Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.847
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1436509, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220283

RESUMEN

Human herpes viruses (HHVs) are commonly detected in community-acquired pneumonia (CAP) patients, particularly those with complex complications, attracting increased attention from clinical practitioners. However, the significance of detecting HHVs in bronchoalveolar lavage fluid (BALF) with CAP patients is still unclear. This study retrospectively analyzed BALF samples from 64 CAP patients at the Kunming Third People's Hospital between August 2021 and December 2023. Metagenomic next generation sequencing (mNGS) was conducted on BALF samples during CAP onset. Multivariate Cox regression models were used to identify independent risk factors for 30-day all-cause mortality in CAP. HHVs were found in 84.4% of CAP patients, which were the most common pathogens (45.1%), followed by bacteria (30.2%) and fungi (11.5%). Bacterial-viral co-infections were most common, occurring in 39 patients. Notably, there was no significant difference in HHV presence between severe and non-severe CAP patients (EBV: P = 0.431, CMV: P = 0.825), except for HHV-7 (P = 0.025). In addition, there was no significant difference in the 30-day mortality between HHV positive and HHV negative groups (P = 0.470), as well as between the HHV-7 positive and HHV-7 negative groups (P = 0.910). However, neither HHVs nor HHV-7 was independent risk factors for 30-day mortality in CAP patients (HHVs: HR 1.171, P = 0.888; HHV-7: HR 1.947, P = 0.382). In summary, among the prevalent presence of multiple HHVs, EBV and CMV were the most prevalent in CAP patients. Patients with sCAP were more susceptible to HHV-7 than those with non-sCAP. These results provide valuable insights for clinicians in guiding appropriate interventions for CAP treatment.


Asunto(s)
Líquido del Lavado Bronquioalveolar , Herpesviridae , Neumonía , Humanos , Infecciones por Roseolovirus/diagnóstico , Líquido del Lavado Bronquioalveolar/virología , Masculino , Femenino , Adulto , Persona de Mediana Edad , Anciano , Neumonía/microbiología , Neumonía/mortalidad , Neumonía/terapia , Neumonía/virología , Índice de Severidad de la Enfermedad , Metagenómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Herpesviridae/genética , Herpesviridae/aislamiento & purificación
2.
Heliyon ; 10(16): e35802, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39220937

RESUMEN

Objective: To explore the value of metagenomic next-generation sequencing (mNGS) and culture in microbial diagnosis of patients with acute infection. Methods: We retrospectively analyzed 206 specimens from 163 patients who were admitted to the emergency department of The First Affiliated Hospital of Sun Yat-sen University between July 2020, and July 2021. We evaluated the diagnostic efficacy of mNGS and in-hospital traditional culture. Results: The total positive rate of mNGS was significantly higher than that culture methods (71.4 % vs 40.8 %, p < 0.001), while the sensitivity and accuracy of mNGS were found to be 92.9 % and 88.2 % respectively. However, culture exhibited superior specificity with a value of 92.6 % compared to 75.9 % for mNGS. The detection efficiency of mNGS and culture for fungi was comparable, but mNGS showed superior performance for bacterial detection. In the analysis of sepsis samples, mNGS outperformed traditional culture methods in diagnosing various types of samples, especially for sputum and bronchoalveolar lavage fluid. Among the identified infections, bacterial infections were the most common single infection (37.5 %). Additionally, bacterial-fungal infections represented the most prevalent form of mixed infection (77.3 %). Candida albicans and Staphylococcus aureus were identified as the predominant pathogens in the survival and death groups, respectively. No significant differences in microbial diversity were observed. Conclusion: Compared to culture methods, mNGS demonstrates superior positive rates, sensitivity, and accuracy in the rapid detection of acute infections, particularly in critically ill patients such as those with sepsis. This capability establishes a foundation for the swift and precise identification of pathogens, allowing for the analysis of clinical indicators and patient prognosis based on the extensive data generated from mNGS.

3.
Environ Technol ; : 1-13, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258944

RESUMEN

To find a cost-efficient carbon source for the partial denitrification/anaerobic ammonium oxidation (anammox) (PD/A) process, the practicability of using the organic matter contained in brewery wastewater as carbon source was investigated. Quick self-enrichment of denitrifying bacteria was achieved by supplying brewery wastewater as organic carbon source and using the mature anammox sludge as the seeding sludge. The PD/A process was successfully established after 33-day operation and then the average total nitrogen removal efficiency reached 92.29% when the influent CODCr: NO3--N: NH4+-N ratio was around 2.5: 1.0: 0.67. The relative abundance of Thauera increased from 0.03% in the seeding sludge to 54.29% on day 110, whereas Candidatus brocadia decreased from 30.66% to 2.08%. The metagenomic analysis indicated that the sludge on day 110 contained more nar and napA (total of 41.24%) than nirK and nirS (total of 11.93%). Thus NO2--N was accumulated efficiently in the process of denitrification and sufficient NO2--N was supplied for anammox bacteria in the PD/A process. Using brewery wastewater as carbon source not only saved the cost of nitrogen removal but also converted waste into resource and reduced the treatment expense of brewery wastewater.

4.
World J Radiol ; 16(8): 362-370, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39239243

RESUMEN

BACKGROUND: Lung abscess found on chest X-ray and computed tomography examinations is rare in infants and young children. Several pathogens can cause lung abscesses, with the most common pathogens being anaerobes, Streptococci and Staphylococcus aureus. Streptococcus pseudopneumoniae (S. pseudopneumoniae) is a member of the Streptococcaceae family, and is mainly isolated from respiratory tract specimens. There are currently no cases of lung abscess caused by S. pseudopneumoniae in the literature. CASE SUMMARY: A 2-year-old boy was admitted to hospital due to persistent cough and fever. Lung computed tomography examination suggested the formation of a lung abscess. His diagnosis was not confirmed by testing for serum respiratory pathogens (6 items), respiratory pathogen nucleic acid (27 items), and laboratory culture. Finally, metagenomic next-generation sequencing of bronchoalveolar lavage fluid revealed the presence of S. pseudopneumoniae, confirming its role in causing the lung abscess. After receiving antibiotic treatment, reexamination with lung computed tomography showed that the abscess was resorbed and the patient's outcome was good. CONCLUSION: This is the first report of a lung abscess in a child caused by S. pseudopneumoniae infection. Metagenomic next-generation sequencing of bronchoalveolar lavage fluid is helpful in achieving rapid and accurate pathogen identification.

5.
J Comput Biol ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246231

RESUMEN

Metagenomic Hi-C (metaHi-C) has shown remarkable potential for retrieving high-quality metagenome-assembled genomes from complex microbial communities. Nevertheless, existing metaHi-C-based contig binning methods solely rely on Hi-C interactions between contigs, disregarding crucial biological information such as the presence of single-copy marker genes. To overcome this limitation, we introduce ImputeCC, an integrative contig binning tool optimized for metaHi-C datasets. ImputeCC integrates both Hi-C interactions and the discriminative power of single-copy marker genes to group marker-gene-containing contigs into preliminary bins. It also introduces a novel constrained random walk with restart algorithm to enhance Hi-C connectivity among contigs. Comprehensive assessments using both mock and real metaHi-C datasets from diverse environments demonstrate that ImputeCC consistently outperforms other Hi-C-based contig binning tools. A genus-level analysis of the sheep gut microbiota reconstructed by ImputeCC underlines its capability to recover key species from dominant genera and identify previously unknown genera.

6.
BMC Infect Dis ; 24(1): 920, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232674

RESUMEN

BACKGROUND: Sepsis remains a leading cause of mortality in intensive care units, and rapid and accurate pathogen detection is crucial for effective treatment. This study evaluated the clinical application of multi-site metagenomic next-generation sequencing (mNGS) for the diagnosis of sepsis, comparing its performance against conventional methods. METHODS: A retrospective analysis was conducted on 69 patients with sepsis consecutively admitted to the Department of Intensive Care Medicine, Meizhou People's Hospital. Samples of peripheral blood and infection sites were collected for mNGS and conventional method tests to compare the positive rate of mNGS and traditional pathogen detection methods and the distribution of pathogens. The methods used in this study included a comprehensive analysis of pathogen consistency between peripheral blood and infection site samples. Additionally, the correlation between the pathogens detected and clinical outcomes was investigated. RESULTS: Of the patients with sepsis, 57.97% experienced dyspnea, and 65.2% had underlying diseases, with hypertension being the most common. mNGS demonstrated a significantly higher pathogen detection rate (88%) compared to the conventional method tests (26%). The pathogen consistency rate was 60% between plasma and bronchoalveolar lavage fluid samples, and that of plasma and local body fluid samples was 63%. The most frequently detected pathogens were gram-negative bacteria, and Klebsiella pneumonia. There were no significant differences in the clinical features between the pathogens. CONCLUSION: mNGS is significantly superior to conventional methods in pathogen detection. There was a notable high pathogen consistency detection between blood and local body fluid samples, supporting the clinical relevance of mNGS. This study highlights the superiority of mNGS in detecting a broad spectrum of pathogens quickly and accurately. TRIAL REGISTRATION: Not applicable.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Unidades de Cuidados Intensivos , Metagenómica , Sepsis , Humanos , Sepsis/diagnóstico , Sepsis/microbiología , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , Metagenómica/métodos , Adulto , Bacterias/aislamiento & purificación , Bacterias/genética , Bacterias/clasificación , Anciano de 80 o más Años
7.
Front Med (Lausanne) ; 11: 1409409, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39234039

RESUMEN

Objective: The objective of the study is to investigate the changes in the composition of intestinal microecology in severe acute pancreatitis (SAP) patients with or without intra-abdominal infection and also to analyze the expression of antibiotic resistance genes to provide evidence for early warning of infectious diseases and the rational use of antibiotics. Methods: Twenty patients with SAP were enrolled in the study. According to whether the enrolled patients had a secondary intra-abdominal infection, they were divided into two groups, each consisting of 10 patients. Stool specimens were collected when the patients were admitted to the emergency intensive care unit (EICU), and nucleic acid extraction was performed. Next-generation gene sequencing was used to compare the differences in intestinal microflora diversity and drug resistance gene expression between the two groups. Results: The gut microbiota of patients in the infection group exhibited distribution on multiple clustered branches with some intra-group heterogeneity, and their flora diversity was compromised. The infected group showed an enrichment of various opportunistic bacteria in the gut microbiota, along with a high number of metabolic functions, stress functions to external signals, and genes associated with pathogenesis. Drug resistance genes were expressed in the gut microbiota of both groups, but their abundance was significantly lower in the non-infected group. Conclusion: The intestinal microbiota of patients in the infection group exhibited distribution on multiple clustered branches with some intra-group heterogeneity, and their flora diversity was compromised. Additionally, drug resistance genes were expressed in the gut microbiota of both groups, although their abundance was significantly lower in the non-infected group.

8.
Front Cell Infect Microbiol ; 14: 1438982, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224706

RESUMEN

Background: When individuals infected with human immunodeficiency virus (HIV) experience pulmonary infections, they often exhibit severe symptoms and face a grim prognosis. Consequently, early, rapid, and accurate pathogen diagnosis is vital for informing effective treatment strategies. This study aimed to use metagenomic next-generation sequencing (mNGS) and targeted mNGS (tNGS) to elucidate the characteristics of pulmonary infections in HIV and non-HIV individuals. Methods: This study enrolled 90 patients with pulmonary infection at the Department of Infectious Diseases of The First Hospital of Jilin University from June 2022 to May 2023, and they were divided into HIV (n=46) and non-HIV (n=44) infection groups. Their bronchoalveolar lavage fluid (BALF) was collected for mNGS analysis to evaluate the differences in pulmonary infection pathogens, and tNGS detection was performed on BALF samples from 15 HIV-infected patients. Results: A total of 37 pathogens were identified in this study, including 21 bacteria, 5 fungi, 5 viruses, 5 mycobacteria, and 1 mycoplasma. The sensitivity of mNGS was 78.9% (71/90), which is significantly higher than that of conventional methods (CTM) (39/90, P=1.5E-8). The combination of mNGS with CTM can greatly enhance the sensitivity of pathogen detection. The prevalence of Pneumocystis jirovecii (82.6% vs. 9.1%), cytomegalovirus (CMV) (58.7% vs. 0%), and Epstein-Barr virus (EBV) (17.4% vs. 2.3%) was significantly higher in the HIV infection group than in the non-HIV infection group (P<0.05). Although no statistically significant difference was observed, the detection rate of Mycobacteria was higher in HIV-infected patients (17.4%) than in the non-HIV group (6.8%). Furthermore, the tNGS results of BALF from 15 HIV-infected patients were not entirely consistent with the mNGS results., and the concordance rate of tNGS for the detection of main pathogens reached 86.7% (13/15). Conclusion: Next-generation sequencing (NGS) can accurately detect pathogens in the BALF of patients with pulmonary infection. The sensitivity of tNGS is comparable to that of mNGS. Therefore, this technique should be promoted in the clinic for better patient outcomes.


Asunto(s)
Líquido del Lavado Bronquioalveolar , Infecciones por VIH , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Infecciones por VIH/complicaciones , Infecciones por VIH/virología , Masculino , Femenino , Metagenómica/métodos , Líquido del Lavado Bronquioalveolar/microbiología , Líquido del Lavado Bronquioalveolar/virología , Persona de Mediana Edad , Adulto , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/clasificación , Anciano , Sensibilidad y Especificidad , Virus/genética , Virus/aislamiento & purificación , Virus/clasificación , Metagenoma , Infecciones del Sistema Respiratorio/virología , Infecciones del Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/diagnóstico
9.
Heliyon ; 10(16): e36405, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253237

RESUMEN

Objective: To evaluate the predictive performance of metagenomic next-generation sequencing (mNGS) in identifying and predicting pulmonary infections following liver transplantation and to investigate its association with patient outcomes within the initial four-week post-transplantation period. Methods: We retrospectively analyzed 41 liver transplant patients with suspected pulmonary infections from August 2022 to May 2023. Bronchoalveolar lavage fluid (BALF) samples were collected on the first postoperative day for metagenomic next generation sequencing (mNGS) and culture. The predictive capability of mNGS for subsequent infections was assessed by monitoring inflammatory biomarkers and comparing the detection rates with culture methods. Real-time Polymerase Chain Reaction (Rt-PCR) was used to monitor Human betaherpesvirus 5 (CMV) and Human parvovirus B19 (B19) weekly during a four-week postoperative period. Inflammatory biomarkers and blood coagulation function were evaluated on specific days throughout the first, third, fifth, and during four weeks following surgery. The study was conducted until August 2023 to evaluate the patients' prognostic survival outcome, classifying them into groups based on the mortality and survival. Results: The analysis included a total of 41 patients, comprising 32 males and 9 females, with an average age of 52 (47, 63) years. Within one week after liver transplantation, there were 7 cases of bacterial infections, 5 cases of fungal infections, 19 cases of mixed infections, 8 cases without any infection, and 2 cases with unidentified pathogen-associated infections. mNGS successfully predicted 39 (72 %) strains of pathogens, while culture-based methods only detected 28 (52 %) strains. Among the 8 patients diagnosed as non-infected, culture methods identified positive results in 4 cases (50 %), whereas mNGS yielded positive results in 7 cases (87.5 %). The detection rates of CMV and B19 by Rt-PCR within 4 weeks after liver transplantation were 61 % and 17 %, respectively (25/41, 7/41) among the patients. During the study period, a total of 9 patients succumbed while 32 patients survived. The death group and the survival group exhibited significant differences in CRP, HGB, and INR levels at specific monitoring time points. The proportion of CMV detection in blood was significantly higher in the death group compared to the surviving group. Elevated CRP level was identified as a prognostic risk factor. Conclusions: Despite the presence of false positives, mNGS still presents a potential advantage in predicting pulmonary infection pathogens following liver transplantation. Furthermore, the levels of CRP and CMV carrier status within four weeks post-surgery exhibit significant associations with patient survival and prognosis.

10.
Front Cell Infect Microbiol ; 14: 1388765, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39253328

RESUMEN

Objective: To investigate the diagnostic value of metagenomic next-generation sequencing (mNGS) in detecting pathogens from joint infection (JI) synovial fluid (SF) samples with previous antibiotic exposure. Methods: From January 2019 to January 2022, 59 cases with suspected JI were enrolled. All cases had antibiotic exposure within 2 weeks before sample collection. mNGS and conventional culture were performed on SF samples. JI was diagnosed based on history and clinical symptoms in conjunction with MSIS criteria. The diagnostic values, including sensitivity, specificity, positive/negative predictive values (PPV/NPV), and accuracy, were in comparison with mNGS and culture. Results: There were 47 of the 59 cases diagnosed with JI, while the remaining 12 were diagnosed with non-infectious diseases. The sensitivity of mNGS was 68.1%, which was significantly higher than that of culture (25.5%, p<0.01). The accuracy of mNGS was significantly higher at 71.2% compared to the culture at 39.0% (p <0.01). Eleven pathogenic strains were detected by mNGS but not by microbiological culture, which included Staphylococcus lugdunensis, Staphylococcus cohnii, Finegoldia magna, Enterococcus faecalis, Staphylococcus saprophytics, Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa, Acinetobacter pittii, Brucella ovis, andCoxiella burnetii. Antibiotic therapy was adjusted based on the mNGS results in 32 (68.1%) patients, including 12 (25.5%) and 20 (42.6%) patients, in whom treatment was upgraded and changed, respectively. All JI patients underwent surgery and received subsequent antibiotic therapy. They were followed up for an average of 23 months (20-27 months), and the success rate of treatment was 89.4%. Out of the 33 patients who had positive results for pathogens, reoperation was performed in 1 case (3.03%), while out of the 14 cases with negative results for both mNGS and cultures, reoperation was performed in 4 cases (28.6%). Conclusions: mNGS has advantages over conventional culture in detecting pathogens in SF samples from JI patients previously treated with antibiotics, potentially improving clinical outcomes.


Asunto(s)
Antibacterianos , Bacterias , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Líquido Sinovial , Humanos , Metagenómica/métodos , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Líquido Sinovial/microbiología , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/clasificación , Bacterias/efectos de los fármacos , Sensibilidad y Especificidad , Adulto , Artritis Infecciosa/microbiología , Artritis Infecciosa/diagnóstico , Artritis Infecciosa/tratamiento farmacológico
11.
Infect Drug Resist ; 17: 3805-3812, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39253606

RESUMEN

Aim: Cryptococcus neoformans osteomyelitis coupled with tuberculosis and tuberculous lymphadenitis, is a rare occurrence in clinical. Diagnostic challenges arise due to the clinical radiological similarity of this condition to other lung infections and the limited and sensitive nature of traditional approaches. Here, we present a case of co-infection diagnosed using Metagenomic Next-Generation Sequencing, highlighting the effectiveness of advanced genomic techniques in such complex scenarios. Case Presentation: We present a case of a 67-year-old female infected with cryptococcal osteomyelitis and presented with swelling and pain in the right ankle. Following a biopsy of the right ankle joint, Metagenomic Next-Generation Sequencing (mNGS) of the biopsy tissue revealed Cryptococcus neoformans infection. Positive results for Cryptococcus capsular antigen and pathological findings confirmed the presence of Cryptococcus neoformans. The patient underwent surgical debridement, coupled with oral fluconazole treatment (300mg/day), leading to the resolution of symptoms. Conclusion: Cryptococcus neoformans is an uncommon cause of ankle infection. Metagenomic Next-Generation Sequencing (mNGS) serves as a valuable diagnostic tool, aiding clinicians in differentiating cryptococcal osteomyelitis from other atypical infections.

12.
Diagn Microbiol Infect Dis ; 110(4): 116535, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39260018

RESUMEN

The diagnosis of Bartonella is challenging due to its rarity and negative culture results. Once the diagnosis is delayed and proper treatment is not given, it can develop into infective endocarditis, which can be fatal. We reported a 60-year-old female patient who had recurrent fever for 5 months. After receiving ineffective treatment at the local hospital, she sought medical attention at our hospital. Laboratory blood indicators testing and imaging indicated infective endocarditis, and metagenomic Next Generation Sequencing (m-NGS) testing confirmed the diagnosis of Bartonella vinsonii infection. After surgical treatment and the combination of doxycycline and ceftriaxone sodium for anti-infective therapy, the patient recovered. Valuing the combination of multiple auxiliary diagnostic methods and improving the application of m-NGS in the detection of unknown pathogens can compensate for the current limitations in the diagnosis of Bartonella. Early diagnosis and treatment are extremely important for Bartonella endocarditis.

13.
Infect Dis (Lond) ; : 1-11, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264585

RESUMEN

OBJECTIVE: Accurate and rapid identification of causative pathogens is essential to guide the clinical management of lower respiratory tract infections (LRTIs). Here we conducted a single-centre prospective study in 284 patients suspected of lower respiratory tract infections to evaluate the utility of a nucleic acid test based on highly multiplexed polymerase chain reaction (PCR) and CRISPR-Cas12a. METHODS: We determined the analytical and diagnostic performance of the CRISPR assay using a combination of reference standards, including conventional microbiological tests (CMTs), metagenomic Next-Generation Sequencing (mNGS), and clinical adjudication by a panel of experts on infectious diseases and microbiology. RESULTS: The CRISPR assay showed a higher detection rate (63.0%) than conventional microbiological tests (38.4%) and was lower than metagenomic Next-Generation Sequencing (72.9%). In detecting polymicrobial infections, the positivity rate of the CRISPR assay (19.4%) was higher than conventional microbiological tests (3.5%) and lower than metagenomic Next-Generation Sequencing (28.9%). The overall diagnostic sensitivity of the CRISPR assay (67.8%) was higher than conventional microbiological tests (41.8%), and lower than metagenomic Next-Generation Sequencing (93.2%). CONCLUSIONS: Considering the low cost, ease of operation, short turnaround time, and broad range of pathogens detected in a single test, the CRISPR assay has the potential to be implemented as a screening tool for the aetiological diagnosis of lower respiratory tract infections patients, especially in cases where atypical bacteria or coinfections are suspected.

14.
Sci Total Environ ; 953: 176041, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39244041

RESUMEN

Water level fluctuations in China's Three Gorges Reservoir (TGR) area are typical of many reservoirs and significantly impact water level fluctuation zones (WLFZ), including upstream rivers. Understanding methane oxidation in the TGR-WLFZ is crucial for evaluating the impact of large-scale reservoir construction on global climate change. In this study, we investigated methane oxidation rates in the TGR-WLFZ, focusing on periods of drying and flooding. The highest methane oxidation rates were observed during the drying period, ranging from 35.69 to 56.32 nmol/(g soil)/d, while the lowest rates were recorded during the flooding period, at 11.58 to 11.98 nmol/(g soil)/d, in lab-scale simulated columns. Using 13CH4 labeling experiments, we measured CH4 oxidation potentials for aerobic methane oxidation (AMO) using oxygen and anaerobic oxidation of methane (AOM) using nitrite, nitrate, sulfate, ferric iron, and manganese oxide as electron acceptors at varying concentrations. AMO was the dominant process across all experiments, with potentials ranging from 145.71 to 180.77 nmol 13CO2/(g soil)/d. For AOM, metal-dependent oxidation, particularly with Fe (III) and Mn(IV), was predominant (12.64-17.59 and 3.91-12.69 nmol 13CO2/(g soil)/d, respectively), followed by nitrite and nitrate-dependent pathways (1.49-9.10 nmol 13CO2/(g soil)/d). Sulfate-dependent AOM was limited (1.33-3.27 nmol 13CO2/(g soil)/d). Metagenomic analysis identified key microorganisms responsible for AMO, such as unclassified_f_Methylobacteriaeae and Methylobacterium sp., and for AOM are Ca. Methylomirabilis oxyfera, Ca. Methanoperedens nitroreducens and Ca. Methylomirabilis sp. Complete functional genes and enzymes for the methane oxidation and reverse methanogenesis pathways were obtained in each hydrological period, with the highest content during the drying period and the lowest during flooding. Our study shows that reservoirs, traditionally considered significant sources of methane, may also act as methane sinks. This finding raises new questions: How do different methane oxidation pathways respond to water level fluctuations in reservoirs, and are some pathways more resilient to changes in hydrological conditions?

15.
Indian J Med Microbiol ; 52: 100730, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39233139

RESUMEN

BACKGROUND: Paediatric community-acquired pneumonia (CAP) is a major public health challenge in children, requiring accurate and timely diagnosis of causative pathogens for effective antibiotic treatment. We aimed to explore the utility of next-generation sequencing (NGS) in precise diagnosis of pediatric CAP and its effect on treatment outcome of these children. METHODS: A systematic review and meta-analysis was conducted to compare NGS-guided antibiotic therapy with conventional methods in pediatric CAP. The study followed PRISMA guidelines and searched for electronic databases including PubMed/MEDLINE, Embase, Scopus, and Web of Sciences from 2012 to 2023. Studies on pediatric CAP (<18 years) using NGS alongside conventional diagnostics, were included. RESULTS: Database search identified 721 studies and 6 were finally included for review, published between 2019 and 2023. Meta-analysis revealed an overall odds ratio of 2.39 (95 % CI 1.22, 3.56) for NGS vs conventional methods. Detection rates using NGS ranged from 86% to 100 %, surpassing conventional methods (26%-78.51 %). Five out of selected 6 studies (83.33 %) have documented that change in treatment based on NGS finding resulted in clinical improvement of patients. There was no significant heterogeneity and potential bias among the studies. Nearly 80 % of the studies were of good quality. CONCLUSION: The NGS (particularly metagenomic sequencing) is a promising tool for diagnosing paediatric CAP with high accuracy. It can improve antibiotic usage practices and patient outcomes, potentially reducing antibiotic resistance. Based on meta-analysis, training of healthcare professionals in NGS methodologies and result interpretation is highly recommended.

16.
Bioresour Technol ; 412: 131407, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39233185

RESUMEN

Phenol, quinoline, and pyridine, commonly found in industrial wastewater, disrupt the nitrification process, leading to nitrite accumulation. This study explores the potential mechanisms through which these biotoxic organic compounds affect nitrite accumulation, using metagenomic and molecular docking analyses. Despite increasing concentrations of these compounds from 40 to 160 mg/L, ammonia nitrogen removal was not hindered, and stable nitrite accumulation rates exceeding 90 % were maintained. Additionally, these compounds inhibited nitrite-oxidizing bacteria (NOB) and enriched ammonia-oxidizing bacteria (AOB) in situ. As the concentration of these compounds rose, protein (PN) and polysaccharide (PS) concentrations also increased, along with a higher PN/PS ratio. Metagenomic analysis further revealed an increase in hao relative abundance, while microbial community analysis showed increased Nitrosomonas abundance, which contributed to nitrite accumulation stability. Molecular docking indicated that these compounds have lower binding energy with hydroxylamine oxidoreductase (HAO) and nitrate reductase (NAR), theoretically supporting the observed sustained nitrite accumulation.


Asunto(s)
Metagenómica , Simulación del Acoplamiento Molecular , Nitrificación , Nitritos , Piridinas , Quinolinas , Nitritos/metabolismo , Quinolinas/farmacología , Metagenómica/métodos , Piridinas/farmacología , Piridinas/metabolismo , Fenol , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Microbiota/efectos de los fármacos , Aguas Residuales , Oxidorreductasas/metabolismo , Amoníaco/metabolismo
17.
Bioresour Technol ; 412: 131432, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39236909

RESUMEN

In this study, the effect of modulating fulvic acid (FA) concentrations (0, 25 and 50 mg/L) on nitrogen removal in a bioelectrochemical hydrogen autotrophic denitrification system (BHDS) was investigated. Results showed that FA increased the nitrate (NO3--N) removal rate of the BHDSs from 37.8 to 46.2 and 45.2 mg N/(L·d) with a current intensity of 40 mA. The metagenomic analysis revealed that R2 (25 mg/L) was predominantly populated by autotrophic denitrifying microorganisms, which enhanced denitrification performance by facilitating electron transfer. Conversely, R3 (50 mg/L) exhibited an increase in genes related to the heterotrophic process, which improved the denitrification performance through the collaborative action of both autotrophic and heterotrophic denitrification pathways. Besides, the study also identified a potential for nitrogen removal in Serpentinimonas, which have been rarely studied. The interesting set of findings provide valuable reference for optimizing BHDS for nitrogen removal and promoting specific denitrifying genera within the system.


Asunto(s)
Procesos Autotróficos , Benzopiranos , Desnitrificación , Hidrógeno , Hidrógeno/metabolismo , Nitratos/metabolismo , Nitrógeno , Bacterias/metabolismo , Técnicas Electroquímicas/métodos
18.
J Am Heart Assoc ; 13(18): e033221, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39248272

RESUMEN

BACKGROUND: Diagnosis of the cause of cerebral thrombi is vital for recurrence prevention but also challenging. The presence of the microbiome has recently been confirmed in thrombus, suggesting a novel approach to distinguish cerebral thrombi of different origins. However, little is known about whether there is heterogeneity in microbiological colonization of cerebral thrombi of different sources. METHODS AND RESULTS: Forty patients experiencing acute ischemic stroke were included and clinical data were collected. Metagenomic next-generation sequencing was adopted to detect bacterial and genomic signatures of human cerebral thrombi samples. We found similar species diversity between the large-artery atherosclerosis thrombi and cardioembolic thrombi but different species composition and distribution of cerebral thrombus microbiota. Compared with the group with cardioembolism, the group with large-artery atherosclerosis showed a significantly higher relative abundance of Ralstonia insidiosa among the top 10 bacterial species in cerebral thrombi. Twenty operational taxonomy units were correlated with 11 clinical indicators of ischemic stroke. The Gene Ontology enrichment analysis revealed 9 different enriched biological processes (translation and carbohydrate metabolic process, etc). The enriched Kyoto Encyclopedia of Genes and Genomes pathways included ribosome, butanoate metabolism, and sulfur metabolism. CONCLUSIONS: This study, based on the approach of metagenomic next-generation sequencing, provides a diagnostic microbiological method to discriminate individuals with cardioembolic thrombi from those with large-artery atherosclerosis thrombi with human cerebral thrombi samples. Our findings provide a fresh perspective on microbial heterogeneity of cerebral thrombi and demonstrate biological processes and pathway features of cerebral thrombi.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Trombosis Intracraneal , Metagenómica , Humanos , Metagenómica/métodos , Femenino , Masculino , Persona de Mediana Edad , Trombosis Intracraneal/microbiología , Trombosis Intracraneal/genética , Anciano , Accidente Cerebrovascular Isquémico/microbiología , Accidente Cerebrovascular Isquémico/genética , Bacterias/genética , Bacterias/aislamiento & purificación , Microbiota/genética
19.
J Environ Manage ; 369: 122339, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39222589

RESUMEN

Cultivation of sloping land is a main cause for soil erosion. Conservation practices, such as soil and stone terraces, may reduce the impacts of erosion but their impacts on soil microbial diversity and functioning related to carbon (C) and nutrient metabolisms remain unclear. This study was conducted to evaluate the effects of slope gradients (5°, 8°, 15°, 25°) and conservation practices (cultivated, uncultivated, soil terrace, and stone terrace) on bacterial and fungal diversities, metagenomic and metabolomic functioning associated with basic soil properties. Our results showed that steep slopes at 25° significantly decreased soil pH, silt percentage, and bacterial and fungal abundances, but that soil and stone terraces increased soil organic C (SOC), silt and clay contents, and fungal abundance compared to sloping cultivated lands. In addition, soil and stone terraces increased both bacterial and fungal alpha diversities, and relative abundances of Crenarchaeota, Nitrospirota, and Latescibacterota, but reduced the proportions of Actinobacteriota and Patescibacteria, thus shifting microbial beta diversities, which were significantly associated with increased SOC and silt content. For metagenomics, soil and stone terraces greatly increased the relative abundance of functional genes related to Respiration, Virulence, disease and defense, Stress response, and nitrogen and potassium metabolisms, such as Denitrification and Potassium homeostasis. For soil metabolomics, a total of 22 soil metabolites was enriched by soil and stone terraces, such as Lipids and lipid-like molecules (Arachidonic acid, Gamma-Linolenic acid, and Pentadecanoic acid), and Organoheterocyclic compounds (Adenine, Laudanosine, Methylpyrazine, and Nicotinic acid). To sum up, soil and stone terraces could reduce some of the negative impacts of steep slope cultivation on soil microbial diversity as well as their metagenomic and metabolomic functioning related to C and nutrient metabolism useful for soil health improvement, potentially bolstering the impact of sustainable practices in erosion hotspots around the world.


Asunto(s)
Carbono , Microbiología del Suelo , Suelo , Suelo/química , Carbono/metabolismo , Hongos/metabolismo , Bacterias/metabolismo , Nitrógeno/metabolismo
20.
Infect Genet Evol ; 124: 105668, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39271095

RESUMEN

The global challenge of water resource availability is exacerbated by anthropogenic influences that promote the emergence of pollutants. Among these pollutants are microbiological agents, including viruses, which are ubiquitous in the biosphere and play a pivotal role in both ecological balance and the occurrence of diseases in animals and plants. Consequently, monitoring viruses in water sources becomes indispensable for the establishment of effective prevention, promotion, and control strategies. Within this context, the study focuses on the identification of novel viruses belonging to the Picornavirales order in freshwater from the Guarapiranga Reservoir in the state of São Paulo, Brazil. The samples were subjected to viral metagenomics. Our analysis led to the characterization of four distinct sequences (GinkV-05, AquaV_10, MarV_14, and MarV_64), which exhibited significant divergence compared to other members of the Picornavirales order. This remarkable diversity prompted the identification of a potential new genus within the Marnaviridae family, tentatively named Ginkgonavirus. Additionally, we characterized four sequences in a very distinct clade and propose the recognition of a novel family (named Aquaviridae) within the Picornavirales order. Our findings contribute valuable insights into the previously uncharted diversity of Picornavirales present in water sources, shedding light on an important facet of viral ecology and evolution in aquatic environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA