Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Methods Mol Biol ; 2852: 255-272, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39235749

RESUMEN

Metabolomics is the study of low molecular weight biochemical molecules (typically <1500 Da) in a defined biological organism or system. In case of food systems, the term "food metabolomics" is often used. Food metabolomics has been widely explored and applied in various fields including food analysis, food intake, food traceability, and food safety. Food safety applications focusing on the identification of pathogen-specific biomarkers have been promising. This chapter describes a nontargeted metabolite profiling workflow using gas chromatography coupled with mass spectrometry (GC-MS) for characterizing three globally important foodborne pathogens, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica, from selective enrichment liquid culture media. The workflow involves a detailed description of food spiking experiments followed by procedures for the extraction of polar metabolites from media, the analysis of the extracts using GC-MS, and finally chemometric data analysis using univariate and multivariate statistical tools to identify potential pathogen-specific biomarkers.


Asunto(s)
Biomarcadores , Microbiología de Alimentos , Cromatografía de Gases y Espectrometría de Masas , Listeria monocytogenes , Metabolómica , Metabolómica/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Biomarcadores/análisis , Microbiología de Alimentos/métodos , Listeria monocytogenes/metabolismo , Listeria monocytogenes/aislamiento & purificación , Salmonella enterica/metabolismo , Escherichia coli O157/metabolismo , Escherichia coli O157/aislamiento & purificación , Enfermedades Transmitidas por los Alimentos/microbiología , Metaboloma
2.
BMC Pediatr ; 24(1): 540, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174946

RESUMEN

BACKGROUND: Precursor B-cell acute lymphoblastic leukemia (B-ALL) is the most common cancers in children. Failure of induction chemotherapy is a major factor leading to relapse and death in children with B-ALL. Given the importance of altered metabolites in the carcinogenesis of pediatric B-ALL, studying the metabolic profile of children with B-ALL during induction chemotherapy and in different minimal residual disease (MRD) status may contribute to the management of pediatric B-ALL. METHODS: We collected paired peripheral blood plasma samples from children with B-ALL at pre- and post-induction chemotherapy and analyzed the metabolomic profiling of these samples by ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS). Healthy children were included as controls. We selected metabolites that were depleted in pediatric B-ALL and analyzed the concentrations in pediatric B-ALL samples. In vitro, we study the effects of the selected metabolites on the viability of ALL cell lines and the sensitivity to conventional chemotherapeutic agents in ALL cell lines. RESULTS: Forty-four metabolites were identified with different levels between groups. KEGG pathway enrichment analyses revealed that dysregulated linoleic acid (LA) metabolism and arginine (Arg) biosynthesis were closely associated with pediatric B-ALL. We confirmed that LA and Arg were decreased in pediatric B-ALL samples. The treatment of LA and Arg inhibited the viability of NALM-6 and RS4;11 cells in a dose-dependent manner, respectively. Moreover, Arg increased the sensitivity of B-ALL cells to L-asparaginase and daunorubicin. CONCLUSION: Arginine increases the sensitivity of B-ALL cells to the conventional chemotherapeutic drugs L-asparaginase and daunorubicin. This may represent a promising therapeutic approach.


Asunto(s)
Arginina , Metabolómica , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/sangre , Arginina/metabolismo , Arginina/sangre , Niño , Femenino , Metabolómica/métodos , Preescolar , Masculino , Estudios de Casos y Controles , Neoplasia Residual , Cromatografía Líquida de Alta Presión , Línea Celular Tumoral , Metaboloma , Quimioterapia de Inducción , Adolescente , Lactante
3.
Molecules ; 29(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39124986

RESUMEN

Citrus black spot (CBS) is a fungal disease caused by Phyllosticta citricarpa Kiely, (McAlpine Van der Aa), with most cultivars being susceptible to infection. Currently, disease control is based on the application of protective fungicides, which is restricted due to resistance, health and environmental concerns. Although using natural products for disease management is gaining momentum, more advances are required. This study obtained the metabolic profiles of the essential oil and cuticular waxes of two citrus cultivars with a varying susceptibility to CBS infection using gas chromatography-mass spectrometry. A multivariate data analysis identified possible biomarker compounds that contributed to the difference in susceptibility between the two cultivars. Several identified biomarkers were tested in vitro for their antifungal properties against P. citricarpa. Two biomarkers, propanoic acid and linalool, were able to completely inhibit pathogen growth at 750 mg/L and 2000 mg/L, respectively.


Asunto(s)
Ascomicetos , Biomarcadores , Citrus , Aceites Volátiles , Enfermedades de las Plantas , Enfermedades de las Plantas/microbiología , Citrus/química , Citrus/microbiología , Ascomicetos/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Cromatografía de Gases y Espectrometría de Masas , Antifúngicos/farmacología , Antifúngicos/química , Monoterpenos Acíclicos/farmacología , Monoterpenos Acíclicos/química , Metaboloma
4.
Artículo en Inglés | MEDLINE | ID: mdl-39215903

RESUMEN

Melochia corchorifolia is a well-known perennial herb and has been used in traditional medicine for the treatment of a wide number of diseases. However, the phytochemical investigation in the different organs of the M. corchorifolia was poorly understood. In the present study, the organ-specific metabolomic profiling of leaves, stems, and vegetable extract of M. corchorifolia was determined, and their potential antibiofilm activity with wound healing properties was evaluated. The UPLC-ESI-Q-TOF-MSE analysis showed 59 compounds in the leaf, stem, and vegetable extracts of M. corchorifolia. The crystal violet staining assay clearly showed that the extracts of M. corchorifolia have excellent antibiofilm activity against Proteus mirabilis and Salmonella typhi. The extracts of M. corchorifolia also caused the architecture of the bacterial biofilm by inhibiting the adherence to polystyrene and auto-aggregation and subsequently inhibiting the growth and colonization of the biofilm-forming bacteria P. mirabilis and S. typhi. The extracts of M. corchorifolia accelerate the wound healing process in BALB/c mice by completely closing the wound on the 20th day of treatment. Together, the phytochemicals present in the leaf, stem, and vegetable extracts of M. corchorifolia are responsible for potent antibiofilm and wound healing properties and could be used as an excellent remedy for treating chronic wounds and their associated infectious disease.

5.
Metabolomics ; 20(4): 75, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980562

RESUMEN

INTRODUCTION: Microbial communities affect several aspects of the earth's ecosystem through their metabolic interaction. The dynamics of this interaction emerge from complex multilevel networks of crosstalk. Elucidation of this interaction could help us to maintain the balance for a sustainable future. OBJECTIVES: To investigate the chemical language among highly abundant microbial genera in the rhizospheres of medicinal plants based on the metabolomic analysis at the interaction level. METHODS: Coculturing experiments involving three microbial species: Aspergillus (A), Trichoderma (T), and Bacillus (B), representing fungi (A, T) and bacteria (B), respectively. These experiments encompassed various interaction levels, including dual cultures (AB, AT, TB) and triple cultures (ATB). Metabolic profiling by LC-QTOFMS revealed the effect of interaction level on the productivity and diversity of microbial specialized metabolites. RESULTS: The ATB interaction had the richest profile, while the bacterial profile in the monoculture condition had the lowest. Two native compounds of the Aspergillus genus, aspergillic acid and the dipeptide asperopiperazine B, exhibited decreased levels in the presence of the AT interaction and were undetectable in the presence of bacteria during the interaction. Trichodermarin N and Trichodermatide D isolated from Trichoderma species exclusively detected during coexistence with bacteria (TB and ATB). These findings indicate that the presence of Bacillus activates cryptic biosynthetic gene clusters in Trichoderma. The antibacterial activity of mixed culture extracts was stronger than that of the monoculture extracts. The TB extract exhibited strong antifungal activity compared to the monoculture extract and other mixed culture treatments. CONCLUSION: The elucidation of medicinal plant microbiome interaction chemistry and its effect on the environment will also be of great interest in the context of medicinal plant health Additionally, it sheds light on the content of bioactive constituents, and facilitating the discovery of novel antimicrobials.


Asunto(s)
Interacciones Microbianas , Plantas Medicinales , Rizosfera , Plantas Medicinales/metabolismo , Plantas Medicinales/microbiología , Aspergillus/metabolismo , Bacterias/metabolismo , Trichoderma/metabolismo , Bacillus/metabolismo , Hongos/metabolismo , Metabolómica , Técnicas de Cocultivo , Microbiología del Suelo
6.
Int J Biol Macromol ; 277(Pt 4): 134179, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39084425

RESUMEN

The butyrylcholinesterase (BChE) is an attractive target for treating Alzheimer's disease. In this study, we report the discovery of five new monoterpene indole alkaloids (MIAs) along with three known analogues from Uncaria sessilifructus Roxb. as BChE inhibitors using affinity ultrafiltration based metabolomic profiling directed isolation strategy. Their structures were well identified through comprehensive spectroscopic and chiroptical analyses. Compounds 1-2 featured unique glycosidic linkages with 1,3-dioxane structure. All the compounds exhibited BChE inhibitory bioactivity without any cytotoxic effects. Enzymatic kinetic and molecular docking analyses of compounds 1 and 6 demonstrated their inhibiting mechanisms and binding patterns to BChE. These findings provide a valuable workflow for efficiently screening ligands that bind to proteins, and scientific recognition in the discovery of BChE inhibitors for treating neurodegenerative disorders.


Asunto(s)
Butirilcolinesterasa , Inhibidores de la Colinesterasa , Uncaria , Humanos , Butirilcolinesterasa/metabolismo , Butirilcolinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Cinética , Metabolómica/métodos , Simulación del Acoplamiento Molecular , Ultrafiltración , Uncaria/química
7.
Metabolites ; 14(6)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38921451

RESUMEN

The chemical profiles of both Zygophyllum album (Z. album) aerial parts and roots extracts were evaluated with LC-ESI-TOF-MS/MS analysis. Twenty-four compounds were detected. Among them, some are detected in both the aerial parts and the roots extracts, and others were detected in the aerial parts only. The detected compounds were mainly flavonoids, phenolic compounds, triterpenes and other miscellaneous compounds. Such compounds contribute to the diverse pharmacological activities elicited by the Z. album species. This study aimed to elucidate the antiepileptic effect of Z. album aerial parts and roots crude extracts against pentylenetetrazole (PTZ)-induced kindling in mice. Male albino mice were divided into four groups, eight animals each. All groups, except the control group, were kindled with PTZ (35 mg/kg i.p.), once every alternate day for a total of 15 injections. One group was left untreated (PTZ group). The remaining two groups were treated prior to PTZ injection with either Z. album aerial parts or roots crude extract (400 mg/kg, orally). Pretreatment with either extract significantly reduced the seizure scores, partially reversed the histological changes in the cerebral cortex and exerted antioxidant/anti-inflammatory efficacy evinced by elevated hippocampal total antioxidant capacity and SOD and catalase activities, parallel to the decrement in MDA content, iNOS activity and the TXNIB/NLRP3 axis with a subsequent decrease in caspase 1 activation and a release of IL-1ß and IL-18. Moreover, both Z. album extracts suppressed neuronal apoptosis via upregulating Bcl-2 expression and downregulating that of Bax, indicating their neuroprotective and antiepileptic potential. Importantly, the aerial parts extract elicited much more antiepileptic potential than the roots extract did.

8.
Front Plant Sci ; 15: 1395046, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938629

RESUMEN

Introduction: Global warming has led to increased environmental stresses on plants, notably drought. This affects plant distribution and species adaptability, with some medicinal plants showing enhanced drought tolerance and increased medicinal components. In this pioneering study, we delve into the intricate tapestry of Arnebia guttata, a medicinal plant renowned for its resilience in arid environments. By fusing a rich historical narrative with cutting-edge analytical methodologies, this research endeavors to demystify the plant's intricate response to drought stress, illuminating its profound implications for medicinal valorization. Methods: The methodology includes a comprehensive textual research and resource investigation of A. guttata, regionalization studies, field sample distribution analysis, transcriptome and metabolome profiling, rhizosphere soil microbiome analysis, and drought stress experiments. Advanced computational tools like ArcGIS, MaxEnt, and various bioinformatics software were utilized for data analysis and modeling. Results: The study identified significant genetic variations among A. guttata samples from different regions, correlating with environmental factors, particularly precipitation during the warmest quarter (BIO18). Metabolomic analysis revealed marked differences in metabolite profiles, including shikonin content, which is crucial for the plant's medicinal properties. Soil microbial community analysis showed variations that could impact plant metabolism and stress response. Drought stress experiments demonstrated A. guttata's resilience and its ability to modulate metabolic pathways to enhance drought tolerance. Discussion: The findings underscore the complex interplay between genetic makeup, environmental factors, and microbial communities in shaping A. guttata's adaptability and medicinal value. The study provides insights into how drought stress influences the synthesis of active compounds and suggests that moderate stress could enhance the plant's medicinal properties. Predictive modeling indicates future suitable growth areas for A. guttata, aiding in resource management and conservation efforts. The research contributes to the sustainable development of medicinal resources and offers strategies for improving the cultivation of A. guttata.

9.
Exp Eye Res ; 243: 109906, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657786

RESUMEN

Pediatric cataract, including congenital and developmental cataract, is a kind of pediatric vision-threatening disease with extensive phenotypic heterogeneity and multiple mechanisms. We aimed to investigate the metabolite profile of aqueous humor (AH) in patients with pediatric cataracts, and identify underlying mutual correlations between differential metabolites. Metabolomic profiles of AH were analyzed and compared between pediatric cataract patients (n = 33) and age-related cataract patients without metabolic diseases (n = 29), using global untargeted metabolomics with ultra-high-performance liquid chromatography tandem mass spectrometry. Principal component analysis, partial least squares discriminant analysis and heat map were applied. Enriched pathway analysis was conducted using Kyoto Encyclopedia of Genes and Genomes. Receiver-operating characteristic (ROC) analyses were employed to select potential biomarkers. A total of 318 metabolites were identified, of which 54 differential metabolites (25 upregulated and 29 downregulated) were detected in pediatric cataract group compared with controls (variable importance of projection >1.0, fold change ≥1.5 or ≤ 0.667 and P < 0.05). A significant accumulation of N-Acetyl-Dl-glutamic acid was observed in pediatric cataract group. The differential metabolites were mainly enriched in histidine metabolism (increased L-Histidine and decreased 1-Methylhistamine) and the tryptophan metabolism (increased N-Formylkynurenine and L-Kynurenine). 5-Aminosalicylic acid showed strong positive mutual inter-correlation with L-Tyrosinemethylester and N,N-Diethylethanolamine, both of which were down-regulated in pediatric cataract group. The ROC analysis implied 11 metabolites served as potential biomarkers for pediatric cataract patients (all area under the ROC curve ≥0.900). These results illustrated novel potential metabolites and metabolic pathways in pediatric cataract, which provides new insights into the pathophysiology of pediatric cataract.


Asunto(s)
Humor Acuoso , Biomarcadores , Catarata , Metabolómica , Humanos , Humor Acuoso/metabolismo , Catarata/metabolismo , Metabolómica/métodos , Masculino , Femenino , Preescolar , Cromatografía Líquida de Alta Presión , Niño , Biomarcadores/metabolismo , Curva ROC , Espectrometría de Masas en Tándem , Metaboloma/fisiología , Lactante
10.
Sci Rep ; 14(1): 5865, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467671

RESUMEN

The present study assessed the ability of Trichoderma to combat F. sporotrichioides, focusing on their antagonistic properties. Tests showed that Trichoderma effectively inhibited F. sporotrichioides mycelial growth, particularly with T. atroviride strains. In co-cultures on rice grains, Trichoderma almost completely reduced the biosynthesis of T-2 and HT-2 toxins by Fusarium. T-2 toxin-α-glucoside (T-2-3α-G), HT-2 toxin-α-glucoside (HT-2-3α-G), and HT-2 toxin-ß-glucoside (HT-2-3ß-G) were observed in the common culture medium, while these substances were not present in the control medium. The study also revealed unique metabolites and varying metabolomic profiles in joint cultures of Trichoderma and Fusarium, suggesting complex interactions. This research offers insights into the processes of biocontrol by Trichoderma, highlighting its potential as a sustainable solution for managing cereal plant pathogens and ensuring food safety.


Asunto(s)
Fusarium , Toxina T-2 , Toxina T-2/análogos & derivados , Trichoderma , Toxina T-2/metabolismo , Fusarium/metabolismo , Trichoderma/metabolismo , Glicosilación , Grano Comestible/metabolismo , Glucósidos/metabolismo
11.
BMC Complement Med Ther ; 24(1): 88, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355510

RESUMEN

BACKGROUND: Gastric ulcers represent a worldwide health problem, characterized by erosions that affect the mucous membrane of the stomach and may even reach the muscular layer, leading to serious complications. Numerous natural products have been assessed as anti-ulcerogenic agents, and have been considered as new approaches for treatment or prevention of gastric ulcers. The present research investigated the preventive benefits of Apium graveolens L. (Apiaceae), known as celery, seed extract towards indomethacin-induced ulceration of the stomach in rats. METHODS: Metabolomic profiling, employing liquid chromatography coupled to high-resolution electrospray ionization mass spectrometry (LC-HR-ESI-MS), was implemented with the aim of investigating the chemical profile of the seeds. Histopathological analysis of gastric tissues, as well as assessment of numerous inflammatory cytokines and oxidative stress indicators, confirmed the in vivo evaluation. RESULTS: The prior treatment with A. graveolens seed extract resulted in a substantial reduction in the ulcer index when compared to the indomethacin group, indicating an improvement in stomach mucosal injury. Moreover, the gastroprotective effect was demonstrated through examination of the oxidative stress biomarkers which was significantly attenuated upon pre-treatment with A. graveolens seed extract. Vascular endothelial growth factor (VEGF), a fundamental angiogenic factor that stimulates angiogenesis, was markedly inhibited by indomethacin. A. graveolens seed extract restored this diminished level of VEGF. The dramatic reductions in NF-κB protein levels indicate a considerable attenuation of the indomethacin-induced IKκB/NF-κB p65 signaling cascade. These activities were also correlated to the tentatively featured secondary metabolites including, phenolic acids, coumarins and flavonoids, previously evidenced to exert potent anti-inflammatory and antioxidant activities. According to our network pharmacology study, the identified metabolites annotated 379 unique genes, among which only 17 genes were related to gastric ulcer. The PTGS2, MMP2 and PTGS1 were the top annotated genes related to gastric ulcer. The top biological pathway was the VEGF signaling pathway. CONCLUSION: A. graveolens seed extract possesses significant anti-ulcer activity, similar to famotidine, against gastric lesions induced by indomethacin in rats. It is worth highlighting that the extract overcomes the negative effects of conventional chemical anti-secretory drugs because it does not lower stomach acidity.


Asunto(s)
Antiulcerosos , Apium , Úlcera Gástrica , Ratas , Animales , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Indometacina/efectos adversos , Apium/metabolismo , Factor A de Crecimiento Endotelial Vascular , FN-kappa B/metabolismo , Antiulcerosos/efectos adversos , Extractos Vegetales/uso terapéutico , Transducción de Señal
12.
Biochimie ; 216: 71-82, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37758157

RESUMEN

Senescence due to exogenous and endogenous stresses triggers metabolic reprogramming and is associated with many pathologies, including cancer. In solid tumors, senescence promotes tumorigenesis, facilitates relapse, and changes the outcomes of anti-cancer therapies. Hence, cellular and molecular mechanisms regulating senescent pathways make attractive therapeutic targets. Cancer cells undergo metabolic reprogramming to sustain the growth-arrested state of senescence. In the present study, we aimed to understand the metabolic reprogramming in MCF-7 breast tumor cells in response to two independent inducers of DNA damage-mediated senescence, including ionizing radiation and doxorubicin. Increased DNA double-strand breaks, as demonstrated by γH2AX staining, showed a senescence phenotype, with expression of senescence-associated ß-galactosidase accompanied by the upregulation of p21 and p16 in both groups. Further, untargeted analysis of the senescence-related extracellular metabolome profile of MCF-7 cells showed significantly reduced concentrations of carnitine and pantothenic acid and increased levels of S-adenosylhomocysteine in doxorubicin-treated cells, indicating the accumulation of ROS mediated DNA damage and impaired mitochondrial membrane potential. Similarly, a significant decline in the creatine level was observed in radiation-exposed cells, suggesting an increase in oxidative stress-mediated DNA damage. Our study, therefore, provides key effectors of the metabolic changes in doxorubicin and radiation-induced early senescence in MCF-7 breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Línea Celular Tumoral , Doxorrubicina/farmacología , Daño del ADN , Células MCF-7 , Senescencia Celular/genética
13.
Food Chem ; 439: 138072, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38043274

RESUMEN

Chinese cherry [Cerasus pseudocerasus (Lindl.) G.Don], native to China, is an economically important fruit crop with attractive colors and delicious flavors. However, the specific metabolites present in cherry fruits have remained unknown. Here, we firstly characterized 1439 metabolite components of Chinese cherry fruits, predominantly including amino acids, flavonoids, and phenolic acids. Moreover, we screened ten biomarkers of Chinese cherry accessions by ROC curve analysis. Among 250 flavonoids, 26 structurally unique anthocyanins collectively determined fruit color, with cyanidins playing a dominant role. Differences in accumulated metabolites between anthocyanin and proanthocyanidin pathways were likely responsible for the variation in fruit color, ranging from yellow to black purple. Meanwhile, we found limocitrin-7-O-glucoside, along with eight other compounds, as underlying contributors to bitter off-taste experienced in fruits. This study provides insights into the regulatory network of metabolites involved in color variation and bitterness formation and genetic improvement of Chinese cherry fruits.


Asunto(s)
Antocianinas , Prunus , Antocianinas/análisis , Gusto , Frutas/química , Prunus/genética , Metabolómica , Flavonoides/análisis , Color
14.
Adv Life Sci ; 10(2): 200-209, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38094851

RESUMEN

Background: Plant-derived endophytic actinobacteria are the center of attention due to their capacity to produce diverse antimicrobial and anticancer compounds and their metabolites influence plant growth. Methods: In this study, 40 endophytic actinobacteria strains were isolated from the roots of eight medicinal plants used as folk medicine in South Asian region. The isolates were characterized morphologically, biochemically and physiologically and the genus level identification of the selected strains was done by 16SrRNA gene sequencing. In small scale cultivation (50ml broth), the isolates were grown in A-medium to prepare the crude extracts. These crude extracts were subsequently evaluated for their antimicrobial, anticancer and antioxidant activity and the metabolomics profile of each of the extract was determined by TLC and HPLC-UV/MS. Results: The taxonomic studies showed that the isolates belong to the group actinobacteria based on their morphological and physiological characteristics and the 16SrRNA gene sequencing of the selected strains identified the genera including Streptomyces, Micromonospora and Nocardia. Cumulatively,53% of extracts exhibited anti-Gram-(+) activity,47% exhibited anti-Gram-(-) activity,32% exhibited antifungal activity and 30% were cytotoxic to PC3 and A549 cancer cell lines and most of the extracts have shown antioxidant activity greater than 50%. The metabolomics analysis predicted the presence of an array of low molecular weight metabolites and indicated the promising isolates in collection for further studies for novel bioactive metabolite isolation and structure elucidation. Conclusion: Overall the study provides an overview of the endophytic actinobacteria residing in the roots of the selected medicinal plants prevalent in south Asian region and their potential to produce the medicinally and biotechnologically useful compounds.

15.
Cells ; 12(23)2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38067180

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a motor neuron (MN) disease associated with progressive muscle atrophy, paralysis, and eventually death. Growing evidence demonstrates that the pathological process leading to ALS is the result of multiple altered mechanisms occurring not only in MNs but also in other cell types inside and outside the central nervous system. In this context, the involvement of skeletal muscle has been the subject of a few studies on patients and ALS animal models. In this work, by using primary myocytes derived from the ALS transgenic hSOD1(G93A) mouse model, we observed that the myogenic capability of such cells was defective compared to cells derived from control mice expressing the nonpathogenic hSOD1(WT) isoform. The correct in vitro myogenesis of hSOD1(G93A) primary skeletal muscle cells was rescued by the addition of a conditioned medium from healthy hSOD1(WT) myocytes, suggesting the existence of an in trans activity of secreted factors. To define a dataset of molecules participating in such safeguard action, we conducted comparative metabolomic profiling of a culture medium collected from hSOD1(G93A) and hSOD1(WT) primary myocytes and report here an altered secretion of amino acids and lipid-based signaling molecules. These findings support the urgency of better understanding the role of the skeletal muscle secretome in the regulation of the myogenic program and mechanisms of ALS pathogenesis and progression.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedad de la Neurona Motora , Ratones , Humanos , Animales , Esclerosis Amiotrófica Lateral/metabolismo , Neuronas Motoras/patología , Ratones Transgénicos , Superóxido Dismutasa-1/metabolismo , Enfermedad de la Neurona Motora/metabolismo , Células Musculares/metabolismo , Metaboloma
16.
Artículo en Inglés | MEDLINE | ID: mdl-38065238

RESUMEN

BACKGROUND: Cardiac metabolism is altered in heart failure and ischemia-reperfusion injury states. We hypothesized that metabolomic profiling during ex situ normothermic perfusion before heart transplantation (HT) would lend insight into myocardial substrate utilization and report on subclinical and clinical allograft dysfunction risk. METHODS: Metabolomic profiling was performed on serial samples of ex situ normothermic perfusate assaying biomarkers of myocardial injury in lactate and cardiac troponin I (TnI) as well as metabolites (66 acylcarnitines, 15 amino acids, nonesterified fatty acids [NEFA], ketones, and 3-hydroxybutyrate). We tested for change over time in injury biomarkers and metabolites, along with differential changes by recovery strategy (donation after circulatory death [DCD] vs donation after brain death [DBD]). We examined associations between metabolites, injury biomarkers, and primary graft dysfunction (PGD). Analyses were performed using linear mixed models adjusted for recovery strategy, assay batch, donor-predicted heart mass, and time. RESULTS: A total of 176 samples from 92 ex situ perfusion runs were taken from donors with a mean age of 35 (standard deviation 11.3) years and a median total ex situ perfusion time of 234 (interquartile range 84) minutes. Lactate trends over time differed significantly by recovery strategy, while TnI increased during ex situ perfusion regardless of DCD vs DBD status. We found fuel substrates were rapidly depleted during ex situ perfusion, most notably the branched-chain amino acids leucine/isoleucine, as well as ketones, 3-hydroxybutyrate, and NEFA (least squares [LS] mean difference from the first to last time point -1.7 to -4.5, false discovery rate q < 0.001). Several long-chain acylcarnitines (LCAC), including C16, C18, C18:1, C18:2, C18:3, C20:3, and C20:4, increased during the perfusion run (LS mean difference 0.42-0.67, q < 0.001). Many LCACs were strongly associated with lactate and TnI. The change over time of many LCACs was significantly different for DCD vs DBD, suggesting differential trends in fuel substrate utilization by ischemic injury pattern. Changes in leucine/isoleucine, arginine, C12:1-OH/C10:1-DC, and C16-OH/C14-DC were associated with increased odds of moderate-severe PGD. Neither end-of-run nor change in lactate or TnI was associated with PGD. CONCLUSIONS: Metabolomic profiling of ex situ normothermic perfusion solution reveals a pattern of fuel substrate utilization that correlates with subclinical and clinical allograft dysfunction. This study highlights a potential role for interventions focused on fuel substrate modification in allograft conditioning during ex situ perfusion to improve allograft outcomes.

17.
Heliyon ; 9(11): e21402, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38028010

RESUMEN

Coffee is widely consumed across the globe. The most sought out varieties are Arabica and Robusta which differ significantly in their aroma and taste. Furthermore, varieties cultivated in different regions are perceived to have distinct characteristics encouraging some producers to adopt the denomination of origin label. These differences arise from variations on metabolite content related to edaphoclimatic conditions and post-harvest management among other factors. Although sensory analysis is still standard for coffee brews, instrumental analysis of the roasted and green beans to assess the quality of the final product has been encouraged. Metabolomic profiling has risen as a promising approach not only for quality purposes but also for geographic origin assignment. Many techniques can be applied for sample analysis: chromatography, mass spectrometry, and NMR have been explored. The data collected is further sorted by multivariate analysis to identify similar characteristics among the samples, reduce dimensionality and/or even propose a model for predictive purposes. This review focuses on the evolution of metabolomic profiling for the geographic origin assessment of roasted and green coffee beans in the last 21 years, the techniques that are usually applied for sample analysis and also the most common approaches for the multivariate analysis of the collected data. The prospect of applying a wide range of analytical techniques is becoming an unbiased approach to determine the origin of different roasted and green coffee beans samples with great correlation. Predictive models worked accurately for the geographic assignment of unknown samples once the variety was known.

18.
Front Mol Biosci ; 10: 1251905, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38028552

RESUMEN

Objectives: Alström syndrome (ALMS) and Bardet-Biedl syndrome (BBS) are among the so-called ciliopathies and are associated with the development of multiple systemic abnormalities, including early childhood obesity and progressive neurodegeneration. Given the progressive deterioration of patients' quality of life, in the absence of defined causal treatment, it seems reasonable to identify the metabolic background of these diseases and search for their progression markers. The aim of this study was to find metabolites characteristic to ALMS and BBS, correlating with clinical course parameters, and related to the diseases progression. Methods: Untargeted metabolomics of serum samples obtained from ALMS and BBS patients (study group; n = 21) and obese/healthy participants (control group; each of 35 participants; n = 70) was performed using LC-QTOF-MS method at the study onset and after 4 years of follow-up. Results: Significant differences in such metabolites as valine, acylcarnitines, sphingomyelins, phosphatidylethanolamines, phosphatidylcholines, as well as lysophosphatidylethanolamines and lysophosphatidylcholines were observed when the study group was compared to both control groups. After a follow-up of the study group, mainly changes in the levels of lysophospholipids and phospholipids (including oxidized phospholipids) were noted. In addition, in case of ALMS/BBS patients, correlations were observed between selected phospholipids and glucose metabolism parameters. We also found correlations of several LPEs with patients' age (p < 0.05), but the level of only one of them (hexacosanoic acid) correlated negatively with age in the ALMS/BBS group, but positively in the other groups. Conclusion: Patients with ALMS/BBS have altered lipid metabolism compared to controls or obese subjects. As the disease progresses, they show elevated levels of lipid oxidation products, which may suggest increased oxidative stress. Selected lipid metabolites may be considered as potential markers of progression of ALMS and BBS syndromes.

19.
Heliyon ; 9(9): e20034, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37810029

RESUMEN

Podocarpus is the most dominant genus of Podocarpaceae, with higher taxonomical proximity to the Taxaceae, having numerous pharmaceutical applications, however, scarce studies dealing with the physiological and metabolic criteria of Podocarpus in Egypt were reported. Thus, the objective of this work was to assess the physiological and metabolical patterns of the different species of Podocarpus; P. gracilior, P. elongates, P. macrophyllus and P. neriifolius. The highest terpenoids contents were reported in P. neriifolius, followed by P. elongatus, and P. macrophyllus. P. gracilior had the highest antioxidants amount, followed by P. macrophyllus, P. neriifolius and P. elongatus. From the GC/MS metabolic profiling, caryophyllene, ß-cadinene, ß-cuvebene, vitispirane, ß-cadinene and amorphene were the most dominant metabolites in P. gracilior. ß-Caryophyllene was the common in P. gracilior, P. elongatus, P. macrophyllus and P. neriifolius with an obvious fluctuation. The plant methanolic extracts have an obvious activity against the multidrug resistant bacteria; E. coli, P. aeruginosa, S. pyogenes and S. aureus, and fungi; A. fumigatus, A. flavus, A. niger and C. albicans in a concentration-dependent manner. The highest Taxol yield was assessed in the extracts of P. elongatus (16.4 µg/gdw), followed by P. macrophyllus, and P. neriifolius. The chemical identity of Taxol derived from P. elongatus was resolved by LC/MS, with molecular mass 854.6 m/z, and similar structural fragmentation pattern of the authentic one. The highest antitumor activity of P. elongatus extracted Taxol was assessed towards HCT-116 (30.2 µg/ml), HepG-2 (53.7 µg/ml) and MCF-7 (71.8 µg/ml). The ITS sequence of P. elongatus "as potent Taxol producer" was deposited on Genbank with accession #ON540734.1, that is the first record of Podocarpus species on Genbank.

20.
Metabolites ; 13(10)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37887372

RESUMEN

Hepatocellular carcinoma (HCC), the most prevalent form of liver cancer, is the third leading cause of mortality globally. Patients with HCC have a poor prognosis due to the fact that the emergence of symptoms typically occurs at a late stage of the disease. In addition, conventional biomarkers perform suboptimally when identifying HCC in its early stages, heightening the need for the identification of new and more effective biomarkers. Using metabolomics and lipidomics approaches, this study aims to identify serum biomarkers for identification of HCC in patients with liver cirrhosis (LC). Serum samples from 20 HCC cases and 20 patients with LC were analyzed using ultra-high-performance liquid chromatography-Q Exactive mass spectrometry (UHPLC-Q-Exactive-MS). Metabolites and lipids that are significantly altered between HCC cases and patients with LC were identified. These include organic acids, amino acids, TCA cycle intermediates, fatty acids, bile acids, glycerophospholipids, sphingolipids, and glycerolipids. The most significant variability was observed in the concentrations of bile acids, fatty acids, and glycerophospholipids. In the context of HCC cases, there was a notable increase in the levels of phosphatidylethanolamine and triglycerides, but the levels of fatty acids and phosphatidylcholine exhibited a substantial decrease. In addition, it was observed that all of the identified metabolites exhibited a superior area under the receiver operating characteristic (ROC) curve in comparison to alpha-fetoprotein (AFP). The pathway analysis of these metabolites revealed fatty acid, lipid, and energy metabolism as the most impacted pathways. Putative biomarkers identified in this study will be validated in future studies via targeted quantification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA