Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Ethnopharmacol ; 332: 118338, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38759762

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Mesobuthus martensii scorpions, called as "Quanxie", are known Chinese medicinal material base on the "Combat poison with poison" strategy for more than one thousand years, and still widely used to treat various diseases according to the Pharmacopoeia of the People's Republic of China nowadays. AIM OF STUDY: The study aims to investigate the similarity of scorpion neurotoxins at the protein level between the juvenile and adult Mesobuthus martensii scorpions as Chinese medicine materials. MATERIALS AND METHODS: The second-, third- and fourth-instar, and adult Mesobuthus martensii scorpions were collected for the characterization of neurotoxin expression through multiple strategic proteomics, including undigested scorpion venom, endopeptidase-digested, and undigested scorpion telson extract for the sample analysis. RESULTS: Based on the known 107 scorpion neurotoxins from the genomic and transcriptomic analysis of adult Mesobuthus martensii scorpions, the multiple strategic proteomics first revealed that neurotoxins exhibited more stability in telson extract than secreted venom. In the reported transcripts of scorpion neurotoxins, approximately 53%, 56%, 66% and 78% of neurotoxins were detected through undigested scorpion venom, the endopeptidase Arg-C-, Lys-C-digested telson extract, and undigested telson extract strategies, respectively. Nearly 79% of scorpion neurotoxins detected in third-instar Mesobuthus martensii scorpions represent the largest number of scorpion neurotoxins from proteomic analysis to date. Moreover, a total of 84% of scorpion neurotoxins were successfully identified at the protein level, and similar neurotoxin expression profiles in second-, third- and fourth-instar, and adult Mesobuthus martensii scorpions were first revealed by the multiple strategic proteomics. CONCLUSION: These findings for the first time demonstrate the similar neurotoxin expression profiles between the juvenile and adult Mesobuthus martensii scorpions as Chinese medicinal material, which would serve as a paradigm for further toxin analysis from different venomous animals.


Asunto(s)
Medicina Tradicional China , Neurotoxinas , Proteómica , Venenos de Escorpión , Escorpiones , Animales , Proteómica/métodos , Animales Ponzoñosos
2.
Toxins (Basel) ; 14(9)2022 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-36136568

RESUMEN

Mesobuthus martensii, a famous and important Traditional Chinese Medicine has a long medical history and unique functions. It is the first scorpion species whose whole genome was sequenced worldwide. In addition, it is the most widespread and infamous poisonous animal in northern China with complex habitats. It possesses several kinds of toxins that can regulate different ion channels and serve as crucial natural drug resources. Extensive and in-depth studies have been performed on the structures and functions of toxins of M. martensii. In this research, we compared the morphology of M. martensii populations from different localities and calculated the COI genetic distance to determine intraspecific variations. Transcriptome sequencing by RNA-sequencing of the venom glands of M. martensii from ten localities and M. eupeus from one locality was analyzed. The results revealed intraspecific variation in the expression of sodium channel toxin genes, potassium channel toxin genes, calcium channel toxin genes, chloride channel toxin genes, and defensin genes that could be related to the habitats in which these populations are distributed, except the genetic relationships. However, it is not the same in different toxin families. M. martensii and M. eupeus exhibit sexual dimorphism under the expression of toxin genes, which also vary in different toxin families. The following order was recorded in the difference of expression of sodium channel toxin genes: interspecific difference; differences among different populations of the same species; differences between sexes in the same population, whereas the order in the difference of expression of potassium channel toxin genes was interspecific difference; differences between both sexes of same populations; differences among the same sex in different populations of the same species. In addition, there existed fewer expressed genes of calcium channel toxins, chloride channel toxins, and defensins (no more than four members in each family), and their expression differences were not distinct. Interestingly, the expression of two calcium channel toxin genes showed a preference for males and certain populations. We found a difference in the expression of sodium channel toxin genes, potassium channel toxin genes, and chloride channel toxin genes between M. martensii and M. eupeus. In most cases, the expression of one member of the toxin gene clusters distributed in series on the genome were close in different populations and genders, and the members of most clusters expressed in same population and gender tended to be the different. Twenty-one toxin genes were found with the MS/MS identification evidence of M. martensii venom. Since scorpions were not subjected to electrical stimulation or other special treatments before conducting the transcriptome extraction experiment, the results suggested the presence of intraspecific variation and sexual dimorphism of toxin components which revealed the expression characteristics of toxin and defensin genes in M. martensii. We believe this study will promote further in-depth research and use of scorpions and their toxin resources, which in turn will be helpful in standardizing the identification and medical applications of Quanxie in traditional Chinese medicine.


Asunto(s)
Venenos de Escorpión , Escorpiones , Secuencia de Aminoácidos , Animales , Canales de Calcio/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Defensinas/genética , Femenino , Masculino , Canales de Potasio/genética , ARN/metabolismo , Venenos de Escorpión/química , Escorpiones/genética , Escorpiones/metabolismo , Homología de Secuencia de Aminoácido , Canales de Sodio/genética , Espectrometría de Masas en Tándem , Transcriptoma
3.
J Photochem Photobiol B ; 234: 112511, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35816856

RESUMEN

Scorpion fluorescence under ultraviolet light is a well-known phenomenon, and its change is also a known biological feature during the scorpion moulting process. However, the synthesis and transport of fluorescent substances during the moulting stage remain unclear. In this study, in-depth investigations on the global fluorescence changes from the exoskeleton, fluorescence layer, coelomic fluid, and abdomen to the digestive glands indicated that the digestive glands, which occupy most of the space in the abdomen of the scorpion mesosoma segment, were responsible for synthesizing the fluorescent substances. More importantly, these fluorescent substances were produced in advance, before the moulting process, which contributed to the recovery of the fluorescent exoskeleton as early as possible. The synthesized fluorescent substances first entered the coelomic fluid, then successively passed through the inherent epithelial cell layer and two new formed endocuticle and exocuticle layers, and ultimately reached and became enriched in the new formed fluorescent layer, which was protected by the new epicuticle layer. These four new layers were the first to illustrate the structural features of the fluorescent exoskeleton. Due to the very soft body and the inability of the newly moulted scorpion to resist attacks from the predator, this special synthesis and transport strategy of the fluorescent substances could guarantee the rapid formation of the integrated fluorescent exoskeleton during the 24 h after ecdysis, which would be a novel biological feature during the scorpion evolution.


Asunto(s)
Muda , Escorpiones , Animales , Escorpiones/química
4.
Toxicon ; 200: 198-202, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34390711

RESUMEN

The scorpion venom system plays a critical role in capturing prey and defending against predators. In this study, the rapid developmental process of the first instar telson was first presented. The small amount of venom in the first instar could be stored well by the distorted and blocked venom ducts, which disappeared in the older scorpions. This special developmental process of the first instar telson revealed the notable survival ability of scorpions.


Asunto(s)
Venenos de Escorpión , Escorpiones , Animales , Venenos de Escorpión/toxicidad
5.
J Ethnopharmacol ; 265: 113268, 2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32810618

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: As well-known medicinal materials in traditional Chinese medicine, scorpions, commonly called as Quanxie () in Chinese, have been widely used to treat several diseases such as rheumatoid arthritis, apoplexy, epilepsy and chronic pain for more than a thousand years. Not only in the ancient times, the scorpions have also been recorded nowadays in the Pharmacopoeia of the People's Republic of China since 1963. AIM OF STUDY: This study aims to explore the differences in composition of the venom of scorpions from different regions by using the method of transcriptomics and proteomics. MATERIALS AND METHODS: Whole de novo transcriptomes, proteomics and their bioinformatic analyses were performed on samples of the scorpion Mesobuthus martensii and their venoms from four different provinces with clear geographical boundaries, including Hebei, Henan, Shandong and Shanxi. RESULTS: The four captured samples had the same morphology, and the conserved CO-1 sequence matched that of M. martensii. A total of 141,003 of 174,653 transcripts were identified as unigenes, of which we successfully annotated 51,627 (36.61%), 21,970 (15.58%), 7,168 (5.08%), and 45,263 (32.10%) unigenes with the NR, GO, KEGG and SWISSPROT databases, respectively, while a total of 427 proteins were collected from the protein extracted from venoms. Both GO and KEGG annotations exhibited only slight differences among the four samples while the expression level of gene and protein was quite different. A total of 249 toxin-related unigenes were successfully screened, including 41 serine proteases and serine protease inhibitors, 39 potassium channel toxins, 38 phospholipases, 16 host defense peptides, 9 metalloproteases, and 50 other toxins. Although the toxin species were similar among the four samples, the gene expression of each toxin varied considerably, for example, the scorpion from HB province has the most abundant expression quality in sequences c48391_g1, c55239_g1 and c47749_g1 while the lowest expressions of c51178_g1, c62033_g3 and c63754_g2. CONCLUSION: The regional differences in the transcriptomes and proteomes of M. martensii are mainly from expression levels e.g. toxins rather than expression species, of which the method can be further extended to evaluate the qualities of traditional Chinese medicines obtained from different regions.


Asunto(s)
Proteómica , Venenos de Escorpión/toxicidad , Escorpiones , Transcriptoma , Animales , China , Biología Computacional , Expresión Génica , Perfilación de la Expresión Génica , Proteoma , Venenos de Escorpión/química , Venenos de Escorpión/genética
6.
Mitochondrial DNA B Resour ; 5(1): 335-336, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33366545

RESUMEN

Yimeng scorpion is a specific geographical indication breed of Yimeng Mountain area in China. The complete mitochondrial genome sequence of Yimeng scorpion was determined for the first time (Accession number MN597087). It is mitochondrial genome (14,840 bp) contains 13 protein-coding genes, 21tRNA genes, 2 ribosomal RNA genes and one large non-coding region (a possible control region). Moreover, tRNA-ASP-loss was observed from the Yimeng scorpion mitochondrial genome. The mitochondrial genome sequence of the Yimeng scorpion enriches data resource for further research on genetic mechanism and classification.

7.
Molecules ; 23(12)2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30558111

RESUMEN

Highly acidic peptides with no disulfide bridges are widely present in the scorpion venoms; however, none of them has been functionally characterized so far. Here, we cloned the full-length cDNA of a short-chain highly acidic peptide (referred to as HAP-1) from a cDNA library made from the venom glands of the Chinese scorpion Mesobuthus martensii Karsch. HAP-1 contains 19 amino acid residues with a predicted IP value of 4.25. Acidic amino residues account for 33.3% of the total residues in the molecule of HAP-1. HAP-1 shows 76⁻98% identities to some scorpion venom peptides that have not yet been functionally characterized. Secondary structure prediction showed that HAP-1 contains a beta-sheet region (residues 9⁻17), and two coiled coil regions (residues 1⁻8 and 18⁻19) located at the N-terminal and C-terminal regions of the peptide, respectively. Antimicrobial assay showed that HAP-1 does not have any effect on the growth of the bacterium Staphylococcus aureus AB94004. However, it potently inhibits the antimicrobial activity of a 13-mer peptide from M. martensii Karsch against Staphylococcus aureus AB94004. This finding is the first characterization of the function of such highly acidic peptides from scorpions.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Venenos de Escorpión/química , Escorpiones/química , Animales , Péptidos/química , Péptidos/farmacología , Staphylococcus aureus/efectos de los fármacos
8.
Toxins (Basel) ; 7(9): 3671-87, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26389953

RESUMEN

The intense pain induced by scorpion sting is a frequent clinical manifestation. To date, there is no established protocol with significant efficacy to alleviate the pain induced by scorpion envenomation. One of the important reasons is that, little information on pain-inducing compound from scorpion venoms is available. Here, a pain-inducing peptide (BmP01) has been identified and characterized from the venoms of scorpion (Mesobuthus martensii). In an animal model, intraplantar injection of BmP01 in mouse hind paw showed significant acute pain in wild type (WT) mice but not in TRPV1 knock-out (TRPV1 KO) mice during 30 min recording. BmP01 evoked currents in WT dorsal root ganglion (DRG) neurons but had no effect on DRG neurons of TRPV1 KO mice. Furthermore, OPEN ACCESS Toxins 2015, 7 3672 BmP01 evoked currents on TRPV1-expressed HEK293T cells, but not on HEK293T cells without TRPV1. These results suggest that (1) BmP01 is one of the pain-inducing agents in scorpion venoms; and (2) BmP01 induces pain by acting on TRPV1. To our knowledge, this is the first report about a scorpion toxin that produces pain by targeting TRPV1. Identification of a pain-inducing compound may facilitate treating pain induced by scorpion envenomation.


Asunto(s)
Venenos de Escorpión/toxicidad , Escorpiones/química , Canales Catiónicos TRPV/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Modelos Animales de Enfermedad , Ganglios Espinales/efectos de los fármacos , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Neuronas/efectos de los fármacos , Dolor/inducido químicamente , Dolor/patología , Conformación Proteica
9.
Biochem Pharmacol ; 93(2): 232-9, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25514171

RESUMEN

Venom-derived neurotoxins are ideal probes for the investigation of structure-function relationship of ion channels and promising scaffolds for the design of ion channel-targeted drug leads as well. The discovery of highly selective toxins against a specific channel subtype facilitates the development of drugs with reduced side effects. Here, we describe the systemic characterization of a new scorpion short-chain K(+) channel blocker from Mesobuthus martensii, termed mesomartoxin (MMTX). MMTX is synthesized as a precursor comprising a signal peptide and a mature peptide of 29 residues. Nuclear magnetic resonance analysis confirmed that recombinant MMTX adopts a typical cysteine-stabilized α-helical and ß-sheet fold. Electrophysiological experiments showed that MMTX exhibits high affinity for the Drosophila Shaker K(+) channel but differential selectivity on different members of the rat voltage-gated K(+) channel (Kv) family, with nanomolar affinity (IC50=15.6 nM) for rKv1.2, micromolar affinity for rKv1.3 (IC50=12.5 µM) and no activity on rKv1.1 at >50 µM. Site-directed mutagenesis of the channel pore identified a key site located on the selectivity filter of the pore, which is directly implicated in toxin binding and controls target's selectivity of the toxin. Given a key role of Kv1.2 in epilepsy, MMTX might serve as a potential drug lead for the disease.


Asunto(s)
Canal de Potasio Kv.1.2/metabolismo , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/metabolismo , Venenos de Escorpión/química , Venenos de Escorpión/metabolismo , Secuencia de Aminoácidos , Animales , Relación Dosis-Respuesta a Droga , Femenino , Canal de Potasio Kv.1.2/química , Canal de Potasio Kv.1.2/genética , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas , Venenos de Escorpión/genética , Xenopus laevis
10.
J Proteomics ; 106: 162-80, 2014 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-24780724

RESUMEN

The scorpion Mesobuthus martensii is the most populous species in eastern Asian countries, and several toxic components have been identified from their venoms. Nevertheless, a complete proteomic profile of the venom of M. martensii is still not available. In this study, the venom of M. martensii was analyzed by comprehensive proteomic approaches. 153 fractions were isolated from the M. martensii venom by 2-DE, SDS-PAGE and RP-HPLC. The ESI-Q-TOF MS results of all fractions were used to search the scorpion genomic and transcriptomic databases. Totally, 227 non-redundant protein sequences were unambiguously identified, composed of 134 previously known and 93 previously unknown proteins. Among 134 previously known proteins, 115 proteins were firstly confirmed from the M. martensii crude venom and 19 toxins were confirmed once again, involving 43 typical toxins, 7 atypical toxins, 12 venom enzymes and 72 cell associated proteins. In typical toxins, 7 novel-toxin sequences were identified, including 3 Na(+)-channel toxins, 3K(+)-channel toxins and 1 no-annotation toxin. These results increased 230% (115/50) venom components compared with previous studies from the M. martensii venom, especially 50% (24/48) typical toxins. Additionally, a mass fingerprint obtained by MALDI-TOF MS indicated that the scorpion venom contained more than 200 different molecular mass components. BIOLOGICAL SIGNIFICANCE: This work firstly gave a systematic investigation of the M. martensii venom by combined proteomics strategy coupled with genomics and transcriptomics. A large number of protein components were unambiguously identified from the venom of M. martensii, most of which were confirmed for the first time. We also contributed 7 novel-toxin sequences and 93 protein sequences previously unknown to be part of the venom, for which we assigned potential biological functions. Besides, we obtained a mass fingerprint of the M. martensii venom. Together, our study not only provides the most comprehensive catalog of the molecular diversity of the M. martensii venom at the proteomic level, but also enriches the composition information of scorpion venom.


Asunto(s)
Proteómica/métodos , Venenos de Escorpión/química , Escorpiones/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/química , Canales de Cloruro/química , Cromatografía Líquida de Alta Presión , Electroforesis en Gel Bidimensional , Electroforesis en Gel de Poliacrilamida , Genómica , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Canales de Potasio/química , Homología de Secuencia de Aminoácido , Canales de Sodio/química , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem , Transcriptoma
11.
Peptides ; 53: 106-14, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23973966

RESUMEN

It was shown that peptides containing trypsin inhibitor-like cysteine-rich (TIL) domain are able to inhibit proteinase activities, and thus play important roles in various biological processes, such as immune response and anticoagulation. However, only a limited number of the TIL peptides have been identified and characterized so far; and little has been known about the evolutionary relationships of the genes encoding the TIL peptides. BmKAPi is a TIL domain-containing peptide that was identified from Mesobuthus martensii Karsch. Here, we conducted genome-wide searches for new peptides that are homologous to BmKAPi or possess a cysteine pattern similar to that of BmKAPi. As a result, we identified a total of 80 different TIL peptides from 34 species of arthropods. We found that these peptides can be classified into seven evolutionarily distinct groups. Furthermore, we cloned the genomic sequence of BmKAPi; the genomic sequences of the majority of other TIL peptides were also identified from the GenBank database using bioinformatical approaches. Through phylogenetic and comparative genomic analysis, we found 26 cases of intron gain events occurred in the genes of the TIL peptides; however, no instances of intron loss were observed. Moreover, we found that alternative splicing contributes to the diversification of the TIL peptides. It is interesting to see that four genes of the TIL domain-containing peptides overlap in a DNA region located on the chromosome LG B15 of Bombus terretris. These data suggest that the evolution of the TIL peptide genes are dynamic, which was dominated by intron gain.


Asunto(s)
Cisteína/química , Genómica/métodos , Péptidos/genética , Inhibidores de Tripsina/química , Empalme Alternativo/genética , Animales , Abejas/química , Intrones/genética , Polimorfismo Genético/genética , Escorpiones/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA