fluoride atoms can stabilize the local environment of NFM and improve its redox potential. The work provides a perspective to improve redox potential by tuning the electronic band structure in layered oxides and developing high-energy-density alkali metal-ion batteries.

14.
Lett Appl Microbiol ; 77(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39215554

RESUMEN

Legionella longbeachae is the leading cause of Legionnaires' disease (LD) in Australasia and has been linked to exposure to compost and potting soils. Adding antimicrobial metal ions such as copper (Cu2+), zinc (Zn2+), and manganese (Mn2+) to potting soils may reduce the load of L. longbeachae bacteria and infection risk. Baseline concentrations of metal ions in leachate from peat, bark dust, bagging base, and an all-purpose potting soil were: iron 0.40-0.99 µg/ml, Cu of 0.003-0.03 µg/ml, Zn 0.01-0.06 µg/ml and Mn 0.11-0.29 µg/ml. Addition of Cu2+ ions to leachate reduced L. longbeachae viability in a concentration dependent manner. A similar effect was seen in potting soil with Zn2+ and Mn2+ but 10-fold higher concentrations were needed. These metal ions have potential to reduce the load of L. longbeachae in potting soils but toxicity in plants needs to be determined.


Asunto(s)
Cobre , Legionella longbeachae , Manganeso , Microbiología del Suelo , Zinc , Manganeso/farmacología , Zinc/farmacología , Cobre/farmacología , Legionella longbeachae/efectos de los fármacos , Suelo/química , Compostaje , Antibacterianos/farmacología
15.
Biosens Bioelectron ; 264: 116671, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39163781

RESUMEN

Detection methods based on CRISPR/Cas12a have been widely developed in the application of pathogenic microorganisms to guarantee food safety and public health. For sensitive detection, the CRISPR-based strategies are often in tandem with amplification methods. However, that may increase the detection time and the process may introduce nucleic acid contamination resulting in non-specific amplification. Herein, we established a sensitive S. aureus detection strategy based on the CRISPR/Cas12a system combined with DNAzyme. The activity of Cas12a is blocked by extending the spacer of crRNA (bcrRNA) and can be reactivated by Mn2+. NH2-modified S. aureus-specific aptamer was loaded on the surface of Fe3O4 MNPs (apt-Fe3O4 MNPs) and MnO2 NPs (apt-MnO2 NPs) by EDC/NHS chemistry. The S. aureus was captured to form apt-Fe3O4 MNPs/S. aureus/apt-MnO2 NPs complex and then MnO2 NPs were etched to release Mn2+ to activate DNAzyme. The active DNAzyme can cleave the hairpin structure in bcrRNA to recover the activity of the CRISPR/Cas system. By initiating the whole detection process by generating Mn2+ through nanoparticle etching, we established a rapid detection assay without nucleic acid extraction and amplification process. The proposed strategy has been applied in the ultrasensitive quantitative detection of S. aureus and has shown good performance with an LOD of 5 CFU/mL in 29 min. Besides, the proposed method can potentially be applied to other targets by simply changing the recognition element and has the prospect of developing a universal detection strategy.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , ADN Catalítico , Staphylococcus aureus , Staphylococcus aureus/aislamiento & purificación , Staphylococcus aureus/genética , ADN Catalítico/química , Técnicas Biosensibles/métodos , Límite de Detección , Compuestos de Manganeso/química , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/diagnóstico , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , Aptámeros de Nucleótidos/química , Óxidos/química , Endodesoxirribonucleasas
16.
Molecules ; 29(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39203022

RESUMEN

Currently, antimicrobial resistance (AMR) is a serious health problem in the world, mainly because of the rapid spread of multidrug-resistant (MDR) bacteria. These include bacteria that produce ß-lactamases, which confer resistance to ß-lactams, the antibiotics with the most prescriptions in the world. Carbapenems are particularly noteworthy because they are considered the ultimate therapeutic option for MDR bacteria. However, this group of antibiotics can also be hydrolyzed by ß-lactamases, including metallo-ß-lactamases (MBLs), which have one or two zinc ions (Zn2+) on the active site and are resistant to common inhibitors of serine ß-lactamases, such as clavulanic acid, sulbactam, tazobactam, and avibactam. Therefore, the design of inhibitors against MBLs has been directed toward various compounds, with groups such as nitrogen, thiols, and metal-binding carboxylates, or compounds such as bicyclic boronates that mimic hydrolysis intermediates. Other compounds, such as dipicolinic acid and aspergillomarasmin A, have also been shown to inhibit MBLs by chelating Zn2+. In fact, recent inhibitors are based on Zn2+ chelation, which is an important factor in the mechanism of action of most MBL inhibitors. Therefore, in this review, we analyzed the current strategies for the design and mechanism of action of metal-ion-binding inhibitors that combat MDR bacteria.


Asunto(s)
Zinc , Inhibidores de beta-Lactamasas , beta-Lactamasas , Inhibidores de beta-Lactamasas/química , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo , beta-Lactamasas/química , Zinc/química , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Metales/química , Bacterias/efectos de los fármacos , Bacterias/enzimología
17.
J Biol Chem ; 300(9): 107646, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39121999

RESUMEN

Cystargolides and belactosins are natural products with a distinct dipeptide structure and an electrophilic ß-lactone warhead. They are known to inhibit proteases such as the proteasome or caseinolytic protease P, highlighting their potential in treating cancers and neurodegenerative diseases. Recent genetic analyses have shown homology between the biosynthetic pathways of the two inhibitors. Here, we characterize the O-methyltransferases BelI and CysG, which catalyze the initial step of ß-lactone formation. Employing techniques such as crystallography, computational analysis, mutagenesis, and activity assays, we identified a His-His-Asp (HHD) motif in the active sites of the two enzymes, which is crucial for binding a catalytically active calcium ion. Our findings thus elucidate a conserved divalent metal-dependent mechanism in both biosynthetic pathways that distinguish BelI and CysG from previously characterized O-methyltransferases.

18.
Int J Biol Macromol ; 277(Pt 4): 134583, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39122074

RESUMEN

Laccase (EC 1.10.3.2), as eco-friendly biocatalysts, holds immense potential for sustainable applications across various environmental and industrial sectors. Despite the growing interest, the exploration of cold-adapted laccases, especially their unique properties and applicability, remains limited. In this study, we have isolated, cloned, expressed, and purified a novel laccase from Peribacillus simplex (GenBank: PP430751), which was derived from permafrost layer. The recombinant laccase (PsLac) exhibited optimal activity at 30 °C and a pH optimum of 3.5. Remarkably, PsLac exhibited remarkable stability in the presence of organic solvents, with its enzyme activity increasing by 20 % after being incubated in a 30 % trichloromethane solution for 12 h, compared to its initial activity. Furthermore, the enzyme preserved 100 % of its activity after undergoing eight freeze-thaw cycles. Notably, the catalytic center of PsLac contains Zn2+ instead of the typically observed Cu2+ found in other laccases, and metal-ion substitution experiments raised the catalytic efficiency to 3-fold when Zn2+ was replaced with Fe2+. Additionally, PsLac has demonstrated a proficient ability to degrade phenolic pollutants, such as hydroquinone, even at a low temperature of 16 °C, positioning it as a promising candidate for environmental bioremediation and contributing to cleaner production processes.


Asunto(s)
Biodegradación Ambiental , Frío , Lacasa , Lacasa/química , Lacasa/metabolismo , Concentración de Iones de Hidrógeno , Estabilidad de Enzimas , Bacillaceae/enzimología , Fenoles/metabolismo , Fenoles/química , Clonación Molecular , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Cinética
19.
ACS Appl Mater Interfaces ; 16(35): 46145-46158, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39180482

RESUMEN

After rotator cuff injuries, uncontrolled inflammation hinders tendon-bone junction regeneration and induces scar formation in situ. Therefore, precisely controlling inflammation could be a solution to accelerate tendon-bone junction regeneration. In this study, we synthesized a peptide-metal ion complex hydrogel with thermosensitive capability that can be used as a hydrogel chemical regulator. By the coordination complex between Mg2+ and BMP-12, the free and coordinated Mg2+ can be programmability released from the hydrogel. The fast release of free Mg2+ can prevent inflammation at the early stage of injuries, according to the results of RT-qPCR and immunofluorescence staining. Then, the coordinated Mg2+ was slowly released from the hydrogel and provided an anti-inflammatory environment for tendon-bone junction regeneration in the long term. Finally, the hydrogel demonstrated enhanced therapeutic effects in a rat rotator cuff tear model. Overall, the Mg2+/BMP-12 peptide-metal ion complex-based hydrogel effectively addresses the regenerative requirements of the tendon-bone junction across various stages by graded modulating inflammation.


Asunto(s)
Hidrogeles , Inflamación , Péptidos , Ratas Sprague-Dawley , Tendones , Animales , Hidrogeles/química , Hidrogeles/farmacología , Ratas , Péptidos/química , Péptidos/farmacología , Inflamación/tratamiento farmacológico , Inflamación/patología , Tendones/efectos de los fármacos , Tendones/patología , Magnesio/química , Magnesio/farmacología , Regeneración/efectos de los fármacos , Lesiones del Manguito de los Rotadores/tratamiento farmacológico , Lesiones del Manguito de los Rotadores/patología , Huesos/efectos de los fármacos , Huesos/patología , Masculino , Regeneración Ósea/efectos de los fármacos
20.
Nanotechnology ; 35(47)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39163875

RESUMEN

Phosphorene has been widely used as anode material for batteries. However, the huge volume change during charging and discharging process, the semiconductor properties, and the high open circuit voltage limit its application. Based on this, by introducing the electron-deficient boron atoms into blue phosphorene, we proposed a P-rich sandwich-like BP4monolayer by density functional theory calculation and particle swarm optimization. The BP4monolayer shows good thermodynamic and dynamic stability, as well as chemical stability in O2atmosphere, mainly due to the strengthened P-P bond of the outer layer by the middle boron atoms adoptingsp3hybridization. According to the band structure, the BP4monolayer shows metallic property, which is beneficial to electron conductivity. Furthermore, compared with blue phosphorene and black phosphorene, the P-rich BP4monolayer shows higher theoretical capacity for Li, Na, and K of 1193.90, 1119.28, and 397.97 mA h g-1, respectively. The lattice constant of BP4monolayer increases only 3.73% (Li), 2.52% (Na) after Li/Na fully adsorbed on the anode. More importantly, the wettability of BP4monolayer in the electrolyte is comparable to that of graphene. These findings show that the stable sandwich-like BP4monolayer has potential as a lightweight anode material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA