Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Funct Integr Genomics ; 24(4): 129, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39039331

RESUMEN

Genetically modified (GM) crops, expressing Bacillus thuringiensis (Bt) insecticidal toxins, have substantially transformed agriculture. Despite rapid adoption, their environmental and economic benefits face scrutiny due to unsustainable agricultural practices and the emergence of resistant pests like Spodoptera frugiperda, known as the fall armyworm (FAW). FAW's adaptation to Bt technology in corn and cotton compromises the long-term efficacy of Bt crops. To advance the understanding of the genetic foundations of resistance mechanisms, we conducted an exploratory comparative transcriptomic analysis of two divergent FAW populations. One population exhibited practical resistance to the Bt insecticidal proteins Cry1A.105 and Cry2Ab2, expressed in the genetically engineered MON-89Ø34 - 3 maize, while the other population remained susceptible to these proteins. Differential expression analysis supported that Cry1A.105 and Cry2Ab2 significantly affect the FAW physiology. A total of 247 and 254 differentially expressed genes were identified in the Cry-resistant and susceptible populations, respectively. By integrating our findings with established literature and databases, we underscored 53 gene targets potentially involved in FAW's resistance to Cry1A.105 and Cry2Ab2. In particular, we considered and discussed the potential roles of the differentially expressed genes encoding ABC transporters, G protein-coupled receptors, the P450 enzymatic system, and other Bt-related detoxification genes. Based on these findings, we emphasize the importance of exploratory transcriptomic analyses to uncover potential gene targets involved with Bt insecticidal proteins resistance, and to support the advantages of GM crops in the face of emerging challenges.


Asunto(s)
Toxinas de Bacillus thuringiensis , Proteínas Bacterianas , Endotoxinas , Proteínas Hemolisinas , Resistencia a los Insecticidas , Spodoptera , Transcriptoma , Spodoptera/efectos de los fármacos , Spodoptera/genética , Animales , Endotoxinas/genética , Endotoxinas/farmacología , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Resistencia a los Insecticidas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/parasitología , Zea mays/genética , Zea mays/parasitología , Perfilación de la Expresión Génica
2.
Pharmacol Res Perspect ; 12(4): e1220, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38899589

RESUMEN

Cholestasis, a chronic liver condition, disrupts bile acid homeostasis and complicates drug disposition, posing significant challenges in medicating cholestatic patients. Drug metabolism enzymes and transporters (DMETs) are pivotal in drug clearance. Research indicates that cholestasis leads to alterations in both hepatic and extrahepatic DMETs, with changes in expression and function documented in rodents and humans. This review synthesizes the modifications in key drug disposition components within cholestasis, focusing on cytochrome P450 (CYP450), drug transporters, and their substrates. Additionally, we briefly discuss certain drugs that have demonstrated efficacy in restoring DMET expression in cholestatic conditions. Ultimately, these insights necessitate a reevaluation of drug selection and dosing guidelines for patients with cholestasis.


Asunto(s)
Colestasis , Sistema Enzimático del Citocromo P-450 , Humanos , Colestasis/metabolismo , Colestasis/tratamiento farmacológico , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Preparaciones Farmacéuticas/metabolismo , Preparaciones Farmacéuticas/administración & dosificación , Proteínas de Transporte de Membrana/metabolismo , Hígado/metabolismo , Ácidos y Sales Biliares/metabolismo
3.
Endocr Connect ; 13(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38323605

RESUMEN

Adipokine chemerin plays important roles in disorders of glucose and lipid metabolism of obesity and obesity-related diseases, and exercise-induced improvement of glucose and lipid metabolism is closely related to the decrease of chemerin, but the mechanisms by which chemerin regulates glucose and lipid metabolism remain unclarified. Hypotestosterone induces male obesity and disorders of glucose and lipid metabolism through androgen receptor (AR) and its target genes: glucose and lipid metabolism-related molecules (including FOXO1, PEPCK, PGC-1α, and SCD1). Recently, the link between them has been reported that chemerin modulated the secretion of androgen. In this study, global chemerin knockout (chemerin (-/-)) mice were established to demonstrate the roles of chemerin in regulating blood glucose and blood lipid of mice under diet (high-fat (HFD) and normal diet) and exercise interventions and then to explore its mechanisms (AR - glucose and lipid metabolism enzymes). We found that the blood lipid and adipocyte size were low accompanied by the improvements in the levels of serum testosterone, gastrocnemius AR, and gastrocnemius FOXO1, SCD1, and PGC-1α in HFD chemerin (-/-) mice, but exercise-induced improvements of these indicators in HFD WT mice were attenuated or abolished in HFD chemerin (-/-) mice. In conclusion, the decrease of chemerin improved the blood lipid profile of HFD male mice at sedentary and exercise states, mediated partly by the increases of testosterone and AR to regulate glucose and lipid metabolism enzymes. To our knowledge, it is the first report that chemerin's regulation of glucose and lipid metabolism might be mediated by testosterone and AR in vivo.

4.
Curr Drug Metab ; 25(1): 2-12, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38409696

RESUMEN

Rev-erbɑ (NR1D1) is a nuclear receptor superfamily member that plays a vital role in mammalian molecular clocks and metabolism. Rev-erbɑ can regulate the metabolism of drugs and the body's glucose metabolism, lipid metabolism, and adipogenesis. It is even one of the important regulatory factors regulating the occurrence of metabolic diseases (e.g., diabetes, fatty liver). Metabolic enzymes mediate most drug metabolic reactions in the body. Rev-erbɑ has been recognized to regulate drug metabolic enzymes (such as Cyp2b10 and Ugt1a9). Therefore, this paper mainly reviewed that Rev-erbɑ regulates I and II metabolic enzymes in the liver to affect drug pharmacokinetics. The expression of these drug metabolic enzymes (up-regulated or down-regulated) is related to drug exposure and effects/ toxicity. In addition, our discussion extends to Rev-erbɑ regulating some transporters (such as P-gp, Mrp2, and Bcrp), as they also play an essential role in drug metabolism. Finally, we briefly describe the role and mechanism of nuclear receptor Rev-erbɑ in lipid and glucose homeostasis, obesity, and metabolic disorders syndrome. In conclusion, this paper aims to understand better the role and mechanism of Rev-erbɑ in regulating drug metabolism, lipid, glucose homeostasis, obesity, and metabolic disorders syndrome, which explores how to target Rev-erbɑ to guide the design and development of new drugs and provide scientific reference for the molecular mechanism of new drug development, rational drug use, and drug interaction.


Asunto(s)
Hígado , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares , Humanos , Animales , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Hígado/metabolismo , Metabolismo de los Lípidos
5.
Bioresour Technol ; 393: 130047, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37989421

RESUMEN

A salt-tolerant strain, Pseudomonas mendocina A4, was isolated from brackish-water ponds showing simultaneous heterotrophic nitrification-aerobic denitrification and phosphorus removal capability. The optimal conditions for nitrogen and phosphate removal of strain A4 were pH 7-8, carbon/nitrogen ratio 10, phosphorus/nitrogen ratio 0.2, temperature 30 °C, and salinity range of 0-5 % using sodium succinate as the carbon source. The nitrogen and phosphate removal efficiencies were 96-100 % and 88-96 % within 24 h, respectively. The nitrogen and phosphate removal processes were matched with the modified Gompertz model, and the underlying mechanisms were confirmed by the activities of key metabolic enzymes. Under 10 % salinity, the immobilization technology was employed to enhance the nitrogen and phosphate removal efficiencies of strain A4, achieving 87 % and 76 %, respectively. These findings highlight the potential application of strain A4 in both freshwater and marine culture wastewater treatment.


Asunto(s)
Desnitrificación , Radioisótopos de Nitrógeno , Pseudomonas mendocina , Fosfatos , Pseudomonas mendocina/metabolismo , Nitrógeno/metabolismo , Aerobiosis , Nitrificación , Fósforo , Procesos Heterotróficos , Carbono , Nitritos/química
6.
Saudi Pharm J ; 31(11): 101776, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37868645

RESUMEN

Chronic diabetes mellites related hyperglycemia is a major cause of mortality and morbidity due to further complications like retinopathy, hypertension and cardiovascular diseases. Though several synthetic anti-diabetes drugs specifically targeting glucose-metabolism enzymes are available, they have their own limitations, including adverse side-effects. Unlike other natural or marine-derived pharmacologically important molecules, deep-sea fungi metabolites still remain under-explored for their anti-diabetes potential. We performed structure-based virtual screening of deep-sea fungal compounds selected by their physiochemical properties, targeting crucial enzymes viz., α -amylase, α -glucosidase, pancreatic-lipoprotein lipase, hexokinase-II and protein tyrosine phosphatase-1B involved in glucose-metabolism pathway. Following molecular docking scores and MD simulation analyses, the selected top ten compounds for each enzyme, were subjected to pharmacokinetics prediction based on their AdmetSAR- and pharmacophore-based features. Of these, cladosporol C, tenellone F, ozazino-cyclo-(2,3-dihydroxyl-trp-tyr), penicillactam and circumdatin G were identified as potential inhibitors of α -amylase, α -glucosidase, pancreatic-lipoprotein lipase, hexokinase-II and protein tyrosine phosphatase-1B, respectively. Our in silico data therefore, warrants further experimental and pharmacological studies to validate their anti-diabetes therapeutic potential.

7.
Viruses ; 15(5)2023 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-37243184

RESUMEN

African swine fever virus (ASFV) encodes more than 150 proteins, most of them of unknown function. We used a high-throughput proteomic analysis to elucidate the interactome of four ASFV proteins, which potentially mediate a critical step of the infection cycle, the fusion and endosomal exit of the virions. Using affinity purification and mass spectrometry, we were able to identify potential interacting partners for those ASFV proteins P34, E199L, MGF360-15R and E248R. Representative molecular pathways for these proteins were intracellular and Golgi vesicle transport, endoplasmic reticulum organization, lipid biosynthesis, and cholesterol metabolism. Rab geranyl geranylation emerged as a significant hit, and also Rab proteins, which are crucial regulators of the endocytic pathway and interactors of both p34 and E199L. Rab proteins co-ordinate a tight regulation of the endocytic pathway that is necessary for ASFV infection. Moreover, several interactors were proteins involved in the molecular exchange at ER membrane contacts. These ASFV fusion proteins shared interacting partners, suggesting potential common functions. Membrane trafficking and lipid metabolism were important categories, as we found significant interactions with several enzymes of the lipid metabolism. These targets were confirmed using specific inhibitors with antiviral effect in cell lines and macrophages.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Virus de la Fiebre Porcina Africana/fisiología , Proteínas Virales de Fusión/metabolismo , Proteómica , Línea Celular
8.
Antioxidants (Basel) ; 12(4)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37107271

RESUMEN

INTRODUCTION: Exercise is an important therapeutic strategy for preventing and treating myocardial infarction (MI)-induced cardiac remodeling and heart failure. However, the myocardial effects of resistance exercise on infarcted hearts are not completely established. In this study, we investigated the effects of resistance exercise on structural, functional, and molecular cardiac alterations in infarcted rats. METHODS: Three months after MI induction or simulated surgery, Wistar rats were assigned into three groups: Sham (n = 14); MI (n = 9); and exercised MI (MI-Ex, n = 13). Exercised rats performed, 3 times a week for 12 weeks, four climbs on a ladder with progressive loads. Cardiac structure and left ventricle (LV) function were analyzed by echocardiogram. Myocyte diameters were evaluated in hematoxylin- and eosin-stained histological sections as the smallest distance between borders drawn across the nucleus. Myocardial energy metabolism, lipid hydroperoxide, malondialdehyde, protein carbonylation, and antioxidant enzyme activities were evaluated by spectrophotometry. Gene expressions of NADPH oxidase subunits were evaluated by RT-PCR. Statistical analyses were performed using ANOVA and Tukey or Kruskal-Wallis and Dunn's test. RESULTS: Mortality did not differ between the MI-Ex and MI groups. MI had dilated left atrium and LV, with LV systolic dysfunction. Exercise increased the maximum load-carrying capacity, with no changes in cardiac structure or LV function. Myocyte diameters were lower in MI than in Sham and MI-Ex. Lactate dehydrogenase and creatine kinase activity were lower in MI than in Sham. Citrate synthase and catalase activity were lower in MI and MI-Ex than in Sham. Lipid hydroperoxide concentration was lower in MI-Ex than in MI. Nox2 and p22phox gene expressions were higher in MI-Ex than in Sham. Gene expression of Nox4 was higher in MI and MI-Ex than in Sham, and p47phox was lower in MI than in Sham. CONCLUSION: Late resistance exercise was safe in infarcted rats. Resistance exercise improved maximum load-carrying capacity, reduced myocardial oxidative stress, and preserved myocardial metabolism, with no changes in cardiac structure or left ventricle function in infarcted rats.

9.
In Silico Pharmacol ; 11(1): 11, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37113323

RESUMEN

The emergence of resistant bacteria strains against traditional antibiotics and treatments increases each year. Doderlin is a cationic and amphiphilic peptide active against gram-positive, negative and yeast stains. The aim of the present work was prospect potentials receptors associated of antimicrobial activity of Doderlin using in silico bioinformatics tools. To search for potential targets of Doderlin, PharmMapper software was used. Molecular docking between Doderlin and the receptor was performed by PatchDock. Additional interaction and ligand site prediction for each receptor was performed by I-TASSER software. Those PDB Id, 1XDJ (score: 11,746), 1JMH (score: 11,046), 1YR3 (score: 10,578), 1NG3 (score: 10,082) showed highest dock score. Doderlin was found to predicted/real sites co-localize with 1XDJ and 1JMH, enzymes accountable for nitrogenic bases synthesis. The resulting receptor bioprospecting is highly correlated and suggests that Doderlin might act by interfering with DNA metabolism/production of bacteria, altering microorganism homeostasis and growth impairment. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-023-00149-1.

10.
Drug Metab Rev ; 55(3): 163-180, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37042420

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease. The whole concept of NAFLD has now moved into metabolic dysfunction-associated fatty liver disease (MAFLD) to emphasize the strong metabolic derangement as the basis of the disease. Several studies have suggested that hepatic gene expression was altered in NAFLD and NAFLD-related metabolic comorbidities, particularly mRNA and protein expression of phase I and II drug metabolism enzymes (DMEs). NAFLD may affect the pharmacokinetic parameters. However, there were a limited number of pharmacokinetic studies on NAFLD at present. Determining the pharmacokinetic variation in patients with NAFLD remains challenging. Common modalities for modeling NAFLD included: dietary induction, chemical induction, or genetic models. The altered expression of DMEs has been found in rodent and human samples with NAFLD and NAFLD-related metabolic comorbidities. We summarized the pharmacokinetic changes of clozapine (CYP1A2 substrate), caffeine (CYP1A2 substrate), omeprazole (Cyp2c29/CYP2C19 substrate), chlorzoxazone (CYP2E1 substrate), midazolam (Cyp3a11/CYP3A4 substrate) in NAFLD. These results led us to wonder whether current drug dosage recommendations may need to be reevaluated. More objective and rigorous studies are required to confirm these pharmacokinetic changes. We have also summarized the substrates of the DMEs aforementioned. In conclusion, DMEs play an important role in the metabolism of drugs. We hope that future investigations should focus on the effect and alteration of DMEs and pharmacokinetic parameters in this special patient population with NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP1A2/farmacología , Hígado/metabolismo , Modelos Animales
11.
In Silico Pharmacol, v. 11, 11, abr. 2023
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4892

RESUMEN

The emergence of resistant bacteria strains against traditional antibiotics and treatments increases each year. Doderlin is a cationic and amphiphilic peptide active against gram-positive, negative and yeast stains. The aim of the present work was prospect potentials receptors associated of antimicrobial activity of Doderlin using in silico bioinformatics tools. To search for potential targets of Doderlin, PharmMapper software was used. Molecular docking between Doderlin and the receptor was performed by PatchDock. Additional interaction and ligand site prediction for each receptor was performed by I-TASSER software. Those PDB Id, 1XDJ (score: 11,746), 1JMH (score: 11,046), 1YR3 (score: 10,578), 1NG3 (score: 10,082) showed highest dock score. Doderlin was found to predicted/real sites co-localize with 1XDJ and 1JMH, enzymes accountable for nitrogenic bases synthesis. The resulting receptor bioprospecting is highly correlated and suggests that Doderlin might act by interfering with DNA metabolism/production of bacteria, altering microorganism homeostasis and growth impairment.

12.
Genes (Basel) ; 13(11)2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-36360213

RESUMEN

The altered activity of drug metabolism enzymes (DMEs) is a hallmark of chemotherapy resistance. Cytochrome P450s (CYPs), mainly CYP3A4, and several oxidoreductases are responsible for Phase I metabolism of doxorubicin (DOX), an anthracycline widely used in breast cancer (BC) treatment. This study aimed to investigate the role of Phase I DMEs involved in the first stages of acquisition of DOX-resistance in BC cells. For this purpose, the expression of 92 DME genes and specific CYP-complex enzymes activities were assessed in either sensitive (MCF-7 parental cells; MCF-7/DOXS) or DOX-resistant (MCF-7/DOXR) cells. The DMEs genes detected to be significantly differentially expressed in MCF-7/DOXR cells (12 CYPs and eight oxidoreductases) were indicated previously to be involved in tumor progression and/or chemotherapy response. The analysis of CYP-mediated activities suggests a putative enhanced CYP3A4-dependent metabolism in MCF-7/DOXR cells. A discrepancy was observed between CYP-enzyme activities and their corresponding levels of mRNA transcripts. This is indicative that the phenotype of DMEs is not linearly correlated with transcription induction responses, confirming the multifactorial complexity of this mechanism. Our results pinpoint the potential role of specific CYPs and oxidoreductases involved in the metabolism of drugs, retinoic and arachidonic acids, in the mechanisms of chemo-resistance to DOX and carcinogenesis of BC.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias , Resistencia a Antineoplásicos/genética , Citocromo P-450 CYP3A/genética , Doxorrubicina/farmacología , Antibióticos Antineoplásicos/farmacología
13.
Cancers (Basel) ; 14(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36230492

RESUMEN

Reprogramming of glucose metabolism provides sufficient energy and raw materials for the proliferation, metastasis, and immune escape of cancer cells, which is enabled by glucose metabolism-related enzymes that are abundantly expressed in a broad range of cancers. Therefore, targeting glucose metabolism enzymes has emerged as a promising strategy for anticancer drug development. Although several glucose metabolism modulators have been approved for cancer treatment in recent years, some limitations exist, such as a short half-life, poor solubility, and numerous adverse effects. With the rapid development of medicinal chemicals, more advanced and effective glucose metabolism enzyme-targeted anticancer drugs have been developed. Additionally, several studies have found that some natural products can suppress cancer progression by regulating glucose metabolism enzymes. In this review, we summarize the mechanisms underlying the reprogramming of glucose metabolism and present enzymes that could serve as therapeutic targets. In addition, we systematically review the existing drugs targeting glucose metabolism enzymes, including small-molecule modulators and natural products. Finally, the opportunities and challenges for glucose metabolism enzyme-targeted anticancer drugs are also discussed. In conclusion, combining glucose metabolism modulators with conventional anticancer drugs may be a promising cancer treatment strategy.

14.
Front Pharmacol ; 13: 962718, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36278150

RESUMEN

The key orally delivered drug metabolism processes are reviewed to aid the assessment of the current in vivo/vitro experimental systems applicability for evaluating drug metabolism and the interaction potential. Orally administration is the most commonly used state-of-the-art road for drug delivery due to its ease of administration, high patient compliance and cost-effectiveness. Roles of gut metabolic enzymes and microbiota in drug metabolism and absorption suggest that the gut is an important site for drug metabolism, while the liver has long been recognized as the principal organ responsible for drugs or other substances metabolism. In this contribution, we explore various experimental models from their development to the application for studying oral drugs metabolism of and summarized advantages and disadvantages. Undoubtedly, understanding the possible metabolic mechanism of drugs in vivo and evaluating the procedure with relevant models is of great significance for screening potential clinical drugs. With the increasing popularity and prevalence of orally delivered drugs, sophisticated experimental models with higher predictive capacity for the metabolism of oral drugs used in current preclinical studies will be needed. Collectively, the review seeks to provide a comprehensive roadmap for researchers in related fields.

15.
J Nutr Biochem ; 105: 108992, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35331899

RESUMEN

Selenium (Se), a nutritionally essential mineral for humans and animals, has a significant antagonistic effect on heavy metal cadmium (Cd) biotoxicity. Still, the impact of different Se sources on alleviating Cd toxicity has received only limited attention. Therefore, the purpose of the current study was to assess the mitigation level of Cd-induced cardiotoxicity by different sources such as nanoparticles of Se, Se-rich yeast, and sodium selenite (SS). The results evidenced that the presence of Cd led to a significant increase in biochemical parameters such as lactate dehydrogenase and creatine kinase, as well as histopathological lesions in the heart of chickens. Cd exposure also resulted in more extensive effects on phase I metabolism enzymes and transcript cytochrome P450 isoforms, elevated the levels of malondialdehyde (MDA), glutathione (GSH), and hydrogen peroxide (H2O2) and depressed total superoxide dismutase (T-SOD), copper-zinc SOD (Cu-Zn SOD), total antioxidant capacity (T-AOC) and catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione-S-transferase (GST) activities. The expression of nuclear receptors, aryl hydrocarbon receptor (AHR), constitutive androstane receptor (CAR), and pregnane X receptor (PXR) was declined, down-regulated nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream targets in the Cd-treat group. Notably, Se sources application alleviated Cd toxicity by triggering AHR/CAR/PXR/Nrf2 signaling pathway to promote restoring antioxidant defense system and phase I metabolism enzymes system. However, when compared to the effectiveness of antagonism, the nanoparticles of Se were superior in relieving Cd-induced cardiotoxicity via AHR/CAR/PXR/Nrf2 pathway activation than other Se-sources.


Asunto(s)
Intoxicación por Cadmio , Nanopartículas , Selenio , Animales , Antioxidantes/metabolismo , Cadmio/metabolismo , Cadmio/toxicidad , Cardiotoxicidad , Pollos , Receptor de Androstano Constitutivo , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Receptor X de Pregnano/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Saccharomyces cerevisiae/metabolismo , Selenio/metabolismo , Selenio/farmacología , Selenito de Sodio/farmacología , Superóxido Dismutasa/metabolismo
16.
Nutrients ; 13(12)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34959930

RESUMEN

Theaflavin-3,3'-digallate (TF3) is the most important theaflavin monomer in black tea. TF3 was proved to reduce blood glucose level in mice and rats. However, the elaborate anti-diabetic mechanism was not well elucidated. In this work, human hepatoma G2 (HepG2) cells and zebrafish (Danio rerio) were used simultaneously to reveal anti-diabetic effect of TF3. The results showed that TF3 could effectively rise glucose absorption capacity in insulin-resistant HepG2 cells and regulate glucose level in diabetic zebrafish. The hypoglycemic effect was mediated through down-regulating phosphoenolpyruvate carboxykinase and up-regulating glucokinase. More importantly, TF3 could significantly improve ß cells regeneration in diabetic zebrafish at low concentrations (5 µg/mL and 10 µg/mL), which meant TF3 had a strong anti-diabetic effect. Obviously, this work provided the potential benefit of TF3 on hypoglycemic effect, regulating glucose metabolism enzymes, and protecting ß cells. TF3 might be a promising agent for combating diabetes.


Asunto(s)
Biflavonoides/farmacología , Catequina/análogos & derivados , Evaluación Preclínica de Medicamentos/métodos , Hipoglucemiantes , Animales , Biflavonoides/aislamiento & purificación , Catequina/aislamiento & purificación , Catequina/farmacología , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Glucoquinasa/metabolismo , Glucosa/metabolismo , Células Hep G2 , Humanos , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Té/química , Regulación hacia Arriba/efectos de los fármacos , Pez Cebra
17.
Int Immunopharmacol ; 101(Pt B): 108336, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34768127

RESUMEN

BACKGROUND: Research on acetylation modification and its modification sites will be of great significance for revealing the mechanism of disease and developing new targeted medicines. In this study, we aim to construct a complete atlas of acetylome in the DSS-induced ulcerative colitis mice model (UC model) METHODS: A high-resolution mass spectrometry-based quantitative approach was employed to identify lysine-acetylated proteins and acetylation sites. Bioinformatics analysis and in vitro experiments verified anti-inflammatory effects of HSP90B1-K142ac. RESULTS: 2597 acetylation events and 1914 sites were quantified, highlighting 140 acetylation site changes in the colitis colon tissue. 91 acetylation sites in 75 proteins were up-regulated, and 49 acetylation sites in 39 proteins were down-regulated in the UC models. The differentially acetylated proteins mainly consisted of non-histone proteins located in the cytoplasm and mitochondria. KEGG and protein-protein interaction networks analysis showed that the differentially acetylated proteins were enriched in the TCA cycle, fatty acid metabolism, and protein processing in the endoplasmic reticulum. 68% of the differentially metabolized enzymes have a down-regulated trend in acetylation levels. The acetylation level of lysine 142 in HSP90B1 was found to be obvious in the UC colon, and point mutation of HSP90B1-K142ac would result in the decreasing secretion of TNF-α and IL-2 in LPS-stimulated cultured cells. CONCLUSION: Our work built a complete atlas of acetylome and revealed the potential role of metabolic enzymes and heat shock proteins in DSS-induced colitis.


Asunto(s)
Colitis Ulcerosa/metabolismo , Proteínas de Choque Térmico/metabolismo , Acetilación , Animales , Colitis Ulcerosa/tratamiento farmacológico , Biología Computacional , Sulfato de Dextran , Modelos Animales de Enfermedad , Humanos , Lisina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Terapia Molecular Dirigida , Proteómica
18.
Front Plant Sci ; 12: 681145, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220901

RESUMEN

Carbon metabolism in higher plants is a basic physiological metabolism, and carbon allocation and conversion require the activity of various enzymes in metabolic processes that alter the content and overall composition of sugars in the sink organ. However, it is not known how various enzymes affect carbon metabolism when tomato plants are subjected to water stress or treated with potassium. Although the process of carbon metabolism is very complex, we used the carbon conversion rate to compare and analyze the enzyme activities related to sugar metabolism and find out which carbon conversion rate are the most important. Results showed that water stress and potassium increased carbon import flux in the fruit, which was beneficial to carbon accumulation. Water deficit increased the activity of sucrose synthase (SuSy) and starch phosphorylase (SP) and decreased the activity of sucrose phosphate synthase (SPS) and adenosine diphosphate glucose pyrophosphorylase (AGPase) in the source. Water stress increased the activity of acid invertase (AI), SuSy and SP but decreased the activity of AGPase in the sink. Potassium modified the balance of enzymes active in sugar and starch metabolism by increasing the activity of AI, SuSy, SPS and SP and significantly decreasing the activity of AGPase, resulting in increase of hexose. Canonical correlational analysis revealed that the carbon conversion rate was mainly affected by the relative rate of conversion of sucrose to fructose and glucose [p1(t)] and glucose to starch [p5m(t)]. SuSy and AGPase had the greatest effect on enzyme activity in the fruit; respectively regulated p 1(t) and p 5m(t).

19.
Front Cell Dev Biol ; 9: 678760, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34179008

RESUMEN

Sphingolipids are bioactive lipid components of cell membranes with important signal transduction functions in health and disease. Ceramide is the central building block for sphingolipid biosynthesis and is processed to form structurally and functionally distinct sphingolipids. Ceramide can be phosphorylated by ceramide kinase (CERK) to generate ceramide-1-phosphate, a cytoprotective signaling molecule that has been widely studied in multiple tissues and organs, including the developing otocyst. However, little is known about ceramide kinase regulation during inner ear development. Using chicken otocysts, we show that genes for CERK and other enzymes of ceramide metabolism are expressed during the early stages of inner ear development and that CERK is developmentally regulated at the otic vesicle stage. To explore its role in inner ear morphogenesis, we blocked CERK activity in organotypic cultures of otic vesicles with a specific inhibitor. Inhibition of CERK activity impaired proliferation and promoted apoptosis of epithelial otic progenitors. CERK inhibition also compromised neurogenesis of the acoustic-vestibular ganglion. Insulin-like growth factor-1 (IGF-1) is a key factor for proliferation, survival and differentiation in the chicken otocyst. CERK inhibition decreased IGF-1-induced AKT phosphorylation and blocked IGF-1-induced cell survival. Overall, our data suggest that CERK is activated as a central element in the network of anti-apoptotic pro-survival pathways elicited by IGF-1 during early inner ear development.

20.
Biochemistry (Mosc) ; 86(2): 179-189, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33832416

RESUMEN

Polydatin (PD) has a broad range of pharmacological activities; however, its effects on diabetic liver damage are poorly studies. This work is aimed to explore possible protective effects of polydatin-loaded chitosan nanoparticles (PD-CSNPs) or PD against liver damage associated with diabetes. Diabetes was induced in rats using nicotinamide/streptozotocin treatment. Diabetic rats were then divided into six groups: normal control rats, diabetic control rats, and rats orally treated with PD, PD-CSNPs, equivalent unloaded CSNPs, or metformin daily for 4 weeks. Treatment with PD and PD-CSNPs significantly reduced the blood glucose content, lipid peroxidation in the liver, and activities of serum transaminases and carbohydrate metabolism enzymes (including succinate dehydrogenase and pyruvate kinase); by contrast, liver glycogen content, glutathione concentration, and activities of the antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase, and glucose-6-phosphate dehydrogenase) were markedly increased compared with the control diabetic rats. Furthermore, expression of the tumor necrosis factor α and interleukin-1ß mRNAs was significantly downregulated, while expression of glucose transporter 2 and glucokinase mRNAs was strongly upregulated vs. control diabetic rats. We concluded that PD-CSNPs and PD ameliorate diabetic liver damage by modulating glucose transporter 2 expression, affecting the activity of carbohydrate metabolism enzymes, and suppressing oxidative stress and inflammation, PD-CSNPs being more efficient than PD, probably due to higher bioavailability and prolonged release.


Asunto(s)
Quitosano , Diabetes Mellitus Experimental/tratamiento farmacológico , Glucósidos/farmacología , Hígado/efectos de los fármacos , Nanopartículas/química , Estilbenos/farmacología , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Glucosa/metabolismo , Glucósidos/uso terapéutico , Inflamación , Peroxidación de Lípido , Hígado/metabolismo , Masculino , Metformina/farmacología , Metformina/uso terapéutico , Niacinamida , Estrés Oxidativo , Sustancias Protectoras/farmacología , Ratas , Ratas Wistar , Estilbenos/uso terapéutico , Estreptozocina/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA