Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 357
Filtrar
1.
Sci Total Environ ; 953: 176081, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39244049

RESUMEN

Assessing the environmental risks of contaminated groundwater presents significant challenges due to its often-complex chemical composition and to dynamic processes affecting exposure of organisms in receiving surface waters. The objective of this study was to characterize the effects of groundwater collected from a legacy contaminated industrial site, in fish under environmentally relevant conditions. A 21-day fish short-term reproduction assay was conducted in outdoor wetland mesocosms by exposing adult fathead minnows (Pimephales promelas) to graded concentrations of groundwater (1 %, 3 %, and 6 %). Offspring were held in mesocosms up to four days post-hatch to apply a new approach method (NAM), the EcoToxChip™, to explore whether traditional apical endpoints could be predicted using an alternative mechanistic approach. None of the groundwater concentrations used in this study were lethal to fish. There was greater cumulative number of eggs produced at the highest concentration of exposure. However, no abnormal histological appearance was observed in the liver and gonads of fish and no significant effect was observed in the relative expression of genes, tubercle counts, and erythrocyte micronuclei counts compared to the negative control. Food availability in the mesocosms was also assessed and the abundance of zooplankton increased in all groundwater-treated mesocosms. Fathead minnow findings are in contrast to those obtained from previous controlled laboratory studies that revealed significant genotoxicity, hepatotoxicity, and reprotoxicity of the same mixtures. Several factors could explain these observations, including the aging of groundwater in mesocosms before fish addition resulting in photo- and biodegradation and binding to sediments of toxic components. Our static exposure scenario likely underestimated realistic exposure scenarios where groundwater inflow to surface water is generally semi-continuous. Nevertheless, focused transcriptome analysis using EcoToxChips also observed greater toxicity during previous laboratory tests compared to mesocosm scenarios, and thus, our results support the use of this NAM in the ecological risk assessment of contaminated groundwater.

2.
FEMS Microbiol Ecol ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39264060

RESUMEN

Prokaryotic maintenance respiration and associated metabolic activities constitute a considerable proportion of the total respiration of carbon to CO2 in the ocean's mixed layer. However, seasonal influences on prokaryotic maintenance activities in terms of morphological and metabolic adaptations at low (winter) and high productivity (summer) are still unclear. To address this, we examined the natural prokaryotic communities at the mesocosm scale to analyse the differences in their morphological features and gene expression at low and high maintenance respiration, experimentally manipulated with the specific growth rate. Here, we showed that morphological features including membrane blebbing, membrane vesicles and cell‒cell connections occurred under high productivity. Metabolic adaptations associated with maintenance activities were observed under low productivity. Several Kyoto Encyclopedia of Genes and Genomes categories related to signal transduction, energy metabolism, and translational machinery supported maintenance activities under simulated winter conditions. Differential abundances of genes related to transporters, osmoregulation, nitrogen metabolism, ribosome biogenesis, and cold stress were observed. Our results demonstrate how specific growth rate in different seasons can influence resource allocation at the levels of morphological features and metabolic adaptations. This motivates further study of morphological features and their ecological role during high productivity, while investigations of metabolic adaptations during low productivity can advance our knowledge about maintenance activities.

3.
Environ Res ; 262(Pt 1): 119824, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39173815

RESUMEN

The widespread use of silver nanoparticles (AgNPs) has resulted in their release into the aquatic environment, which threatens the health of aquatic ecosystems. Although the ecotoxicological effects of AgNPs have been widely reported at individual and population levels, the impact of long-term exposure to AgNPs on community structure and ecosystem function in aquatic ecosystems remains poorly understood. Herein, the present study investigated the effects of long-term exposure (28 d) to environmentally relevant concentrations (1 µg/L and 10 µg/L) of AgNPs on the community structure and function of freshwater ecosystems by artificially constructed 28 mesocosms freshwater ecosystem in experimental greenhouses, using plastic water tanks and food web manipulation. The results showed that long-term exposure to AgNPs significantly altered the community structure of zooplankton, phytoplankton, and bacterioplankton in the aquatic ecosystem. Exposure to 10 µg/L AgNPs significantly reduced the zooplankton density (70.3%, p < 0.05) and increased the phytoplankton biomass and bacterial richness and diversity via a "top-down effect." With regards to ecosystem function, AgNPs exposure significantly increased the respiration in freshwater ecosystems but did not have a significant effect on decomposition. The partial least squares path modeling (PLS-PM) further revealed that AgNPs may have a negative impact on ecosystem functions by reducing zooplankton community density and thus increasing phytoplankton biomass. This study is the first to show that long-term exposure to environmentally relevant concentrations of AgNPs leads to alterations in plankton community structure and promotes respiration in freshwater ecosystems. It emphasizes the need for assessing the environmental risk of long-term exposure to AgNPs at the ecosystem level.

4.
Sci Total Environ ; 951: 175456, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39173751

RESUMEN

Growing use of synthetic materials has increased the number of stressors that can degrade freshwater ecosystems. Many of these stressors are relatively new and poorly understood, such as microplastics which are now ubiquitous in freshwater systems. The effects of microplastics on freshwater biota must be investigated further in order to better manage and mitigate their impacts. Our experiment provides the first empirical evaluation of stream invertebrate community dynamics in response to microplastics of different concentrations and sizes, in combination with fine sediment, a pervasive known stressor in running waters. In a 7-week streamside experiment using 64 flow-through circular mesocosms, we investigated the effects of exposure to three simulated microplastic influxes (polyethylene microspheres at four levels between 0 and 28,800 items/event) and the addition of fine sediment (to simulate a polluted stream environment). Invertebrate drift was monitored for 48 h immediately after each microplastic influx, and benthic invertebrate communities were sampled after 28 days of microplastic and sediment manipulations. Microplastic concentration, size and fine sediment all had significant factor main effects on several invertebrate drift response metrics, whereas few microplastic main effects were seen in the benthic community. However, interactive stressor effects were common in different combinations between sediment, microplastic size and concentration, suggesting multiple-stressor relationships between microplastics and fine sediment. Microplastic ingestion was witnessed in four of 12 taxa analysed: Hydrobiosidae, Deleatidium spp., Potamopyrgus antipodarum and Archichauliodes diversus. Our findings provide insights into how microplastics affect drift and benthic community dynamics of stream invertebrates in a field-realistic experimental setting and highlight areas requiring further study. These include investigations of invertebrate drift dynamics in response to other types of microplastics, the role invertebrate size may play in determining their vulnerability to microplastic pollution, and framing more microplastic research in a field-realistic multiple-stressor context.


Asunto(s)
Monitoreo del Ambiente , Invertebrados , Microplásticos , Ríos , Contaminantes Químicos del Agua , Animales , Microplásticos/análisis , Microplásticos/toxicidad , Invertebrados/efectos de los fármacos , Invertebrados/fisiología , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Ríos/química , Ecosistema , Sedimentos Geológicos/química
5.
Mar Environ Res ; 201: 106711, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39213893

RESUMEN

Intertidal wetlands undergo dynamic water and salinity variations, creating both promising and challenging habitats for diverse organisms. Crabs respond strongly to these variations by means such as altering their movements, thereby restructuring their spatial distribution and influencing coastal ecosystem resilience. However, the movements of crabs under varying environmental conditions require further elucidation. We conducted a systematic mesocosm experiment using the ubiquitous intertidal crab species Helice tientsinensis with four amount levels and six salinity levels of sprayed water applied through a custom apparatus, with a primary focus on crab movement. Crab movement from the experimental side of the apparatus (with altered conditions) to the control side (resembling field conditions of the intertidal wetlands of China's Yellow River Delta) and vice versa was recorded. The results revealed significant differences in moving out of the experimental side and moving in among the different water and salinity conditions, both separately for the two factors and simultaneously. Decreases in water content had a more pronounced effect on crab movement, leading to an increased number of crabs moving out of the experimental side of the apparatus. Conversely, as the experimental side became wetter, crabs tended to move towards it, and this movement was intensified by increases or decreases in water salinity. A structural equation model revealed that the moving-out and moving-in played fundamental roles in determining the number of resident crabs at the end of each experiment. While crabs preferred moist sediment with lower salinity, changes in salinity alone had minimal direct effect compared to sediment water contents. Our results clarify crab movements under varying water and salinity conditions, offering valuable insights to support adaptive interventions for crab populations and inform adaptive conservation and management strategies in intertidal wetlands.


Asunto(s)
Braquiuros , Sedimentos Geológicos , Salinidad , Humedales , Animales , Braquiuros/fisiología , Sedimentos Geológicos/química , Sedimentos Geológicos/análisis , China , Ecosistema
6.
J Hazard Mater ; 479: 135671, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39213765

RESUMEN

Herbicide-induced phytoplankton inhibition threatens coastal biodiversity and ecosystem function. Although studies employing single-frequence exposure aid in understanding the phytoplankton community's responses to herbicides, it's difficult to objectively assess their response to cyclic herbicide inputs (long-term low-dose and short-term high-dose) in marine ecosystems. Here, we analyzed the concentration and distribution of herbicides in global coastal waters and simulated this cyclic process through a two-phase atrazine exposure mesocosm experiment and laboratory tests. The results indicated that, the herbicide concentrations (0.82 nmol L-1, 95 % CI 0.55, 1.74) from May to August were significantly higher than that (0.14 nmol L-1, 95 % CI 0.02, 0.38) in the remainder months, and highest concentrations typically emerged in summer; the changes in phytoplankton community composition under environmental concentrations of triazine herbicides could recover in the short term, but sustained inhibition of biomass was produced; the dominant populations were more likely to develop tolerance through preexposure and recover from subsequent impulse of atrazine, but this process was accompanied by the loss of rare groups and a decrease in biodiversity, meanwhile, affected the bacterial community in phycosphere. Consequently, we considered that the cyclic herbicide inputs may cause more detrimental effects than single-frequence exposure, potentially leading to a large-scale decline in coastal primary productivity.

7.
Sci Total Environ ; 951: 175849, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39209171

RESUMEN

Despite the existing connectivity and heterogeneity of aquatic habitats, the concept of interconnected landscapes has been frequently overlooked in ecotoxicological risk assessment studies. In this study, a novel mesocosm system, the HeMHAS (Heterogeneous Multi-Habitat Assay System), was constructed with the potential to assess structural and functional changes in a community resulting from exposure to contaminants, while also considering the complex ecological scenarios. Fish (Sparus aurata), shrimp (Palaemon varians) and three species of marine microalgae (Isochrysis galbana, Nannochloropsis gaditana and Tetraselmis chuii) were used as test organisms. Other species, such as Artemia sp. and macroalgae were also introduced into the system as environmental enrichment. All the species were distributed in five interconnected mesocosm compartments containing a copper gradient (0, 1, 10, 100 and 250 µg/L). The mobile fish avoided the copper contaminants from 1 µg/L (24 h-AC50: 4.88 µg/L), while the shrimp avoided from 50 µg/L (24 h-AC50: 136.58 µg/L). This finding suggests interspecies interactions influence habitat selection in contaminated environments, potentially jeopardizing population persistence. Among the non-motile organisms, the growth and chlorophyll content of the microalgae were concentration dependent. The growth of I. galbana was more sensitive (growth inhibition of 50 % at the highest concentration) in contrast to N. gaditana (30 % inhibition at the highest concentration) and T. chuii (25 % inhibition at the last two highest concentrations). In summary, the mesocosm HeMHAS showed how contamination-driven responses can be studied at landscape scales, enhancing the ecological relevance of ecotoxicological research.


Asunto(s)
Microalgas , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Microalgas/fisiología , Ecosistema , Monitoreo del Ambiente , Palaemonidae/fisiología , Peces/fisiología , Ecotoxicología , Estrés Fisiológico , Artemia , Medición de Riesgo , Cobre/toxicidad
8.
Ecol Evol ; 14(8): e70124, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39206455

RESUMEN

Temperature is commonly acknowledged as one of the primary forces driving ectotherm vector populations, most notably by influencing metabolic rates and survival. Although numerous experiments have shown this for a wide variety of organisms, the vast majority has been conducted at constant temperatures and changes therein, while temperature is far from constant in nature, and includes seasonal and diurnal cycles. As fluctuating temperatures have been described to affect metabolic processes at (sub)cellular level, this calls for studies evaluating the relative importance of temperature fluctuations and the changes therein. To gain insight in the effects of temperature fluctuations on ectotherm development, survival, and sex ratio, we developed an inexpensive, easily reproducible, and open-source, Arduino-based temperature control system, which emulates natural sinusoidal fluctuations around the average temperature. We used this novel setup to compare the effects of constant (mean) temperatures, most commonly used in experiments, block schemes, and natural sinusoidal fluctuations as well as an extreme variant with twice its amplitude using the cosmopolitan mosquito species Culex pipiens s.l. as a study organism. Our system accurately replicated the preprogrammed temperature treatments under outdoor conditions, even more accurately than traditional methods. While no effects were detected on survival and sex ratio within the ranges of variation evaluated, development was sped up considerably by including temperature fluctuations, especially during pupation, where development under constant temperatures took almost a week (30%) longer than under natural fluctuations. Doubling the amplitude further decreased development time by 1.5 days. These results highlight the importance of including (natural) oscillations in experiments on ectotherm organisms - both aquatic and terrestrial - that use temperature as a variable. Ultimately, these results have major repercussions for downstream effects at larger scales that may be studied with applications such as ecological niche models, disease risk models, and assessing ecosystem services that rely on ectotherm organisms.

9.
FEMS Microbiol Ecol ; 100(8)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39039015

RESUMEN

The phosphorus (P) concentration is increasing in parts of the Baltic Sea following the spring bloom. The fate of this excess P-pool is an open question, and here we investigate the role of microbial degradation processes in the excess P assimilation phase. During a 17-day-long mesocosm experiment in the southwest Finnish archipelago, we examined nitrogen, phosphorus, and carbon acquiring extracellular enzyme activities in three size fractions (<0.2, 0.2-3, and >3 µm), bacterial abundance, production, community composition, and its predicted metabolic functions. The mesocosms received carbon (C) and nitrogen (N) amendments individually and in combination (NC) to distinguish between heterotrophic and autotrophic processes. Alkaline phosphatase activity occurred mainly in the dissolved form and likely contributed to the excess phosphate conditions together with grazing. At the beginning of the experiment, peptidolytic and glycolytic enzymes were mostly produced by free-living bacteria. However, by the end of the experiment, the NC-treatment induced a shift in peptidolytic and glycolytic activities and degradation of phosphomonoesters toward the particle-associated fraction, likely as a consequence of higher substrate availability. This would potentially promote retention of nutrients in the surface as opposed to sedimentation, but direct sedimentation measurements are needed to verify this hypothesis.


Asunto(s)
Bacterias , Carbono , Nitrógeno , Fosfatos , Fósforo , Agua de Mar , Agua de Mar/microbiología , Agua de Mar/química , Fosfatos/metabolismo , Bacterias/metabolismo , Bacterias/genética , Bacterias/crecimiento & desarrollo , Fósforo/metabolismo , Carbono/metabolismo , Nitrógeno/metabolismo , Finlandia , Océanos y Mares , Eutrofización , Procesos Heterotróficos
10.
Glob Chang Biol ; 30(7): e17443, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39054811

RESUMEN

Light availability profoundly influences plant communities, especially below dense tree canopies in forests. Canopy disturbances, altering forest floor light conditions, together with other environmental changes such as climate change, nitrogen deposition and legacy effects from previous land-use will simultaneously impact forest understorey communities. Yet, knowledge on the individual effects of these drivers and their potential interactions remains scarce. Here we performed a forest mesocosm experiment to assess the influence of warming, illumination (simulating canopy opening), nitrogen deposition and soil land-use history (comparing ancient and post-agricultural forest soil) on understorey community composition trajectories over a 7-year period. Strikingly, understorey communities primarily evolved in response to the deeply shaded ambient forest conditions, with experimental treatments exerting only secondary influences. The overruling trajectory steered all mesocosms towards slow-colonizing forest specialist communities dominated by spring geophytes with lower nutrient-demand. The illumination treatment and, to a lesser extent, warming and agricultural land-use legacy slowed down this trend by advancing fast-growing resource-acquisitive generalist species. Warm ambient temperatures induced thermophilization of plant communities in all treatments, including control plots, towards higher dominance of warm-adapted species. Nitrogen addition accelerated this thermophilization process and increased the community light-demand signature. Land-use legacy effects were limited in our study. Our findings underscore the essential role of limited light availability in preserving forest specialists in understorey communities and highlight the importance of maintaining a dense canopy cover to attenuate global change impacts. It is crucial to integrate this knowledge in forest management adaptation to global change, particularly in the face of increasing demands for wood and wood products and intensified natural canopy disturbances.


Asunto(s)
Cambio Climático , Bosques , Nitrógeno , Suelo , Suelo/química , Nitrógeno/análisis , Luz , Árboles/crecimiento & desarrollo , Temperatura , Agricultura/métodos
11.
Ecol Evol ; 14(6): e11499, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38932976

RESUMEN

Beyond ecological and health impacts, invasive alien plant species can generate indirect and direct costs, notably through reduced agricultural yields, restoration, and management of the invaded environment. Acacia dealbata and Ailanthus altissima are invasive plant species that cause particularly significant damage to the railway network in the Mediterranean area. The allelopathic properties of Mediterranean plant species could be used as nature-based solutions to slow down the spread of such invasive plant species along railway borders. In this context, a mesocosm experiment was set-up: (i) to test the potential allelopathic effects of Cistus ladanifer, Cistus albidus, and Cotinus coggygria leaf aqueous extracts on seed germination and seedling growth of A. dealbata and A. altissima; (ii) to evaluate whether these effects depend on the extract dose; and finally, (iii) to estimate whether these effects are modified by soil amendment. Leaf aqueous extracts of the three native plant species showed negative effects on both seed germination and seedling growth of the two invasive species. Our results show that the presence of allelochemicals induces a delay in seed germination (e.g., A. dealbata germination lasted up to 269% longer in the presence of high-dose leaf aqueous extracts of C. coggygria), which can lead to a decrease in individual recruitment. They also highlight a decrease in seedling growth (e.g., high-dose C. coggygria leaf aqueous extracts induced a 26% decrease in A. dealbata radicle growth), which can alter the competitiveness of invasive species for resource access. Our results also highlight that compost addition limits the inhibitory effect of native Mediterranean plants on the germination of invasive alien plants, suggesting that soil organic matter content can counteract allelopathic effects on invasive alien plants. Thus, our findings revealed that the allelopathic potential of certain Mediterranean plant species could be a useful tool to manage invasive plant species.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38890256

RESUMEN

The present study reports findings related to the treatment of polluted groundwater using macrophyte-assisted phytoremediation. The potential of three macrophyte species (Phragmites australis, Scirpus holoschoenus, and Typha angustifolia) to tolerate exposure to multi-metal(loid) polluted groundwater was first evaluated in mesocosms for 7- and 14-day batch testing. In the 7-day batch test, the polluted water was completely replaced and renewed after 7 days, while for 14 days exposure, the same polluted water, added in the first week, was maintained. The initial biochemical screening results of macrophytes indicated that the selected plants were more tolerant to the provided conditions with 14 days of exposure. Based on these findings, the plants were exposed to HRT regimes of 15 and 30 days. The results showed that P. australis and S. holoschoenus performed better than T. angustifolia, in terms of metal(loid) accumulation and removal, biomass production, and toxicity reduction. In addition, the translocation and compartmentalization of metal(loid)s were dose-dependent. At the 30-day loading rate (higher HRT), below-ground phytostabilization was greater than phytoaccumulation, whereas at the 15-day loading rate (lower HRT), below- and above-ground phytoaccumulation was the dominant metal(loid) removal mechanism. However, higher levels of toxicity were noted in the water at the 15-day loading rate. Overall, this study provides valuable insights for macrophyte-assisted phytoremediation of polluted (ground)water streams that can help to improve the design and implementation of phytoremediation systems.

13.
Glob Chang Biol ; 30(6): e17390, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38899583

RESUMEN

Methane is a powerful greenhouse gas, more potent than carbon dioxide, and emitted from a variety of natural sources including wetlands, permafrost, mammalian guts and termites. As increases in global temperatures continue to break records, quantifying the magnitudes of key methane sources has never been more pertinent. Over the last 40 years, the contribution of termites to the global methane budget has been subject to much debate. The most recent estimates of termite emissions range between 9 and 15 Tg CH4 year-1, approximately 4% of emissions from natural sources (excluding wetlands). However, we argue that the current approach for estimating termite contributions to the global methane budget is flawed. Key parameters, namely termite methane emissions from soil, deadwood, living tree stems, epigeal mounds and arboreal nests, are largely ignored in global estimates. This omission occurs because data are lacking and research objectives, crucially, neglect variation in termite ecology. Furthermore, inconsistencies in data collection methods prohibit the pooling of data required to compute global estimates. Here, we summarise the advances made over the last 40 years and illustrate how different aspects of termite ecology can influence the termite contribution to global methane emissions. Additionally, we highlight technological advances that may help researchers investigate termite methane emissions on a larger scale. Finally, we consider dynamic feedback mechanisms of climate warming and land-use change on termite methane emissions. We conclude that ultimately the global contribution of termites to atmospheric methane remains unknown and thus present an alternative framework for estimating their emissions. To significantly improve estimates, we outline outstanding questions to guide future research efforts.


Asunto(s)
Isópteros , Metano , Isópteros/fisiología , Isópteros/metabolismo , Metano/análisis , Metano/metabolismo , Animales , Cambio Climático , Gases de Efecto Invernadero/análisis
14.
Environ Res ; 257: 119084, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38823617

RESUMEN

Ocean acidification (OA) is known to influence biological and ecological processes, mainly focusing on its impacts on single species, but little has been documented on how OA may alter plankton community interactions. Here, we conducted a mesocosm experiment with ambient (∼410 ppmv) and high (1000 ppmv) CO2 concentrations in a subtropical eutrophic region of the East China Sea and examined the community dynamics of microeukaryotes, bacterioplankton and microeukaryote-attached bacteria in the enclosed coastal seawater. The OA treatment with elevated CO2 affected taxa as the phytoplankton bloom stages progressed, with a 72.89% decrease in relative abundance of the protist Cercozoa on day 10 and a 322% increase in relative abundance of Stramenopile dominated by diatoms, accompanied by a 29.54% decrease in relative abundance of attached Alphaproteobacteria on day 28. Our study revealed that protozoans with different prey preferences had differing sensitivity to high CO2, and attached bacteria were more significantly affected by high CO2 compared to bacterioplankton. Our findings indicate that high CO2 changed the co-occurrence network complexity and stability of microeukaryotes more than those of bacteria. Furthermore, high CO2 was found to alter the proportions of potential interactions between phytoplankton and their predators, as well as microeukaryotes and their attached bacteria in the networks. The changes in the relative abundances and interactions of microeukaryotes between their predators in response to high CO2 revealed in our study suggest that high CO2 may have profound impacts on marine food webs.


Asunto(s)
Dióxido de Carbono , Eutrofización , Cadena Alimentaria , Agua de Mar , Agua de Mar/química , Dióxido de Carbono/análisis , Fitoplancton/efectos de los fármacos , Bacterias , Concentración de Iones de Hidrógeno , Océanos y Mares , China , Plancton , Acidificación de los Océanos
15.
Open Res Eur ; 4: 69, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915372

RESUMEN

Harmful algal blooms (HABs) are a significant threat to freshwater ecosystems, and monitoring for changes in biomass is therefore important. Fluorescence in-situ sensors enable rapid and high frequency real-time data collection and have been widely used to determine chlorophyll- a (Chla) concentrations that are used as an indicator of the total algal biomass. However, conversion of fluorescence to equivalent Chla concentrations is often complicated due to biofouling, phytoplankton composition and the type of equipment used. Here, we validated measurements from 24 Chla and 12 phycocyanin (cyanobacteria indicator) fluorescence in-situ sensors (Cyclops-7F, Turner Designs) against spectrophotometrically (in-vitro) determined Chla and tested a data-cleaning procedure for eliminating data errors and impacts of non-photochemical quenching. The test was done across a range of freshwater plankton communities in 24 mesocosms (i.e. experimental tanks) with a 2x3 (high and low nutrient x ambient, IPCC-A2 and IPCC-A2+50% temperature scenarios) factorial design. For most mesocosms (tanks), we found accurate (r 2 ≥ 0.7) calibration of in-situ Chla fluorescence data using simple linear regression. An exception was tanks with high in-situ phycocyanin fluorescence, for which multiple regressions were employed, which increased the explained variance by >16%. Another exception was the low Chla concentration tanks (r 2 < 0.3). Our results also show that the high frequency in-situ fluorescence data recorded the timing of sudden Chla variations, while less frequent in-vitro sampling sometimes missed these or, when recorded, the duration of changes was inaccurately determined. Fluorescence in-situ sensors are particularly useful to detect and quantify sudden phytoplankton biomass variations through high frequency measurements, especially when using appropriate data-cleaning methods and accounting for factors that can impact the fluorescence readings.


Harmful algal blooms (HABs) may pose a significant threat to freshwater ecosystems and to animal and human health. Therefore, it is important to monitor changes in algal biomass. Traditional methods, while effective, lack the ability to provide rapid, high-frequency, real-time data. In-situ fluorescence sensors, specifically designed to measure chlorophyll- a (total phytoplankton indicator) and phycocyanin (Blue-green algae indicator), offer a promising solution. However, challenges such as biofouling, temporal changes in phytoplankton composition, and equipment variations complicate the conversion of fluorescence data into equivalent chlorophyll- a concentrations. Our study aimed to validate measurements from 24 chlorophyll- a and 12 phycocyanin fluorescence in-situ sensors (Cyclops-7F, Turner Designs). We compared these measurements against spectrophotometrically determined (in-vitro method) chlorophyll- a concentrations. Additionally, we tested a data-cleaning procedure to eliminate errors caused by different sources, such as light. The validation and testing were conducted at Lemming Experimental Mesocosm site (Denmark), in 24 experimental tanks (mesocosms) representing 2 different nutrient levels and 3 temperature scenarios. This study underlines that high-frequency in-situ fluorescence sensors can be useful, only if the user is aware of the possible interacting factors that can influence fluorescence readings (e.g. turbidity, daylight). Therefore, in-situ fluorescence sensors, when properly calibrated and validated, offer a valuable tool for monitoring harmful algal blooms. The high-frequency data provides insights into sudden variations in phytoplankton biomass, demonstrating the potential for improved real-time understanding of freshwater ecosystems.

16.
Environ Pollut ; 351: 124096, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38703982

RESUMEN

Plastic bags are currently a major component of marine litter, causing aesthetical nuisance, and undesirable effects on marine fauna that ingest them or are entangled. Plastic litter also rises concern on the ecotoxicological effects due to the potential toxicity of the chemical additives leached in aquatic environments. Conventional plastic bags are made of polyethylene, either from first use or recycled, but regulations restricting single-use plastics and limiting lightweight carrier bags (<50 µm thickness) have fostered the replacement of thin PE bags by compostable materials advertised as safer for the environment. In this study, we assess the degradation of commercially available plastic bags in marine conditions at two scales: aquariums (60 days) and outdoors flow-through mesocosm (120 days). Strength at break point and other tensile strength parameters were used as ecologically relevant endpoints to track mechanical degradation. Ecotoxicity has been assessed along the incubation period using the sensitive Paracentrotus lividus embryo test. Whereas PE bags did not substantially lose their mechanical properties within the 60 d aquarium exposures, compostable bags showed remarkable weight loss and tensile strength decay, some of them fragmenting in the aquarium after 3-4 weeks. Sediment pore water inoculum promoted a more rapid degradation of compostable bags, while nutrient addition pattern did not affect the degradation rate. Longer-term mesocosms exposures supported these findings, as well as pointed out the influence of the microbial processes on the degradation efficiency of compostable/bioplastic bags. Compostable materials, in contrast toPE, showed moderate toxicity on sea-urchin larvae, partially associated to degradation of these materials, but the environmental implications of these findings remain to be assessed. These methods proved to be useful to classify plastic materials, according to their degradability in marine conditions, in a remarkably shorter time than current standard tests and promote new materials safer for the marine fauna.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Polietileno/química , Polietileno/toxicidad , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Ecotoxicología , Reciclaje , Compostaje , Plásticos/química , Plásticos/toxicidad , Agua de Mar , Paracentrotus/embriología , Animales , Plásticos Biodegradables/química , Plásticos Biodegradables/toxicidad , Estrés Mecánico , Pruebas de Toxicidad , Embrión no Mamífero
17.
Sci Total Environ ; 940: 173480, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796012

RESUMEN

The rewetting of formerly drained peatlands can help to counteract climate change through the reduction of CO2 emissions. However, this can lead to resuming CH4 emissions due to changes in the microbiome, favoring CH4-producing archaea. How plants, hydrology and microbiomes interact as ultimate determinants of CH4 dynamics is still poorly understood. Using a mesocosm approach, we studied peat microbiomes, below-ground root biomass and CH4 fluxes with three different water level regimes (stable high, stable low and fluctuating) and four different plant communities (bare peat, Carex rostrata, Juncus inflexus and their mixture) over the course of one growing season. A significant difference in microbiome composition was found between mesocosms with and without plants, while the difference between plant species identity or water regimes was rather weak. A significant difference was also found between the upper and lower peat, with the difference increasing as plants grew. By the end of the growing season, the methanogen relative abundance was higher in the sub-soil layer, as well as in the bare peat and C. rostrata pots, as compared to J. inflexus or mixture pots. This was inversely linked to the larger root area of J. inflexus. The root area also negatively correlated with CH4 fluxes which positively correlated with the relative abundance of methanogens. Despite the absence or low abundance of methanotrophs in many samples, the integration of methanotroph abundance improved the quality of the correlation with CH4 fluxes, and methanogens and methanotrophs together determined CH4 fluxes in a structural equation model. However, water regime showed no significant impact on plant roots and methanogens, and consequently, on CH4 fluxes. This study showed that plant roots determined the microbiome composition and, in particular, the relative abundance of methanogens and methanotrophs, which, in interaction, drove the CH4 fluxes.


Asunto(s)
Metano , Microbiota , Raíces de Plantas , Metano/metabolismo , Raíces de Plantas/microbiología , Humedales , Hidrología , Microbiología del Suelo
18.
Chemosphere ; 361: 142375, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38772514

RESUMEN

Oil sands process affected water (OSPW) is produced during bitumen extraction and typically contains high concentrations of trace metals. Constructed wetlands have emerged as a cost effective and green technology for the treatment of metals in wastewaters. Whether the addition of amendments to constructed wetlands can improve metal removal efficiency is unknown. We investigated the synergistic effects of carbon based amendments and wetland plant species in removal of arsenic, cadmium, cobalt, chromium, copper, nickel, and selenium from OSPW. Three native wetland species (Carex aquatilis, Juncus balticus, Scirpus validus) and two amendments (canola straw biochar, nano humus) were investigated in constructed wetland mesocosms over 60 days. Amendment effect on metal removal efficiency was not significant, while plant species effect was. Phytoremediation resulted in removal efficiencies of 78.61-96.31 % for arsenic, cadmium, and cobalt. Carex aquatilis had the highest removal efficiencies for all metals. Amendments alone performed well in removing some metals and were comparable to phytoremediation for cadmium, cobalt, copper, and nickel. Metals were primarily distributed in roots with negligible translocation to shoots. Our work provides insights into the role of plants and amendments during metal remediation and their complex interactions in constructed treatment wetlands.


Asunto(s)
Biodegradación Ambiental , Carbón Orgánico , Sustancias Húmicas , Contaminantes Químicos del Agua , Humedales , Carbón Orgánico/química , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Metales Pesados/metabolismo , Metales Pesados/análisis , Arena , Aguas Residuales/química , Metales/metabolismo , Arsénico/metabolismo , Arsénico/análisis , Hidrocarburos/metabolismo
19.
J Environ Manage ; 359: 120982, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38678904

RESUMEN

Metals are essential at trace levels to aquatic organisms for the function of many physiological and biological processes. But their elevated levels are toxic to the ecosystem and even brings about shifts in the plankton population. Threshold limits such as Predicted No Effect Concentration (PNEC - 0.6 µg/l of Cd; 2.7 µg/l of Pb), Criterion Continuous Concentration (CCC - 3.0 µg/l of Cd; 4.5 µg/l of Pb) and Criterion Maximum Concentration (CMC - 23 µg/l of Cd; 130 µg/l of Pb) prescribed for Indian coastal waters were used for the study. Short-term mesocosm experiments (96 h) were conducted in coastal waters of Visakhapatnam to evaluate responses of the planktonic community on exposure to threshold concentrations of cadmium and lead for the first time. Four individual experimental bags of 2500 L capacity (Control, PNEC, CCC & CMC) were used for the deployment and ambient water samples were analysed simultaneously to evaluate the impacts of the threshold levels in the natural waters. Chaetoceros sp. were dominant group in the control system whereas, Prorocentrum sp. Ceratium sp. Tintinopsis sp. Chaetoceros sp. and Skeletonema sp. were major groups in the test bags. Throughout the experiment the phytoplankton community did not show any significant differences with increased nutrients and plankton biomass (Chl-a <8.64 mg/m3). Positive response of plankton community was observed in the experimental bags. High abundance of diatoms were observed in PNEC, CCC & CMC bags at 48 h and the abundance decreased with shift in the species at 72-96 h. The catalase activity in phytoplankton (5.99 nmol/min/ml) and the zooplankton (4.77 nmol/min/ml) showed induction after exposure to PNEC. The present mesocosm study is confirmed that short-term exposure to threshold metal concentration did not affects the phytoplankton community structure in PNEC, but CCC and CMC affects the community structure beyond 24 h. The insights from this study will serve as a baseline information and help develop environmental management tools. We believe that long-term mesocosm experiments would unravel metal detoxification mechanisms at the cellular level and metal transfer rate at higher trophic levels in real-world environment.


Asunto(s)
Cadmio , Plomo , Plancton , Contaminantes Químicos del Agua , Plancton/efectos de los fármacos , Plancton/metabolismo , Cadmio/análisis , Cadmio/toxicidad , Plomo/análisis , Plomo/toxicidad , Plomo/metabolismo , Contaminantes Químicos del Agua/análisis , Bahías , Ecosistema , Monitoreo del Ambiente , Fitoplancton/efectos de los fármacos , Fitoplancton/metabolismo
20.
NanoImpact ; 34: 100506, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38626862

RESUMEN

The foreseen increasing application of copper-based nanomaterials (Cu-NMs), replacing or complementing existing Cu-agrochemicals, may negatively impact the soil microbiome. Thus, we studied the effects on soil microbiome function and composition of nano copper oxide (nCuO) or copper hydroxide NMs in a commercial (Kocide®3000) or a lab-synthetized formulation (nCu(OH)2) or bulk copper hydroxide (Cu(OH)2-B), at the commonly recommended Cu dose of 50 mg(Cu)kg-1 soil. Microbial responses were studied over 28 days in a designed indoor mesocosm. On day-28, in comparison to non-treated soil (CT), all Cu-treatments led to a reduction in dehydrogenase (95% to 68%), arylsulfatase (41% to 27%), and urease (40% to 20%) activity. There was a 32% increase in the utilization of carbon substrates in the nCuO-treatment and an increased abundance of viable bacteria in the nCu(OH)2-treatment (75% of heterotrophic and 69% of P-solubilizing bacteria). The relative abundance of Acidobacteria [Kocide®3000, nCuO, and Cu(OH)2-B treatments] and Flavobacteriia [nCu(OH)2-treatment] was negatively affected by Cu exposure. The abundance of Cu-tolerant bacteria increased in soils treated with Kocide®3000 (Clostridia) and nCu(OH)2 (Gemmatimonadetes). All Cu-treated soils exhibited a reduced abundance of denitrification-related genes (0.05% of nosZ gene). The DTPA-extractable pool of ionic Cu(II) varied among treatments: Cu(OH)2-B > Kocide®3000 âˆ¼ nCuO>nCu(OH)2, which may explain changes on the soil microbiome composition, at the genera and OTU levels. Thus, our study revealed that Cu-materials (nano and bulk) influence the soil microbiome with implications on its ecological role. It highlights the importance of assessing the impact of Cu-materials under dynamic and complex exposure scenarios and emphasizes the need for specific regulatory frameworks for NMs.


Asunto(s)
Agricultura , Cobre , Microbiota , Microbiología del Suelo , Cobre/farmacología , Microbiota/efectos de los fármacos , Suelo/química , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/metabolismo , Hidróxidos/química , Hidróxidos/farmacología , Nanopartículas del Metal/química , Nanoestructuras/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA