Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38254418

RESUMEN

Marek's disease (MD), caused by Mardivirus gallidalpha 2 (GaAHV-2), also known as MD virus (MDV), is a lymphoproliferative disease that primarily affects chickens. Recently, MDV has been detected in lymphomatous tumors in turkeys in various countries. Between 2021 and 2023, three cases ranging from no to severe clinical disorders (depression, lameness, and increased mortality) occurred in commercial turkey flocks in Slovenia. In all cases, MDV was detected by PCR in DNA samples extracted from organs developing tumor infiltrations. Sequencing and phylogenetic analysis of the meq gene revealed that the GaAHV-2 detected has molecular features of a very virulent pathotype and genetic similarity with GaAHV-2 detected in chickens in Tunisia. This is the first report of MDV in commercial turkeys in Slovenia.

2.
Vet Sci ; 11(1)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38275925

RESUMEN

Marek's disease virus (MDV) causes malignant lymphoma (Marek's disease; MD) in chickens. The Meq protein is essential for tumorigenesis since it regulates the expression of host and viral genes. Previously, we reported that the deletion of the short isoform of Meq (S-Meq) decreases the pathogenicity of MDV. Recently, we identified a further short isoform of Meq (very short isoform of Meq, VS-Meq) in chickens with MD in Japan. A 64-amino-acid deletion was confirmed at the C-terminus of VS-Meq. We measured the transcriptional regulation by VS-Meq in three gene promoters to investigate the effect of VS-Meq on protein function. Wild-type VS-Meq decreased the transrepression of the pp38 promoter but did not alter the transactivation activity of the Meq and Bcl-2 promoters. The deletion in VS-Meq did not affect the activity of the pp38 promoter but enhanced the transactivation activities of the Meq and Bcl-2 promoters. Collectively, the deletion of VS-Meq potentially enhanced the activity of the Meq promoter, while other amino acid sequences in wild-type VS-Meq seemed to affect the weak transrepression of the pp38 promoter. Further investigation is required to clarify the effects of these changes on pathogenicity.

3.
Virus Genes ; 60(1): 32-43, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184501

RESUMEN

Fifty-seven Gallid alphaherpesvirus 2 (GaHV-2) isolates, collected during a 30-year period (1990-2019) from commercial poultry flocks affected by Marek's disease (MD), were molecularly characterised. The GaHV-2 meq gene was amplified and sequenced to evaluate the virus virulence, based on the number of PPPPs within the proline-rich repeats (PRRs) of its transactivation domain. The present illustration of virus virulence evaluation on a large scale of field virus isolates by molecular analysis exemplifies the practical benefit and usefulness of the molecular marker in commercial GaVH-2 isolates. The alternative assay of GaVH-2 virulence pathotyping is the classical Gold Standard ADOL method, which is difficult and impossible to employ on a large scale using the Specific Pathogen Free (SPF) chicks of the ADOL strains kept in isolators for two months. The phylogenetic analysis performed in the present study showed that the meq gene amino acid sequences of the 57 Israeli strains divide into 16 phylogenetic branches. The virulence evaluation was performed in comparison with 36 GaHV-2 prototype strains, previously characterised by the in vivo Gold Standard ADOL assay. The results obtained revealed that the GaHV-2 strains circulating in Israel have evolved into a higher virulence potential during the years, as the four-proline stretches number in the meq gene decreased over the investigated period, typically of very virulent virus prototypes. The present study supports the meq gene molecular markers for the assessment of field GaVH-2 strains virulence.


Asunto(s)
Herpesvirus Gallináceo 2 , Enfermedad de Marek , Proteínas Oncogénicas Virales , Enfermedades de las Aves de Corral , Animales , Aves de Corral , Israel , Virulencia/genética , Filogenia , Proteínas Oncogénicas Virales/genética , Herpesvirus Gallináceo 2/genética , Pollos , Prolina/genética
4.
Avian Pathol ; 52(6): 401-411, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37605844

RESUMEN

Marek's disease (MD) is caused by oncogenic MD virus serotype 1 (MDV1) and is characterized by lymphoproliferative lesions resulting in high morbidity and mortality in chickens. Despite being ubiquitous on poultry farms, there is a dearth of information on its molecular characteristics in Nigeria. This study aimed at characterizing three virulence genes (Meq, pp38, and vIL-8) of MDV1 from chickens in Ogun state, Nigeria. Blood, feather quill, and tumour samples of chickens from different commercial poultry farms in Ogun State were pooled, spotted on 107 FTA cards, and screened for MDV1 by polymerase chain reaction (PCR). Phylogenetic analysis was carried out to compare Nigerian MDV1 Meq, pp38, and vIL-8 genes sequences with the published references. Thirteen samples were MDV1-positive and the Meq, as well as pp38, and vIL-8 genes from the different samples were 100% identical. The Meq genes contained 339 amino acids (aa) with three PPPP motifs in the transactivation domain and two interruptions of the PPPP motifs due to proline-to-arginine substitutions at positions 176 and 217 resulting in a 20.88% proline composition. Phylogenetic analysis revealed that the Meq gene clustered with strains from Egypt and very virulent ATE2539 strain from Hungary. Mutations were observed in the pp38 protein (at positions 107 and 109) and vIL-8 protein (at positions 4 and 31). Based on the molecular analysis of the three genes, the results indicate the presence of MDV1 with virulence signatures; therefore, further studies on in vivo pathotyping of Nigerian MDV1 from all states should be performed.RESEARCH HIGHLIGHTS Meq, pp38 and vIL-8 genes were 100% identical between Nigerian MDV strains.Proline content in Nigerian meq gene was 20.88% with two PPPP motifs interruptions.Meq, pp38 and vIL-8 genes of Nigerian MDV were similar to Egyptian and Indian strains.


Asunto(s)
Herpesvirus Gallináceo 2 , Enfermedad de Marek , Proteínas Oncogénicas Virales , Enfermedades de las Aves de Corral , Animales , Pollos , Filogenia , Nigeria/epidemiología , Herpesvirus Gallináceo 2/genética , Aves de Corral , Prolina/genética , Enfermedades de las Aves de Corral/epidemiología
5.
Avian Dis ; 66(3): 1-5, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36106908

RESUMEN

Marek's disease (MD) is a highly contagious, lymphoproliferative poultry disease caused by the oncogenic herpesvirus, serotype 1 Marek's disease virus (MDV-1), or Gallid herpesvirus 2 (GaHV-2). MDV strains have shown a continued evolution of virulence leading to immune failure, and MD cases continue to occur or surge. Meq, the major MDV-1 oncoprotein, induces T-cell neoplastic transformation through several mechanisms including inhibition of apoptosis, cell cycle regulation, and serum-anchorage independent growth. There is no current information on the MDV serotypes and pathotypes circulating in vaccinated commercial farms in Iran, where the birds are vaccinated at the hatchery with GaHV-2 and Meleagrid herpesvirus 1 (MeHV-1) vaccines. This study reports the molecular characterization of a GaHV-2 strain detected in 19 flocks of Iranian layer farms exhibiting MDV-1-like clinical signs and visceral lymphomas. Based on sequencing and phylogenetic analysis of the Meq gene, the Iranian GaHV-2 isolates could be divided into two separate clades regarding molecular features. The clade containing strains was closely related to Italian, Indian, and Hungarian virulent isolates, and the clade was related to American very virulent plus (vv+) isolates. For the first time, the MDV-1 virus was characterized by an outbreak in poultry flocks in Iran. Although MDV-1 strains obtained in Iran's present outbreak are presumably related to virulent (v) and vv+ pathotypes based on nucleotide, amino acid, and phylogenetic analysis of the viruses, they are not confirmed so far. Thus, it is highly recommended to perform further analyses to demonstrate the pathotype characteristics in vivo.


Caracterización molecular y análisis filogenético del virus de la enfermedad de Marek en Irán. La enfermedad de Marek (MD) es una enfermedad altamente contagiosa linfoproliferativa en la avicultura causada por el herpesvirus oncogénico, el virus de la enfermedad de Marek de serotipo 1 (MDV-1) o Gallid herpesvirus 2 (GaHV-2). Las cepas del virus de Marek han mostrado una evolución continua de virulencia que conduce a una falla inmunológica, y los casos de Marek continúan ocurriendo o aumentando. El gene Meq, codifica la principal oncoproteína de MDV-1, induce la transformación neoplásica de células T a través de varios mecanismos que incluyen la inhibición de la apoptosis, la regulación del ciclo celular y el crecimiento independiente del anclaje sérico. No hay información actual sobre los serotipos y patotipos del virus de Marek que circulan en las granjas comerciales vacunadas en Irán, donde las aves se vacunan en la planta de incubación con las vacunas GaHV-2 y Meleagrid herpesvirus 1 (MeHV-1). Este estudio reporta la caracterización molecular de una cepa del Gallid herpesvirus 2 detectada en 19 lotes de granjas de aves de postura iraníes que presentaron signos clínicos sugestivos del serotipo 1 del virus de la enfermedad de Marek y linfomas viscerales. Según la secuenciación y el análisis filogenético del gene Meq, los aislamientos iraníes de GaHV-2 podrían dividirse en dos clados separados con respecto a las características moleculares. El clado que contenía las cepas estaba estrechamente relacionado con los aislados virulentos de Italia, India y de Hungria y el clado estaba relacionado con los aislados americanos muy virulentos plus (vv+). Por primera vez, el serotipo 1 del virus de la enfermedad de Marek se caracterizó por un brote en parvadas avícolas en Irán. Aunque las cepas del virus de Marek, serotipo 1 obtenidas en el brote actual de Irán están presuntamente relacionadas con patotipos virulentos (v) y muy virulentos plus según el análisis de nucleótidos, aminoácidos y filogenético de los virus, hasta el momento no se han confirmado. Por lo tanto, se recomienda realizar más análisis para demostrar las características del patotipo in vivo.


Asunto(s)
Herpesvirus Gallináceo 2 , Enfermedad de Marek , Enfermedades de las Aves de Corral , Aminoácidos , Animales , Pollos , Irán/epidemiología , Nucleótidos , Proteínas Oncogénicas/genética , Filogenia , Aves de Corral
6.
Braz J Microbiol ; 53(3): 1683-1689, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35484378

RESUMEN

As neoplastic viruses have been affecting Iranian chicken farms more frequently in recent years, the first step in prevention may therefore be to genetically characterize and systematically identify their source and origin. Recently, we published a phylogenetic analysis based on the meq gene of Gallid alphaherpesvirus 2, commonly known as serotype 1 Marek's disease virus (MDV-1), that circulated in Iranian backyard and commercial chickens. In the current study, we are reporting for the first time the identification of a 298 aa meq protein containing only two PPPP motifs from an MDV-1-infected unvaccinated backyard turkey. This protein length has never been reported from any turkey species before. According to phylogenetic analysis, a close genetic relationship (0.68%) to several chicken-origin isolates such as the American vv + 648A strain was found. In addition, we identified a standard meq protein from a MDV-1-infected commercial chicken farm. In corroboration with our previous finding from other Iranian provinces, it is likely that the highly identical MDV-1 viruses currently circulating in Iranian chicken farms, which may be indicative of human role in the spread of the virus, have similar Eurasian origin. Our data suggest that regardless of the meq size, MDV-1 circulating in Iran are from different origins. On the other hand, meq sequences from bird species other than chicken have been reported but are very few. Our investigation suggests MDV-1 circulating in turkey do not have species-specific sequences.


Asunto(s)
Herpesvirus Gallináceo 2 , Enfermedad de Marek , Enfermedades de las Aves de Corral , Animales , Pollos , Herpesvirus Gallináceo 2/genética , Humanos , Irán/epidemiología , Enfermedad de Marek/epidemiología , Enfermedad de Marek/prevención & control , Filogenia , Aves de Corral , Enfermedades de las Aves de Corral/epidemiología
7.
Br Poult Sci ; 63(2): 142-149, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34423692

RESUMEN

1. In recent months, several outbreaks with clinical signs of MDV-1 were reported in Iranian parent and laying hen farms, in addition to backyard chickens. Several meq gene sequences from these outbreaks were amplified and molecularly characterised.2. The meq protein sequences revealed three different sizes, namely the standard 339 aa, a shorter form of 338 aa lacking a proline residue at position 191, and a very short (vs) size of 265 aa. Based on sequence and size, the 265 aa meq has never been reported from international research groups before. The protein has only one PPPP repeat motif suggesting it belongs to a highly virulent strain.3. The standard meq sequences showed 100% BLAST identity to the vv+ isolate Polen5. However, the 338 aa form clustered to the clade usually reported from North America.4. This is the first report on genetic analysis of MDV-1 from Iran, but further study is required to obtain a better picture of the diversity and prevalence of different MDV-1 strains circulating in the country's farms, backyard poultry and other bird species.


Asunto(s)
Herpesvirus Gallináceo 2 , Enfermedad de Marek , Enfermedades de las Aves de Corral , Animales , Pollos , Femenino , Herpesvirus Gallináceo 2/genética , Irán/epidemiología , Enfermedad de Marek/epidemiología , Enfermedades de las Aves de Corral/epidemiología
8.
Intervirology ; 64(3): 156-164, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34023833

RESUMEN

INTRODUCTION: Gallid alphaherpesvirus 2 (GaHV-2) is a highly contagious oncogenic virus that causes Marek's disease in chickens and occasionally in turkeys. Among 100 genes identified in GaHV-2 genome, the Meq gene appears to involve viral virulence, oncogenicity, and genetic diversity. Despite the use of Meq gene sequences in phylogenetic classification of GaHV-2 strains circulating in many countries worldwide, no integrated system exists yet. METHODS: Turkeys from 2 commercial Egyptian farms were presented with signs of dullness, dehydration, and emaciation. Samples prepared from the internal organs were examined by histopathology and immunohistochemistry. Pools of the internal organs were analyzed by PCR for identification of GaHV-2, avian leucosis virus, and reticuloendotheliosis virus. The Meq gene of an Egyptian strain was sequenced and analyzed in comparison to 40 reference strains for generation of a universal system for phylogenetic classification of GaHV-2 strains. RESULTS: Gross and histopathological examination revealed grayish-white soft masses in the internal organs characterized by diffuse infiltration of pleomorphic neoplastic cells. All lymphoma cells were identified as T-lymphocytes of CD3+ phenotype. Samples of both farms were only positive for GaHV-2 by PCR. Sequence analysis of the Meq gene has classified the current turkey strain as related to the Egyptian strains identified in chicken in 2012. A universal phylogenetic system for classification of GaHV-2 strains into 4 clusters was proposed. The vaccine strains were all grouped in cluster 2, and most of the classical American strains belonged to cluster 4. Cluster 1 was further divided into 3 subclusters (1.1-1.3). CONCLUSION: GaHV-2 was identified in turkeys for the first time in Africa and the Middle East. Sequence analysis of the Meq gene of the Egyptian strain along with a wide array of the global strains has enabled the construction of a novel phylogenetic classification system.


Asunto(s)
Enfermedad de Marek , Enfermedades de las Aves de Corral , Animales , Pollos , Egipto , Filogenia , Pavos
9.
Transbound Emerg Dis ; 68(6): 3574-3587, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33354907

RESUMEN

Marek's disease (MD) continues to threaten the sustainability of the world poultry industry. In this study, the sequences of the meq gene of 220 MDV strains isolated during the years 1964-2020 were analysed, including 50 from our group plus 170 isolates from the GenBank. Analyses, using phylogenetic trees, amino acid (aa)-mutation screening, evolutionary studies and transmission dynamics were all performed. All strains were divided into two clusters (Clusters 1 and 2), and Cluster 1 includes the mild strains, the vaccine strains and the foreign virulent strains, while Cluster 2 was dominated by the Chinese field strains. Our study identified that the Chinese field strains in Cluster 2 during the years 1995-2020 likely originated in the 1980s from abroad, and the estimated genetic diversity of these strains experienced two growth phases in the years 2005-2007.5 and 2015-2017. Viral phylogeography identified 3 major geographic provincial regions for the Chinese field strains of Cluster 2: the Northeastern Region (Jilin, Liaoning and Heilongjiang), the East-central Region (Henan, Shandong and Jiangsu) and the Southern Region (Guangxi, Guangdong and Yunnan). The spread of Northeastern strains to East-central chicken flocks and the further spread from Guangxi to Guangdong are strongly indicated. The emergence of the mutations A88T and Q93R together in the Southern strains during the years 2017-2020 with molecular characteristics of vv+ MDV were also found later than those in the Northern strains. Overall, the Chinese field strains in Cluster 2 in southern China in recent years have been rapidly evolving. Guangxi Province has become an epicentre for these viruses and the chicken flocks in the Southern region have been facing the adverse effects of the emerging vv+ MDV.


Asunto(s)
Enfermedad de Marek , Enfermedades de las Aves de Corral , Animales , Pollos , China/epidemiología , Filogenia , Enfermedades de las Aves de Corral/epidemiología
10.
Poult Sci ; 99(4): 1939-1945, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32241474

RESUMEN

SC9-2 is a recombinant Marek's disease virus (MDV) strain lacking the meq oncogene. Previous study demonstrated that SC9-2 virus provides good protection against challenge with a very virulent MDV rMd5, but it induces immunosuppressive effects in specific pathogen-free (SPF) chickens. In the present study, SC9-2 was serially passaged on chicken embryo fibroblast (CEF) cell cultures. The pathogenicity and immune efficacy of SC9-2/10th and SC9-2/40th against rMd5 were evaluated. Animal experimental results showed that SC9-2/10th and SC9-2/40th showed no lethality or tumorigenicity in SPF chickens. Body weight of chickens inoculated with SC9-2/40th were significantly higher than that of the chickens inoculated with SC9-2/10th but lower than that of the uninoculated controls. The severity of bursa and thymus atrophy (BTA) and spleen enlargement in SC9-2/40th-inoculated chickens were also weaker than the SC9-2/10th-inoculated ones but stronger than the uninoculated controls. Chickens inoculated with SC9-2/40th and SC9-2/10th showed similar antibody levels induced by H9N2 subtype avian influenza virus/Newcastle disease virus inactivated vaccines, both of which were lower than the uninoculated controls. Replication of SC9-2/40th was significantly lower than SC9-2/10th in feather follicle epithelium (FFE) of infected chickens. The immune protection index of SC9-2/40th was also lower than that of SC9-2/10th, but the difference was not significantly, and both of which were significant higher than that of the commercial MDV vaccine CVI988/Rispens. The results of our studies demonstrated that SC9-2/40th showed weaker severity of BTA, spleen enlargement, and body weight loss and lower replication level in FFE than SC9-2/10th in SPF chickens. However, SC9-2/40th was able to confer better immune protection as compared with CVI988/Rispens vaccination in SPF chickens. In conclusion, serially attenuation of SC9-2 in CEFs reduced the lymphoid organ atrophy and replication in SPF chickens, and the immune protective efficacy of attenuated viruses was still superior than CVI988/Rispens.


Asunto(s)
Pollos , Herpesvirus Gallináceo 2/fisiología , Vacunas contra la Enfermedad de Marek/inmunología , Enfermedad de Marek/inmunología , Proteínas Oncogénicas Virales/deficiencia , Enfermedades de las Aves de Corral/inmunología , Animales , Herpesvirus Gallináceo 2/genética , Herpesvirus Gallináceo 2/inmunología , Enfermedad de Marek/virología , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/fisiología , Enfermedades de las Aves de Corral/virología , Organismos Libres de Patógenos Específicos
11.
Br Poult Sci ; 61(5): 523-530, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32316760

RESUMEN

1. There is no current data about the genotypes of Marek's disease virus (MDV) in Turkish poultry flocks; hence, this study was performed to analyse CVI988/Rispens, turkey herpesvirus (HVT) vaccine viruses and MDV field viruses as well as to perform phylogenetic analysis of MDV in Turkish layer chickens. 2. In 2017 and 2018, a total of 602 spleen samples from 49 layer flocks were collected from the Marmara, West Black Sea and Aegean regions. DNA was extracted from the spleen samples and the samples were analysed by real-time PCR probe assay to detect CVI988/Rispens and HVT vaccine viruses and MDV field strains. Samples found positive for MDV by real-time PCR were subjected to PCR using the Meq gene primers for phylogenetic analysis. 3. Amongst 49 flocks, virulent MDV was detected in nine flocks. CVI988/Rispens and HVT vaccine strains were detected in 47 flocks and HVT in all 49 flocks. Splenomegaly, hepatomegaly and tumours in the oviduct were observed in chickens of affected flocks. Virulent MDV was detected in 120 out of 602 spleen samples. Sequencing and phylogenetic analyses showed that MDVs detected in this study were closely related to MDV strains from Italy, Poland, Saudi Arabia, Iraq, India and China but showed diversity with MDV strains from Egypt and Hungary. Multiple sequence analysis of the Meq protein revealed several point mutations in deduced amino acid sequences. Interestingly, CVI988/Rispens vaccine virus from China (AF493555) showed mutations at position 66 (G66R) and 71 (S66A) along with two other vaccine strains from China (GU354326.1) and Russia (EU032468.1), in comparison with the other vaccine strain CVI988/Rispens (DQ534538). The molecular analyses of the Meq gene suggested that Turkish field strains of MDV are in the class of virulent or very virulent pathotypes. 4. The results have shown that MDV still affects poultry health, and the phylogenetic and amino acid variation data obtained will help in vaccination and control strategies.


Asunto(s)
Herpesvirus Gallináceo 2 , Enfermedad de Marek , Enfermedades de las Aves de Corral , Animales , Pollos , China , Herpesvirus Gallináceo 2/genética , India , Italia , Enfermedad de Marek/epidemiología , Filogenia , Polonia , Enfermedades de las Aves de Corral/epidemiología , Federación de Rusia , Arabia Saudita
12.
Avian Pathol ; 49(2): 202-207, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31702386

RESUMEN

Marek's disease (MD) is a lymphoproliferative disease caused by Gallid alphaherpesvirus 2 (GaHV-2), which primarily affects chickens. However, the virus is also able to induce tumours in turkeys, albeit less frequently than in chickens. This study reports the molecular characterization of a GaHV-2 strain detected in a flock of Italian meat-type turkeys exhibiting visceral lymphomas. Sequencing and phylogenetic analysis of the meq gene revealed that the turkey GaHV-2 has molecular features of high virulence and genetic similarity with GaHV-2 strains recently detected in Italian commercial and backyard chickens. GaHV-2 is ubiquitous among chickens despite vaccination, and chicken-to-turkey transmission is hypothesized due to the presence of broilers in neighbouring pens.RESEARCH HIGHLIGHTS A GaHV-2 strain from Italian turkeys was molecularly characterized.The turkey strain presented molecular characteristics of high virulence in its meq gene.The turkey strain was closely related to previously detected chicken strains.


Asunto(s)
Herpesvirus Gallináceo 2 , Enfermedad de Marek/virología , Neoplasias/veterinaria , Pavos , Animales , Regulación Viral de la Expresión Génica , Herpesvirus Gallináceo 2/genética , Enfermedad de Marek/patología , Neoplasias/virología , Proteínas Oncogénicas Virales/aislamiento & purificación , Filogenia , Reacción en Cadena de la Polimerasa/veterinaria , Enfermedades de las Aves de Corral/virología
13.
Transbound Emerg Dis ; 67(1): 98-107, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31411371

RESUMEN

Marek's disease (MD) is a lymphoproliferative disease important to the poultry industry worldwide; it is caused by Gallid alphaherpesvirus 2 (GaHV-2). The virulence of GaHV-2 isolates has shifted over the years from mild to virulent, very virulent and very virulent +. Nowadays the disease is controlled by vaccination, but field strains of increased virulence are emerging worldwide. Economic losses due to MD are mostly associated with its acute form, characterized by visceral lymphomas. The present study aimed to molecularly classify a group of 13 GaHV-2 strains detected in vaccinated Italian commercial chicken flocks during acute MD outbreaks, and to scrutinize the ability of predicting GaHV-2 virulence, according to the meq gene sequence. The full-length meq genes were amplified, and the obtained amino acid (aa) sequences were analysed, focusing mainly on the number of stretches of four proline molecules (PPPP) within the transactivation domain. Phylogenetic analysis was carried out with the Maximum Likelihood method using the obtained aa sequences, and the sequences of Italian strains detected in backyard flocks and of selected strains retrieved from GenBank. All the analysed strains showed 100% sequence identity in the meq gene, which encodes a Meq protein of 339 aa. The Meq protein includes four PPPP motifs in the transactivation domain and an interruption of a PPPP motif due to a proline-to-serine substitution at position 218. These features are typically encountered in highly virulent isolates. Phylogenetic analysis revealed that the analysed strains belonged to a cluster that includes high-virulence GaHV-2 strains detected in Italian backyard flocks and a hypervirulent Polish strain. Our results support the hypothesis that the virulence of field isolates can be suggested by meq aa sequence analysis.


Asunto(s)
Pollos/virología , Herpesvirus Gallináceo 2/clasificación , Enfermedad de Marek/virología , Proteínas Oncogénicas Virales/genética , Enfermedades de las Aves de Corral/virología , Secuencia de Aminoácidos , Animales , Herpesvirus Gallináceo 2/genética , Herpesvirus Gallináceo 2/aislamiento & purificación , Italia/epidemiología , Enfermedad de Marek/epidemiología , Filogenia , Enfermedades de las Aves de Corral/epidemiología , Análisis de Secuencia de Proteína/veterinaria , Virulencia/genética
14.
Front Genet ; 10: 1122, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31798630

RESUMEN

A rapidly increasing number of reports on dysregulated long intergenic non-coding RNA (lincRNA) expression across numerous types of cancers indicates that aberrant lincRNA expression may be a major contributor to tumorigenesis. Marek's disease (MD) is a T cell lymphoma of chickens induced by Marek's disease virus (MDV). Although we have investigated the roles of lincRNAs in bursa tissue of MDV-infected chickens in previous studies, the molecular mechanisms of lincRNA functions in T cells remain poorly understood. In the present study, Linc-GALMD1 was identified from CD4+ T cells and MSB1 cells, and its expression was significantly downregulated in MD-resistant line of birds in response to MDV challenge. Furthermore, loss-of-function experiments indicated that linc-GALMD1 significantly affected the expression of 290 genes in trans. Through integrated analysis of differentially expressed genes (DEGs) induced by MDV and linc-GALMD1, we found that IGLL1 gene expression levels had a positive correlation with the degree of MD infection and could potentially serve as an indicator for clinical diagnosis of MD. Moreover, an interaction between MDV and linc-GALMD1 was also observed. Accordingly, chicken embryonic fibroblast cells were inoculated with MDV with and without the linc-GALMD1 knockdown, and the data showed that linc-GALMD1 could repress MDV gene expression during the course of MDV infection. These findings uncovered a role of linc-GALMD1 as a viral gene regulator and suggested a function of linc-GALMD1 contributing to tumor suppression by coordinating expression of MDV genes and tumor-related genes and regulating immune responses to MDV infection.

15.
mSphere ; 4(5)2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31597721

RESUMEN

Vaccines play a crucial role in the protection of animals and humans from deadly pathogens. The first vaccine that also protected against cancer was developed against the highly oncogenic herpesvirus Marek's disease virus (MDV). MDV infects chickens and causes severe immunosuppression, neurological signs, and fatal lymphomas, a process that requires the viral oncogene, meq The most frequently used Marek's disease vaccine is the live-attenuated CVI988/Rispens (CVI) strain, which efficiently protects chickens and prevents tumorigenesis. Intriguingly, CVI expresses at least two isoforms of meq; however, it remains unknown to what extent these isoforms contribute to virus attenuation. In this study, we individually examined the contribution of the two CVI-meq isoforms to the attenuation of the vaccine. We inserted the respective isoforms into a very virulent MDV (strain RB-1B), thereby replacing its original meq gene. Surprisingly, we could demonstrate that the longer isoform of meq strongly enhanced virus-induced pathogenesis and tumorigenesis, indicating that other mutations in the CVI genome contribute to virus attenuation. On the contrary, the shorter isoform completely abrogated pathogenesis, demonstrating that changes in the meq gene can indeed play a key role in virus attenuation. Taken together, our study provides important evidence on attenuation of one of the most frequently used veterinary vaccines worldwide.IMPORTANCE Marek's disease virus (MDV) is one of several oncogenic herpesviruses and causes fatal lymphomas in chickens. The current "gold standard" vaccine is the live-attenuated MDV strain CVI988/Rispens (CVI), which is widely used and efficiently prevents tumor formation. Intriguingly, CVI expresses two predominant isoforms of the major MDV oncogene meq: one variant with a regular size of meq (Smeq) and one long isoform (Lmeq) harboring an insertion of 180 bp in the transactivation domain. In our study, we could break the long-standing assumption that the Lmeq isoform is an indicator for virus attenuation. Using recombinant viruses that express the different CVI-meq isoforms, we could demonstrate that both isoforms drastically differ in their abilities to promote pathogenesis and tumor formation in infected chickens.


Asunto(s)
Herpesvirus Gallináceo 2/genética , Vacunas contra la Enfermedad de Marek/genética , Proteínas Oncogénicas Virales/genética , Animales , Pollos , Enfermedad de Marek/prevención & control , Vacunas Atenuadas/genética , Vacunas Sintéticas/genética
16.
Poult Sci ; 98(8): 3130-3137, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30850833

RESUMEN

Marek's disease (MD) is an important lymphoproliferative disease of chickens, caused by Gallid alphaherpesvirus 2 (GaHV-2). Outbreaks are commonly reported in commercial flocks, but also in backyard chickens. Whereas the molecular characteristics of GaHV-2 strains from the commercial poultry sector have been reported, no recent data are available for the rural sector. To fill this gap, 19 GaHV-2 strains detected in 19 Italian backyard chicken flocks during suspected MD outbreaks were molecularly characterized through an analysis of the meq gene, the major GaHV-2 oncogene. The number of four consecutive prolines (PPPP) within the proline-rich repeats of the Meq transactivation domain, the proline content, and the presence of amino acid (aa) substitutions were determined. Phylogenetic analysis was performed using the Maximum Likelihood method. Sequence analysis revealed a heterogeneous population of GaHV-2 strains circulating in Italian backyard flocks. Seven strains, detected from birds affected by classical MD, showed a unique meq isoform of 418 aa with a very high number of PPPP motifs. Molecular and clinical features are suggestive of a low oncogenic potential of these strains. The remaining 12 strains, detected from flocks experiencing acute MD, transient paralysis, or sudden death, had shorter Meq protein isoforms (298 or 339 aa) with a lower number of PPPP motifs and point mutations interrupting PPPP. These features allow us to assert the high virulence of these strains. These findings reveal the circulation of low- and high-virulence GaHV-2 strains in the Italian rural sector.


Asunto(s)
Herpesvirus Gallináceo 2/genética , Enfermedad de Marek/virología , Proteínas Oncogénicas Virales/genética , Animales , Pollos , Brotes de Enfermedades/veterinaria , Italia/epidemiología , Enfermedad de Marek/epidemiología , Filogenia , Análisis de Secuencia de ADN/veterinaria , Virulencia/genética
17.
Meta Gene ; 9: 230-6, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27617224

RESUMEN

Marek's disease (MD), caused by Marek's disease virus (MDV), is a highly contagious neoplastic disease of chicken that can be prevented by vaccination. However, in recent years many cases of vaccine failure have been reported worldwide as chickens develop symptoms of MD in spite of proper vaccination. Distinct polymorphism and point mutations in Meq gene of MDV have been reported to be associated with virulence and oncogenicity. The present study was carried out with the objective to isolate and characterize field isolates of MDV on the basis of Meq gene. Twenty five samples of suspected cases of MD were collected and processed for virus isolation in duck embryo fibroblast (DEF) primary culture where 28% (7 of 25) samples showed characteristic cytopathic effects of MDV in the form of plaques and syncytia. Additional evidence of presence of MDV in these samples was confirmed by PCR. To analyze diversity in all seven isolates of MDV, a polymorphism study was carried out by cloning and sequencing of full length of Meq gene (1020 bp). Sequence homology of 7 isolates with 23 reference strains showed 98.10-99.40% similarity in nucleotide and 95.90-98.50% similarity in amino acid sequences. Six isolates revealed 5 repeat sequences of 4 prolines (PPPP) whereas, one isolate revealed only 4 repeats. In phylogenetic analysis, these isolates formed a separate cluster showing close relatedness to the Chinese isolates. The study indicates a high mutation rate in field isolates of MDV that may be probable cause of vaccination failure.

18.
Data Brief ; 9: 231-5, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27656677

RESUMEN

The data described are related to the article entitled "Sequence Analysis of Meq oncogene among Indian isolates of Marek׳s Disease Herpesvirus" M. Gupta, D. Deka, Ramneek, 2016. Seven meq genes of Ludhiana Marek׳s disease virus (MDV) field isolates were PCR amplified by using proof reading Platinum Pfx DNA polymerase enzyme, sequenced and then analyzed for the distinct polymorphisms and point mutations. The sequences were named as LDH 1758, LDH 2003, LDH 2483, LDH 2614, LDH 2700, LDH 2929 and LDH 3262. At this point, their deduced Meq amino acid sequences were compared with GenBank available already sequenced meq genes worldwide in their deduced amino acid form to study their identity/similarity with each other.

19.
Vet World ; 9(6): 572-8, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27397979

RESUMEN

AIM: The aim of this study was to demonstrate the genomic features of Meq gene of Marek's disease virus (MDV) recently circulating in Saudi Arabia (SA). MATERIALS AND METHODS: Two poultry flocks suffering from mortalities and visceral tumors were presented to the Veterinary Teaching Hospital, King Faisal University, SA. Subjected to different diagnostic procedures: Case history, clinical signs, and necropsy as well as polymerase chain reaction followed by Meq gene sequence analysis. RESULTS: Case history, clinical signs, and necropsy were suggestive of MDV infection. The Meq gene was successfully detected in liver and spleen of infected chickens. A 1062 bp band including the native Meq ORF in addition to a 939 bp of S-Meq (short isoform of Meq) were amplified from Saudi 01-13 and Saudi 02-13, respectively. The nucleotide and deduced amino acids sequences of the amplified Meq genes of both Saudi isolates showed distinct polymorphism when compared with the standard USA virulent isolates Md5 and GA. The sequence analysis of the S-Meq gene showed a 123 bp deletion representing 41 amino acids between two proline-rich areas without any frameshift. The Meq gene encoded four repeats of proline-rich repeats (PRRs sequences), whereas the S-Meq contains only two PRRs. Interestingly, the phylogenetic analysis revealed that both of SA MDV isolates are closely related to the MDV strains from Poland. CONCLUSION: The two MDV isolates contain several nucleotide polymorphisms resulting in distinct amino acid substitutions. It is suggested that migratory and wild birds, as well as world trading of poultry and its by-products, have a great contribution in the transmission of MDVs overseas.

20.
Virus Genes ; 52(1): 51-60, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26611441

RESUMEN

During the course of our continuous surveillance of Gallid herpesvirus 2 (GaHV-2), 44 isolates were obtained from GaHV-2-positive chickens of different flocks in China from 2009 to 2013. The meq gene, considered as a major GaHV-2 oncogene, was sequenced and was found to contain an open reading frame of 1020 nucleotides encoding a 339 amino acid (aa) polypeptide in all isolates. Compared with the GaHV-2 GA strain, the meq genes in 15.9 % (7/44) of the isolates analyzed in this study contained an aa substitution mutation at position 88 (A to T) of which is the first report. The main characteristics of Chinese GaHV-2 isolates meq genes included the substitutions K77E, D80Y, V115A, T139A, P176R, and P217A, and the aa substitution frequency at positions 139 and 176 showed an increase. To test the pathogenicity of the isolates, a pathogenicity study and a vaccination-challenge test were performed on three selected isolates (ZY/1203, WC/1203, and WC/1110) and reference strain GA. The results showed that the three isolates induced gross Marek's disease (MD) lesions in 95.0-100 % cases, which was a higher rate than that obtained for strain GA (82.4 %). Three isolates induced mortality in 10-21.1 % of specific-pathogen-free chickens, which was similar to results with strain GA (23.5 %). The commercially available CVI988 vaccine induced lower protective indices (PIs) against ZY/1203 (82.4) and WC/1110 (83.3) as compared to those against WC/1203 (100) and GA (100). These results showed an evolving trend in the meq genes of the isolates; three isolates exhibited higher morbidity as compared to the reference strain and the vaccine induced lower PIs against two isolates as compared to that against the reference strain.


Asunto(s)
Pollos/virología , Herpesvirus Gallináceo 2/patogenicidad , Animales , China/epidemiología , Herpesvirus Gallináceo 2/clasificación , Herpesvirus Gallináceo 2/genética , Enfermedad de Marek/epidemiología , Enfermedad de Marek/virología , Proteínas Oncogénicas Virales/genética , Filogenia , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA